
1

Transactions

Dave Eckhardt
de0u@andrew.cmu.edu

2

Synchronization

� Faculty evaluation forms
� middle of class?

� Transactions
� Text: 7.9, 17.3

3

Overview

� A different kind of critical section
� "ACID" Transaction Model
� Write-Ahead Logging
� Concurrency Control
� Distributed Transactions, 2-Phase Commit
� Camelot
� RVM

4

Very Critical Sections

� Critical section
� Mutual exclusion

� Progress

� Bounded waiting

� Transaction
� “Crash-proof” critical section

� Moving money between bank accounts

5

A Simple Transaction

BEGIN_TRANSACTION
account1 = lookup(“293479238”);
account2 = lookup(“342342342”);
lock(account1); lock(account2);
if (account1->balance > 50)
 account1->balance -= 50;
 acount2->balance += 50;
 COMMIT;
else
 ABORT(“insufficient funds”);
END_TRANSACTION

6

“ACID” Transaction Model

� Intuition
� Transaction succeeds (crash-proof, forever)

� Or never happened
� ACID = Atomic, Consistent, Isolated, Durable

7

Atomic

� Atomic = All or none
� Failure of any step aborts transaction

� Explicit – ABORT(char *reason)

� Implicit – system crash

� Distributed – any system crash

� Aborted transactions have no visible effect

� Committed transactions are completely visible
� No inconsistent partial results

8

Consistent

� All transactions maintain database invariants
� Conservation of money

� Every employee has a manager

� Split responsibility
� Application transactions must be correct

� Database may provide automatic checks

9

Isolated

� Concurrency is mandatory
� Cannot lock entire bank for each transaction

� No global mutex

� Transactions must run concurrently
� Transactions must appear sequential

� Serializability – as if some sequential order

� Deposit happens before transfer or after transfer
� Not lost between fetch and add/store

10

Durable

� Committed transactions are durable
� persistent, stable

� Immune to crashes, disk failure, fire, flood
� As irrevocable as cash leaving the ATM

11

Storage

� Volatile – can “forget”
� Cache, DRAM, /tmp

� Non-volatile – survives power outage
� Disk, magnetic core memory, flash

� Stable – survives everything
� Store to a RAID array...

� ...on each continent

12

Atomic/Durable conflict

� Atomic – don't store too soon
� If error, must roll back to initial state

� Durable – must store ASAP
� No step is durable before storage

� Resolution – write-ahead logging

13

Write-Ahead Logging

� Log each intended mutation to disk
� Transaction may “think” between modificatons

� sync()
� Apply modifications one by one
� sync()
� Ok to delete log

� In theory, not in practice

14

Log Contents

BEGIN(tid=13)
WRITE(tid=13, rec=45, old=60, new=10)
BEGIN(tid=14)
WRITE(tid=14, rec=20, old=0, new=100)
COMMIT(tid=14)
ABORT(tid=13)
BEGIN(tid=15)
WRITE(tid=15, rec=1, old=0, new=1)
[system crash]

15

Key Operations

� undo(transaction)
� Scan log...

� Restore old values for transaction's writes

� redo(transaction)
� Scan log...

� Store new values for transaction's writes

� Crash recovery
� redo() if BEGIN(t) and COMMIT(t), else undo()

16

Checkpoints

� Concept
� Don't want to replay entire log during recovery

� Most of it already written to database

� Approach – periodic checkpoint phases
� Force log records from RAM to log disk

� Not typically necessary before commit

� Force mutations to database

� Force CHECKPOINT to log disk

17

Checkpoints

� Result
� Restart processing begins at newest checkpoint

� Warning about text
� Checkpoint treatment incomplete

� “Long-running” transactions may cross multiple
checkpoints

� Must be un-done even if no recent writes

18

Concurrency Control

� Recall isolation
� Concurrent transactions sharing data must “make

sense”

� More formally, must appear sequential
� Serializability – as if some sequential order

� Consider balance transfer
read(account1);
write(account1); /* account1 -= x; */
read(account2);
write(account2); /* acount2 += x; */

19

Sensible Balance Transfer

T0 T1
read(account1)

write(account1)
read(account2)

write(account2)
read(account1)

write(account1)
read(account2)

write(account2)

20

Non-sensible Balance Transfer

T0 T1
read(account1)

read(account1)
write(account1)

write(account1)
read(account2)

write(account2)
read(account2)

write(account2)

Single debit, double credit – money is created!

21

Conflicting Operations

� Operations conflict if
� Access same data item

� One or more write operations

� Serializability rule
� Ok to interleave transaction operations when...

� Start with a serial schedule

� Swap non-conflicting operations

22

Serializable Balance Transfer

T0 T1
read(account1)

write(account1)
read(account1)

write(account1)
read(account2)

write(account2)
read(account2)

write(account2)

23

Serialization Approaches

� Locking protocol
� Shared and exclusive locks (reader/writer)

� Growing phase, then shrinking phase, then commit

� Timestamp protocol
� New transactions assigned timestamps

� Data read-stamped, write-stamped by transactions

� read(tstamp = 45, data-write-stamp = 55)
� Necessary value was overwritten by another transaction
� Must abort or restart

24

Distributed Transactions

� Concept
� Balance transfer between branches

� ...on different continents

� What if one branch crashes?

� Approach
� Local transaction manager per branch

� Traditional logging, recovery

� Single transaction coordinator
� Manages distributed commit processing

25

Two-Phase Commit - 1

� Transaction completes all operations
� Coordinator forces PREPARE(tid) to its log

� Announces PREPARE(tid) to all sites

� Each site make go/no-go decision
� Forces READY(tid) or NO(tid) to log

� Forces transaction operations to log

� Answers coordinator

26

Two-Phase Commit - 2

� Coordinator gathers responses
� Any NO means failure

� Timeout means failure

� Coordinator forces decision to its log
� COMMIT(tid) or ABORT(tid)

� Coordinator transmits verdict to all sites
� Each site logs, obeys

27

Site Restart

� If COMMIT(tid) or ABORT(tid) , obvious

� If no READY(tid) , abort

� If READY(tid) in log

� Any site has COMMIT or ABORT: obvious

� Any site has no READY
� Coordinator failure? Abort

� Everybody READY? Need coordinator

28

Camelot Project

� CMU CS project, late 80's
� Distributed transaction system
� Transactional virtual memory

� No external “database records”

� All data in persistent transactional memory

� Made heavy use of Mach
� Threads

� “External pager” handled page faults, flushes

29

Camelot Evaluation

� Exciting, versatile, usable system
� Mere mortals wrote distributed transactional

applications

� Did not become a product

� “Research system” issues
� Performance, Mach dependence

� Is transactional memory the right model?
� Database > 4 gigabytes?

� Upgrade to a new processor architecture?

30

RVM Library

� Developed by CMU CS Coda project
� Goal – “Camelot light”

� Camelot task modularity was slow

� Camelot required Mach

� Design
� Toss distributed and nested transactions

� Application manages concurrency control

� OS manages media failure

31

RVM Library

� RVM provides
� Atomicity (logging, restart)

� Fine-grained control over log behavior
� Some transactions may not need immediate log force

� Portable
� NetBSD, FreeBSD, Linux

� Windows

� ftp://ftp.coda.cs.cmu.edu/pub/rvm/

32

Summary

� Transaction – Sequence of operations
� Atomic, consistent, isolated, durable

� Transaction – building block
� Unifying concept for system building

� Write-ahead logging
� Log-replay during system restart

� Checkpoints

� Distributed transactions - 2PC

33

Further Reading

� Transaction Processing: Concepts and Techniques
� Jim Gray @ Digital Equipment

[insert moment of silence for DEC]

� Andreas Reuter @ University of Stuttgart

� 1993

� Definitive

� Lightweight Recoverable Virtual Memory
� Satyanarayanan, Mashburn, Kumar, Steere, Kistler

� SOSP 14 (1993)

