
1

Review

Dave Eckhardt
de0u@andrew.cmu.edu

2

Synchronization

� Exam will be closed-book
� Who is reading comp.risks?
� Some homework questions on .qa bboard
� About today's review

� Mentioning key concepts

� No promise of exhaustive coverage

� Reading some of the textbook is advisable

3

OS Overview

� Abstraction/obstruction layer
� Virtualization
� Protected sharing/controlled interference

4

Hardware

� Inside the box – bridges
� User registers and other registers
� Fairy tales about system calls
� Kinds of memory, system-wide picture

� User vs. kernel

� Code, data, stack

� Per-process kernel stack

� Device driver, interrupt vector, masking interrupts

5

Hardware

� DMA
� System clock

� “Time of day” clock (aka “calendar”)

� Countdown timer

6

Memory hierarchy

� Users want
� big, fast

� cheap

� compact, cold

� non-volatile

� Use locality of reference
� To build a pyramid of deception

7

Memory hierarchy

� Small, fast memory
� backed by large slow memory

� indexed according to large memory's address space

� containing most-popular parts

� Line size, CAM
� Placement, associativity
� Miss policy/Eviction, LRU/Random, write policy
� TLB

8

Process

� Pseudo-machine (registers, memory, I/O)
� Life cycle: fork()/exec()

� specifying memory, registers, I/O, kernel state

� the non-magic of stack setup (argv[])

� the non-magic function that calls main()

� States: running, runnable, sleeping
� also forking, zombie

� Process cleanup: why, what

9

Thread

� Core concept: schedulable set of registers
� With access to some resources (“task”, in Mach

terminology)

� Thread stack

� Why threads?
� Cheap context switch

� Cheap access to shared resources

� Responsiveness

� Multiprocessors

10

Thread types

� Internal
� optional library

� register save/restore (incl. stack swap)

� Features
� only one outstanding system call

� “cooperative” scheduling might not be

� no win on multiprocessors

11

Thread types

� Kernel threads
� resources (memory, ...) shared & reference-counted

� kernel manages: registers, kstack, scheduling

� Features
� good on multiprocessors

� may be “heavyweight”

12

Thread types

� M:N
� M user threads share N kernel threads

� dedicated or shared

� Features
� Best of both worlds

� Or maybe worst of both worlds

13

Thread cancellation

� Asynchronous/immediate
� Don't try this at home

� How to garbage collect???

� Deferred
� Requires checking or cancellation points

14

Thread-specific data

� printf(“Client machine is %s\n”, thread_var(0));
� reserved register or stack trick

15

Race conditions

� The setuid shell script attack

16

Wacky memory

� Stores may be re-ordered or coalesced
� That's not a bug, it's a feature!

17

Atomic sequences

� short
� require non-interference
� typically nobody is interfering
� store->cash += 50;
� “mutex” / “latch”

18

Voluntary de-scheduling

� “Are we there yet?”
� We want somebody else to have our CPU
� Not running is an OS service!
� Atomic:

� release state-guarding mutex

� go to sleep

� “condition variable”

19

Critical section problem

� Three goals
� Mutual exclusion

� Progress – choosing time must be bounded

� Bounded waiting – choosing cannot be unboundedly
unfair

� “Slide 15” algorithm
� Bakery algorithm

20

Mutex implementation

� XCHG, Test&Set
� Load-linked, store-conditional
� i860 magic lock bit
� Lamport's algorithm
� “Passing the buck” to the OS (or not!)
� Kernel-assisted instruction sequences

21

Bounded waiting

� One algorithm
� How critical?

22

Environment matters

� Spin-wait on a uniprocessor????
� How reasonable is your scheduler?

� Maybe bounded waiting is free?

23

Condition variables

� Why we want them
� How to use them
� What's inside?
� The “atomic sleep” problem

24

Semaphores

� Concept
� Thread-safe integer

� wait()/P()

� signal()/V()

� Use
� Can be mutexes or condition variables

� 42 flavors
� Binary, non-blocking, counting/recursive

25

Monitor

� Concept
� Collection of procedures

� Block of shared state

� Compiler-provided synchronization code

� Condition variables (again)

26

Deadlock

� Definition
� N processes

� Everybody waiting for somebody else

� Four requirements
� Process/Resource graphs
� Dining Philosophers example

27

Prevention

� Four Ways To Forgiveness
� One of them is actually common

28

Avoidance

� Keep system in “safe” states
� States with an “exit strategy”

� Assume some process will complete, release resources
� Make sure this enables another to finish
� Banker's Algorithm

29

Detection

� Don't be paranoid (or oblivious)
� Scan for cycles

� When?

� What to do when you find one?

30

Starvation

� Always a danger
� Solutions probably application-specific

31

Context switch

� yield() by hand (user-space threads)
� No magic!

� yield() in the kernel
� Built on the magic process_switch()

� Inside the non-magic process_switch()
� Scheduling
� Saving
� Restoring

� Clock interrupts, I/O completion

32

Scheduling

� CPU-burst behavior
� “Exponential” fall-off in burst length

� CPU-bound vs. I/O-bound

� Preemptive scheduling
� Clock, I/O completion

� Scheduler vs. “Dispatcher”
� Scheduling criteria

33

Scheduling – Algorithms

� FCFS, SJF, Priority
� Round-robin
� Multi-level
� Multi-processor (AMP, SMP)
� Real-time (hard, soft)
� The Mars Pathfinder story

� priority-inheritance locks

34

Memory Management

� Where addresses come from
� Program counter

� Stack pointer

� Random registers

� Image file vs. Memory image
� What a link editor does

� relocation

� Logical vs. physical addresses

35

Swapping / Contiguous Allocation

� Swapping
� Stun a process, write it out to disk

� Memory can be used by another process

� Contiguous allocation
� Need a big-enough place to swap in to

� External fragmentation (vs. internal)

36

Paging

� Fine-grained map from virtual to physical
� Page address -> frame address

� Page table per process
� Per-page bits: valid, permissions, dirty, referenced

� Fancy data structures
� Multi-level page table
� Inverted page table
� Hashed/clustered page table

37

Segmentation

� Concept
� Hardware expression of “memory region”

� Protection boundary, sharing boundary

� Typically combined with paging
� The beautiful complex x86

38

Less is more

� Software-managed TLB
� Choose your own page table structure

� “Explain” it via TLB miss faults

39

Virtual Memory

� Observations
� Some stuff is “never” needed in memory

� Some stuff isn't needed in memory to start

� Some stuff is sometimes needed in memory

� Approach
� RAM is just a cache of system memory

� Page-valid bits record swapping out of pages

� Page-fault handler fixes everything up

40

Page-fault handling

� Map address to region
� Deduce semantic reason for fault
� Special techniques

� COW

� Zero pages

� Memory-mapped files

41

Paging

� Page replacement policy
� FIFO, optimal, LRU

� Reality: LRU approximations
� Clock algorithm

� Backing store policy
� Page buffering
� Reclaim faults

42

Paging

� Frame allocation policy
� Equal/proportional/...

� Thrashing
� Just not enough pages

� Working-set model

� Fault-frequency model

� Reducing paging
� Simple program optimizations

