
1

Exokernel

Dave Eckhardt
de0u@andrew.cmu.edu

2

Synchronization

� Happy birthday, NCSA Mosaic
� April 22, 1993

� Survey
� Which OSs strike you as “tragic”? Why?

� Who knows how to pronounce “quixotic”?

� Today: Exokernel
� “Exterminate All Operating System Abstractions”

� No class Monday

3

Overview

� The Exokernel worldview
� Tragedy

� Salvation

� My personal reaction to the Exokernel worldview

4

Tragedy

� The defining tragedy of the OS community
� OS = hardware multiplexor

� and OS = hardware abstractor

� OS abstraction is a quixotic goal
� Always-appropriate abstractions are impossible

� Always-efficient implementations are impossible
� “The only way to win is not to play”

5

“Abstractions Considered Harmful”??

� No.
� The right abstractions are good.

� But there is no single right abstraction

� But each machine runs a single OS
� A single process model
� A single VM system

� One size cannot fit all
� Ever

6

What's the harm in trying?

� You say “quixotic goal” like it's a bad thing...
� Abstraction-heavy OSs are

� Complex

� Large

� Unreliable

� Hard to change

� Slow

7

What's the harm in trying?

� You say “quixotic goal” like it's a bad thing...
� Abstraction-heavy OSs are

� Complex

� Large

� Unreliable

� Hard to change

� Slow

� Not just one bad thing! Every bad thing!

8

Defining The Tragedy

� OS = any software you cannot avoid
� Issue not “PL0 vs. PL4”

� If you need to be administrator to install it, it's OS

� Even if it runs in “user mode”

� Application software = anybody can avoid it

9

The Exokernel Thesis

� Q: Which jobs belong to the OS?
� A: Safe multiplexing of physical resources

� Jobs which require the use of force
� Timer interrupts force context switches

� Preventing unfair initiation of force
� Protecting my memory from your wild pointer

� Other jobs best done by other code structures
� Abstractions provided by voluntary use of libraries

10

What's wrong with OS abstractions?

� Complexity means bugs
� Complexity means inertia
� Complexity means slowness

11

Complexity means bugs

� If “virtual memory” means
� Copy-on-write

� Memory-mapped files

� User-wired pages

� Paging out parts of the OS kernel

� Then “virtual memory” will be buggy
� For all processes

� (unless 15-412 students do the job)

12

Complexity means inertia

� Providing lots of fancy abstractions is hard
� Needs large, complex code

� Large, complex code evolves slowly

� Everything depends on the OS
� Changing the OS requires changing everything

� Costly, slow

� Only illuminati can change the OS
� “Linus doesn't scale”

13

Complexity means slowness

� Garbage collectors don't want dirty pages stored
� If they're in the copied region of from-space

� Databases don't want dirty buffers written
� If the transaction hasn't committed yet

� Databases don't want 1-block read-ahead
� Bank withdrawals aren't sequential by account #

� A “free” OS optimization for one usage pattern...
� ...is a mandatory OS slowdown for another pattern

14

The Horror is Mandatory

� There is only one file system
� No other way to access the disk

� There is only one VM system
� Only one page size, replacement policy, ...

15

“Virtual Machine Considered
Harmful”

� The process model is bad
� Every process model is bad

� CISC vs. RISC
� Processors should provide basic instructions

� Load, store, copy register, add

� Let compilers build them into abstractions
� Procedure call, switch()

� “End-to-end Arguments In System Design”

16

Eliminate OS Abstractions

� Export hardware securely
� No machine-independent wrappers
� Abstraction-free kernel = exokernel

� All parts visible

17

Exokernel

� Safely allocate/deallocate/multiplex ...
� memory pages

� CPU time slots

� disk sectors

� TLB slots (& address-space id #'s)

� Interrupts & traps

� DMA channels, bus bridges

� I/O devices

18

The Real Hardware

� Real TLB, not abstract TLB
� If version #13 has 32 entries and #14 has 64, deal

� If version #17 had a broken reference bit, detect &
deal

� Real memory, not abstract memory
� You can ask for frames #31, #62

� ...because you know they don't collide in this TLB

� You specify your own PTE entries
� Don't forget to flush your TLB!!

19

Secure Multiplexing??

� Guards prevent evil
� PTEs you install map to your frames
� Packets you send are from your frames

� Cannot “helpfully” free frame before complete

� Packets you receive are into your frames

20

“Is there an OS in the house?”

� Memory
� Polling
� CPU scheduling
� Packet transmission
� Packet filtering
� Packet buffering

21

Xok Memory

� Three OS data structures
� per-process x86 page table

� page access matrix

� free page list

� Process can view its PTs
� Check dirty, referenced bits for gc

22

Xok Memory

� Process requests changes
� Simple, fast system call checks access

� Process may store a frame to disk
� Or anywhere else

� Then use frame for another page

� Process may maintain free-frame pool
� It can/must handle its page faults

23

Abstract-OS Event Polling

� Wake me up when...
� Client packet arrives, OR

� Some client TCP connection can accept data

� Unix solution: select()/poll() system call
� Works only on file descriptors

� Expensive

24

Xok Event Polling

� Publish list of integers and comparisons
� &socket->recv->count, &zero, GREATER

� &socket->xmit->count, &16384, LESS

� Kernel generates, optimizes machine code
� (pins pages)

� Scheduler runs per-process “runnable predicate”

25

Xok Packet Transmission

txpending = 1;
send(interface, iovec, &txpending);
� List of (address, length) pairs defines packet

� “txpending” integer decremented when done
� might make process runnable

� Application must avoid overwriting packet

26

Xok Packet Filtering

� Application provides packet filter
� Kernel compiles into machine code
� Kernel checks for packet theft

� This filter overlaps with an open filter, not yours

� Filtering != storage

27

Xok Packet Storage

� Process provides ring buffers in memory
� Kernel inserts packet

� No room? Drop

� Kernel writes received-length field
� Probably in receiver's “runnable predicate”

28

It's Weird. Is It Good?

� ExOS – voluntary POSIX emulation library
� Provides file system, process semantics

� Can run gcc, csh, etc.

� Simple socket-based HTTP server
� 2X faster ExOS vs. OpenBSD

� Cheetah HTTP Server
� Customized file system & TCP

� 3X-8X throughput of web servers on OpenBSD

29

Web Server Story

� Request/Response via TCP sockets
� Pre-fork()'d process pool for requests
� File data copied from disk to kernel to user
� File data copied user to kernel to network
� Slow

� System calls block, fork() is slow

� Checksum data before transmission

� Memory-to-memory copies

30

Cheetah/Xok story

� Event loop instead of polling
� Asleep until something is ready (disk, net)

� Make it busy, sleep again

� Network retransmit buffers == file system cache
� No duplication, no copy bandwidth

� Store TCP data checksums inside file
� Computed offline when file is stored

� Not computed for every transmission!

31

Eckhardt's Reactions

� 800% performance is exciting!
� Wake-up call is good

� Concepts & approach are a contribution

� There are issues

32

Objection: Multiplex != Allocate

� TLB slots exposed
� How many for my process?

� CPU quantum expires
� Who sets quantum length?

� Which process is next?

� “Next process” choice is rate-monotonic or not
� Can't be rate-monotonic just for those who opt in!

33

Objection: Multiplex != Allocate

� Disk interrupt!
� Run newly-runnable process or just-interrupted one?

� These questions must be answered
� Answers are mandatory abstractions

34

Objection: Cooperative Multi-
tasking?

� When kernel needs a frame
� It asks a process to free one!

� Process should
� Store page to disk (if neccesary)
� Unmap page->frame
� Free frame

� What if it doesn't???
� How can you distinguish “slow” from “no”???

35

Performance/Abstraction Issues

� (Identified in 2002 paper)
� “Runnable predicates” scale poorly

� How to do better w/o OS-level abstractions???

� Run-time code generation brittle, hard to port
� Inertia???

� No packet scheduler, so no connection fairness
� Would be a mandatory abstraction!

36

Applicability

� Do regular applications work well?
� Are genius programmers required?

� Cheetah authors unusually high-powered...

� Is this really a general OS paradigm?
� Is the tragedy over?

37

Summary

� “One size fits all” abstractions don't.
� Abstraction mismatches are painful.
� Multiplexing does not require abstraction.
� Abstraction = box

� Think “outside the box” for speed

� Code outside the box?
� Me?

38

Papers

� End-to-end Arguments In System Design
� Saltzer, Reed, Clark: SOSP 5 (1981)

� Exterminate All Operating System Abstractions
� Engler & Kaashoek: HotOS 5 (1995)

� Fast and Flexible Application-Level Networking
on Exokernel Systems
� Ganger, Engler, Kaashoek, Briceño, Hunt, Pinckney

� ACM TOCS 20:1 (2002)

