Disk Arrays

Dave Eckhardt de0u@andrew.cmu.edu

Synchronization

- Who read <u>Effective Java</u> over break?
- Survey questions
 - CVS, PRCS?
 - Hard disk crash?
 - Lecture frequency reduction? Day?
- Project 3
 - You've read the handout, right?

Synchronization

- Today: Disk Arrays
 - Text: 14.5 (far from exhaustive)
 - Please read remainder of chapter
 - www.acnc.com 's "RAID.edu" pages
 - www.uni-mainz.de/~neuffer/scsi/what_is_raid.html
 - Papers (@ end)

Overview

- Historical practices
 - Striping, mirroring
- The reliability problem
- Parity, ECC, why parity is enough
- RAID "levels" (really: flavors)
- Applications
- Papers

Striping

- Goal
 - High-performance I/O for databases, supercomputers
- Issues
 - Can't spin a disk infinitely fast
 - 100-platter disks would be a niche market
- Solution: parallelism
 - Gang multiple disks together

Striping

Striping

- Stripe *size* can vary
 - Byte
 - Bit
 - Sector
- Results
 - Latency (time to get first byte): unchanged
 - Throughput (bytes per second): linear increase

The reliability problem

- MTTF = Mean time to failure
- MTTF(array) = MTTF(disk) / #disks
- Example from original 1988 RAID paper
 - Connors CP3100 (100 megabytes!)
 - MTTF = 30,000 hours = 3.4 years
 - Array of 100 CP3100's: MTTF = 300 hours = 12.5
 days

Mirroring

Mirroring

- Operation
 - Write: write to *both* mirrors
 - Read: read from *either* mirror
- Cost per byte *doubles*
- Performance
 - Writes: a little slower
 - Reads: maybe 2X faster
- Reliability *vastly* increased

Mirroring

- When a disk breaks
 - Identify it to system administrator
 - Beep, blink a light
 - System administrator provides blank disk
 - Copy contents from surviving mirror

Parity

• Parity = XOR "sum" of bits

 $-0 \oplus 1 \oplus 1 = 0$

- Parity provides *single error detection*
 - Sender provides *code word* and *parity bit*
 - Correct: 011,0
 - Incorrect: 011,1
 - Something is wrong with this picture *but what*?
- *Cannot* detect multiple-bit errors

ECC

- ECC = error correcting code
- "Super parity"
 - Code word, *multiple* "parity" bits
 - Mysterious math computes parity from data
 - Hamming code, Reed-Solomon code
 - Can detect N *multiple-bit* errors
 - Can correct M < N bit errors!</pre>
- Arazi, Commonsense Approach to the Theory of Error Correcting Codes

Parity revisited

- Parity provides single *erasure* correction!
- Erasure channel
 - Knows when it doesn't know something
 - Each bit is 0 or 1 or "don't know"
- Sender provides code word, parity bit: (011,0)
- Channel provides corrupted message: (0?1,0)
- $? = 0 \oplus 1 \oplus 0 = 1$

Erasure channel???

- Are erasure channels real?
- Radio
 - signal strength during reception of bit
- Disk drives!
 - Each sector is stored with CRC
 - Read sector 42 from 4 disks
 - Receive 0..4 good sectors, 4..0 errors
 - "Drive not ready" = "erasure" of all sectors

"Fractional mirroring"

"Fractional mirroring"

- Operation
 - Read: read data disks
 - Error? Read parity disk, compute lost value
 - Write: write data disks and parity disk
- Cost
 - *Fractional* increase (50%, 33%, ...)
 - Better than mirroring: 100%

"Fractional mirroring"

- Performance
 - Writes: slower (see below)
 - Reads: unaffected
- Reliability *vastly* increased
 - Not as good as mirroring
 - Why not?

RAID "levels"

- They're not really levels
 - RAID 2 isn't "more advanced than" RAID 1
 - People really do RAID 1
 - People basically never do RAID 2
- People invent new ones randomly
 - RAID 0+1 ???
 - JBOD ???

Easy cases

- JBOD = "just a bunch of disks"
 - What you get if you lobotomize your RAID controller
- RAID 0 = striping
- RAID 1 = mirroring

- Distribute *bits* across disks, with ECC
- N data disks, M parity disks
- Multiple-error correction
- Very rarely used

- Distribute *bits* across disks, with parity
- Rely on disks to announce erasures
- N data disks, 1 parity disk
- Used in some high-performance applications

- RAID 3, distribute *sectors* instead of *bits*
- Single-sector reads involve only 1 disk: parallel!
- Single-sector writes: read, read, write, write!
- Rarely used: parity disk is a *hot spot*

- RAID 4, distribute parity among disks
- No more "parity disk hot spot"
- Frequently used

Other fun flavors

• RAID 6, 7, 10, 53

- Esoteric, single-vendor, non-standard terminology

- RAID 0+1
 - Stripe data across half of your disks
 - Use the other half to mirror the first half
 - Sensible if you like mirroring but need lots of space

Applications

• RAID 0

- Supercomputer temporary storage / swapping

- RAID 1
 - Simple to explain, reasonable performance, expensive
 - Traditional high-reliability applications (banking)
- RAID 5
 - Cheap reliability for large on-line storage
 - AFS servers

Are failures independent?

Papers

- 1988: Patterson, Gibson, Katz: A Case for Redundant Arrays of Inexpensive Disks (RAID), www.cs.cmu.edu/~garth/RAIDpaper/Patterson88. pdf
- 1990: Chervenak, Performance Measurements of the First RAID Prototype, isi.edu/~annc/papers/masters.ps
- Countless others

Summary

- Need more disks!
 - More space, lower latency, more throughput
- *Cannot* tolerate 1/N reliability
- Store information carefully and redundantly
- Lots of variations on a common theme
- You should understand RAID 0, 1, 5