
Bootstrapping on x86

Steve Muckle
Wednesday, March 12th 2003

15-412 Spring 2003



Carnegie Mellon University 2

Motivation

What happens when you turn on your PC?
How do we get to main() in kernel.c?



Carnegie Mellon University 3

Overview

Requirements of Booting
Ground Zero
The BIOS
The Bootloader
Our projects: Multiboot, OSKit



Carnegie Mellon University 4

Requirements of Booting

Initialize machine to a known state
Make sure basic hardware works
Load a real operating system
Run the real operating system



Carnegie Mellon University 5

Ground Zero

You turn on the machine
Execution begins in real mode at a specific 
memory address
Real mode: only 1mb of memory is 
addressable
Start address is in an area mapped to BIOS 
read-only memory
What’s the BIOS?



Carnegie Mellon University 6

Basic Input/Output System 
(BIOS)

Code stored in Electrically Erasable 
Programmable Read Only Memory 
(EEPROM) on most modern systems
Useful for testing hardware and loading data 
from storage into memory
Can also be used to configure hardware 
details like RAM refresh rate or bus speed



Carnegie Mellon University 7

Basic Input/Output System 
(BIOS)

BIOS performs a Power On Self Test (POST)
BIOS loads the first sector from a boot device
- could be a floppy, hard disk, CDROM
- without a BIOS, we’d be in a bit of a jam
If the last two bytes are AA55, we’re in 
business
Otherwise we look somewhere else



Carnegie Mellon University 8

Basic Input/Output System 
(BIOS)

Sector is copied to 0x7C00
Execution is transferred to 0x7C00
If it’s a hard disk or CDROM, there’s an extra 
step or two (end result is the same)
Now we’re executing the bootloader – the 
first “software” to execute on the PC



Carnegie Mellon University 9

Bootloader

We’re now executing a bootloader
Some bootloaders exist to load one OS
Others give you a choice of what to load
We use grub
http://www.gnu.org/software/grub/



Carnegie Mellon University 10

Bootloader

GRUB is larger than one sector
The sector loaded in by the BIOS just loads…
the rest of the bootloader
GRUB then presents you with a boot menu
To load a kernel, it must switch back and 
forth between real and protected mode
It then jumps to the kernel’s entrypoint
- How do we know the kernel’s entrypoint?



Carnegie Mellon University 11

Multiboot Specification

Many OSes require their own bootloader
Multiboot offers a standard way for kernels to 
communicate entrypoint and other info
The multiboot header
must be located in the
8192 bytes
This is the mysterious
multiboot.o…

0x1badb002

flags

checksum

header_addr

load_addr

load_end_addr

bss_end_addr

entry_addr



Carnegie Mellon University 12

OSkit

The kernel entrypoint is an assembly function 
in multiboot.o
This calls the first C function, multiboot_main



Carnegie Mellon University 13

OSkit

multiboot_main calls:
- base_cpu_setup: init GDT, IDT, and TSS
- base_multiboot_init_mem: init LMM
- base_multiboot_init_cmdline: parse cmdline
passed to kernel by bootloader
- main (yes, your main in kernel.c!)
- exit, if main ever returns (press a key to 
reboot…)


