
1

File System (Internals)

Dave Eckhardt
de0u@andrew.cmu.edu

2

Synchronization

� P2 grades in .../group-N/grades/p2
� Today

� Chapter 12 (not: Log-structured, NFS)

3

File System Layers

� Device drivers
� read/write(disk, start-sector, count)

� Block I/O
� read/write(partition, block) [cached]

� File I/O
� read/write(file, block)

� File system
� manage directories, free space, mounting

4

Disk Structures

� Boot area (first block/track/cylinder)
� File system control block

� Key parameters: #blocks, metadata layout

� Unix: superblock

� Directories
� “File control block” (Unix: inode)

� ownership/permissions

� data location

5

Memory Structures

� In-memory partition tables
� Cached directory information
� System-wide open-file table

� In-memory file control blocks

� Process open-file tables
� Open mode (read/write/append/...)

� “Cursor” (read/write position)

6

VFS layer

� Goal
� Allow one machine to use multiple file system types

� Unix FFS
� MS-DOS FAT
� CD-ROM ISO9660
� Remote/distributed: NFS/AFS

� Standard system calls should work transparently

� Solution
� Insert a level of indirection!

7

VFS layer – file system operations

struct vfsops {
 char *name;
 int (*vfs_mount)();
 int (*vfs_statfs)();
 int (*vfs_vget)();
 int (*vfs_unmount)();
 ...
}

8

VFS layer – file operations

� Each VFS provides an array of methods
� VOP_LOOKUP(vnode, new_vnode, name)
� VOP_CREATE(vnode, new_vnode, name,

attributes)
� VOP_OPEN(vnode, mode, credentials, process)
� VOP_READ(vnode, uio, readwrite, credentials)

9

Directories

� External interface
� vnode = lookup(vnode, name)

� Traditional Unix FFS
� List of (name,inode #) - not sorted

� Names are variable-length

� Lookup is linear
� How long does it take to delete N files?

� Common alternative: hash-table directories

10

Allocation – Contiguous

� Motivation
� Sequential disk accesses are cheap

� Bookkeeping is easy

� Approach
� File location defined as (start, length)

� Issues
� Dynamic storage allocation (fragmentation,

compaction)

� Must pre-declare file size at creation

11

Allocation – Linked

� Motivation
� Avoid fragmentation problems

� Allow file growth

� Approach
� File location defined as (start)

� Each disk block contains pointer to next

12

Allocation – Linked

� Issues
� 508-byte blocks don't match memory pages

� In general, one seek per block

� Very hard to access file blocks at random
� lseek(fd, 37 * 1024, SEEK_SET);

� Benefit
� Can recover files even if all metadata destroyed

� Common modification
� Link multi-block clusters, not blocks

13

Allocation – FAT

� Used by MS-DOS, OS/2, Windows
� Linked allocation with out-of-line links
� Table at start of disk

� Next-block pointer array

� Indexed by block number

� Next=0 means “free”

14

Allocation - FAT

-1

-1

0

-1

3

5

2

7

hello.java

dir.c

0

1

sys.ini 4

15

Allocation – FAT

� Issues
� Damage to FAT scrambles entire disk

� Solution: backup FAT

� Now generally two seeks per block
� If FAT cannot be cached

� Still very hard to access random file blocks
� linear time to walk through FAT

16

Allocation – Indexed

� Motivation
� Avoid fragmentation

problems

� Allow file growth

� Improve random
access

� Approach
� Per-file block array

3001

-1

-1

-1

3002

101

100

99

17

Allocation – Indexed

� How big should index block be?
� Too big: lots of wasted pointers

� Too small: limits file size

� Combining index blocks
� Linked

� Multi-level

� What Unix actually does

18

Linked Index Blocks

� Last pointer indicates
next index block

� Simple
� Access is not-so-

random
3001

999875

10460

10459

3002

101

100

99

-1

-1

-1

-1

-1

10463

10462

10461

19

Multi-Level Index Blocks

� Index blocks of index
blocks

� Does this look
familiar?

� Allows holes!

-1

-1

999876

999875

99

100

101

3001

3002

10459

10460

10461

20

Unix Index Blocks

� Intuition
� Many files are small

� Length = 0, length = 1, length < 80, ...

� Some files are huge (3 gigabytes)

� “Clever heuristic” in Unix FFS inode
� 12 (direct) block pointers: 12 * 8 KB = 96 KB

� 3 indirect block pointers
� single, double, triple

21

Unix Index Blocks

999876

999875 42

3001

3002

10459

16

15

3002

10459

3002

10459

7500

3503

22

Tracking Free Space

� Bit-vector
� 1 bit per block: boolean “free”

� Check each word vs. 0

� Use “first bit set” instruction

� Text example
� 1.3 GB disk, 512 B sectors: 332 KB bit vector

� Need to keep (much of) it in RAM

23

Tracking Free Space

� Linked list
� Superblock points to first free block

� Each free block points to next

� Cost to allocate N blocks is linear
� Free block can point to multiple free blocks

� FAT approach provides free-block list “for free”

� Keep free-extent lists
� (block,count)

24

Unified Buffer Cache

� Some memory frames back virtual pages
� Some memory frames cache file blocks
� Observation

� In-memory virtual pages may be backed by disk

� Why not have just one cache?
� Some of RAM is virtual memory
� Some of RAM is disk blocks
� Mix varies according to load

25

Cache tricks

� Read-ahead

for (i = 0; i < filesize; ++i)
 putc(getc(infile), outfile);
� System observes sequential reads

� can pipeline reads to overlap “computation”, read latency

� Free-behind
� Discard buffer from cache when next is requested

� Good for large files

� “Anti-LRU”

26

Recovery

� System crash...now what?
� Some RAM contents were lost

� Free-space list on disk may be wrong

� Scan file system
� Check invariants

� Unreferenced files
� Double-allocated blocks
� Unallocated blocks

� Fix problems
� Expert user???

27

Backups

� Incremental approach
� Monthly: dump entire file system

� Weekly: dump changes since last monthly

� Daily: dump changes since last weekly

� Merge approach - www.teradactyl.com
� Collect changes since yesterday

� Scan file system by modification time

� Two tape drives merge yesterday's tape, today's delta

