
1

Feedback

Dave Eckhardt
de0u@andrew.cmu.edu

2

Homework Q2

� Was deadlock prevention an option for P2?
� Answer

� We couldn't violate the “mutual exclusion” deadlock
requirement

� “because the data structures would have been messed up”

� “Pixie dust” theory
� Sprinkle mutex_lock() powder on sick programs

� More is better

� Tape drive != “struct mutex”

3

Homework Q4

� In the IBM System/370, memory protection is
provided through the use of keys.

� A key is a 4-bit quantity.
� How many 4-bit keys are there?

� One per frame?

� One per process?

� One per process memory page?

4

Homework Q4

� Each 2 KB block of memory has a key (the
storage key) associated with it.

� The CPU also has a key (the protection key)
associated with it.

� A store operation is allowed only if both keys are
equal, or if either is zero.
� Can a process change its protection key?

� Does the kernel need protection_key=0 to write to
kernel memory?

5

Homework Q4

� (a) Explain why an operating system might
typically arrange for memory pages allocated to a
single user process to have different storage keys.

� Three issues
� Storage key for page 1

� Storage key for page 2

� Protection key

6

Homework Q4

� Assume pk = 1
� Some pages have sk = 1

� The process can write to them

� Some pages have sk != 1
� The process can't write to them

� What is the common case of non-writeable
pages?

7

Homework Q4

� (b) Explain why an operating system kernel might
be designed so most kernel code would not
execute with the protection key equal to zero.

� Ok...
� pk != 0, so pick one, i.e., pk = 2

� Some pages have sk = 2 (which ones?)

� Some pages have sk != 2 (which ones?)

� When is pk = 0 used?

8

Exam – overall

� Grade distribution
� 24 A's (90..100)

� 20 B's (80..89)

� 12 C''s (70..79)

� 4 other

� No obvious need to curve
� Final exam could be harder
� Grade change requests: end of week

9

Exam - overall

� “And then the OS ...”

10

Exam – overall

� “And then the OS ...”
� This is an OS class!

� We are under the hood!
� The job is to understand the parts of the OS

� What they do
� How they interact
� Why

11

Q1

� Are keyboard interrupts really necessary?
� Same

� Input may arrive early (input queue)

� Processes may arrive early (waiting queue)

� Focus on what is different
� Detecting new input

� Carrying it to existing input queue/wait queue

12

Q1

� “Polling” approach
� When?

� How long?

� “Process” approach
� When?

� How long?
� Eating every other quantum is not good

� How to interact with wait queue?

13

Q2 (a)

� The “process exit” question
� Sum of process memory is 256 K
� Memory freed on exit is 50 K

� Not a multiple of 4 K
� (so not an x86, no big deal)

� Not “approximately” 16 K stack + 32 K heap

14

Q2 (b)

� Process state graph
� Went well overall

15

Q2 (c)

� Explain why you have no hope of accessing
memory belonging to your partner's processes.

� Key concept: address space
� Everybody gets their own 0..4 GB

� Other options possible
� Segmented address space (Multics)

� But you needed to explain
� Common case: every main() in same place

� Sparse virutal address space (EROS)

16

Q3: load_linked()/store_conditional()

� Required to consider multi-processor target
� test-and-yield() is bad

� unless you carefully explained it

� Common concern: lock/unlock conflict
� Real load-linked()/store-conditional() a bit better

� Still an issue (see Hennessey & Patterson)
� random back-off
� occasional yield

17

Q4: “Concentration” card game

� “Global mutex” approach
� “Solves” concurrency problems by removing

concurrency!

� Can be devastating
� (not a technique we covered in class)

� Deadlock avoidance/detection approaches
� Hard to get right

� There is another option

18

Deadlock prevention

� “Pass a law”
� So every possible sequence violates one of:

� Mutual exclusion
� Hold & Wait
� Non-preemption
� Wait cycles

19

Common case

� Violate “wait cycles”
� Establish locking order

� Total order on mutexes in system

� Pre-sort locks according to order

� Or, dump & start over

� Good locking order: memory addresses
� &card[i][j]

� each lock is unique
� every lock is comparable to every other lock

20

A novel solution

� One mutex per card pair
� 36 cards, (36*35)/2 = 630 mutexes

� Can make sense for small n
� Lamport's fast mutual exclusion algorithm

� (related approach)

21

A subtle mistake

i1 = generate_random(0, 5);
j1 = generate_random(0, 5);
i2 = generate_random(i1, 5);
j2 = generate_random(j1, 5);

� Good news
� No wait cycles

� Bad news?

22

Q5: Critical Section Protocol

� “Hyman's algorithm”
� Comments on a Problem in Concurrent Programming

� CACM 9:1 (1966)
� (retracted)

� Doesn't provide mutual exclusion
� Doesn't provide bounded waiting

23

Q5: Critical Section Protocol

� You should understand these problems
� You won't implement mutexes often
� Thought patterns matter for concurrent

programming

