
3D Graphics Hardware

15-463 Graphics II

Spring 1999

Topics

Graphics Architecture

Uniprocessor Acceleration

Front-End Multiprocessing
– Pipelined

– Parallel

Back-End Multiprocessing
– Pipelined

– Parallel

Graphics Architecture

Programming Interface

Database contains primitives from model

Immediate mode
– Program calls library with individual primitives

– Need to enmumerate entire database for each frame

– No temporal coherence between frames

Retained mode
– Primitives are remembered between frames

– Program calls library to make incremental changes

– Can potentially exploit temporal coherence

Frame Buffer Organization

Dedicated bank of RAM for pixel values
– Components are rgb, alpha, z, etc.

CPU or display processor writes pixels

Video controller reads pixels
– Generates video signal for monitor

Contention between CPU/DP and video controller

DRAM Organization

Read or write just a few bits at a time

Multiple chips in parallel for more bits

Bits organized internally in a 2D grid

Row select and column select identify particular
bits
– Row select has extra set-up latency

– No penalty for column select
Page mode chips exploit this

Video RAM (VRAM) (1983)

Extra bit port for video signal generation
– Avoids contention with video controller

Buffer loaded during “stolen” memory cycle
– Whole row can be copied in a single cycle

Multiple banks needed for big frame buffers
– Single chip can’t keep up with video signal

Uniprocessor Acceleration

Peripheral Display Processor

Reads/writes frame buffer in place of CPU

Acceleration for 2D operations

Read/write many pixels in parallel

Built-in support for lines, circles, bitblt, etc.

No transformations, floating-point, etc.

Now limited only by speed of memory

CPU Extensions

Additional instructions in CPU for 3D graphics

Pioneered by i860 (1989)
– 64-bit pixel operations: linear interpolation, z-buffer

compare, conditional update

 MMX (1995?)
– Reinterprets x86 floating-point “registers”

– Up to 8 simultaneous integer operations
8x8bit, 4x16bit, 2x32bit, 1x64bit

(Clamped) arithmetic, logical, pack/unpack

3DNow (1998)

Reinterprets MMX registers

Two simultaneous floating-point operations
– Add, subtract, multiply, min, max, etc.

– Reciprocal and reciprocal square root approximation
Three instructions implement Newton’s method

On-chip table lookup for initial approximation

Two successive iterations to refine approximation

Superscalar execution permits 4 operations/cycle

Performance Barriers

Floating-point geometry processing
– Transformation, clipping, lighting

Integer pixel processing
– Scan conversion

Frame-buffer memory bandwidth
– Z-buffer comparison, shading, alpha blending

What can we do about these?

Front-End Multiprocessing

Pipelining

Extra processors for distinct tasks

Primitives are processed in discrete stages
– Need result of stage i to compute stage i+1

Process stage i of primitive j concurrently with
stage i+1 of primitive j+1

Increase in throughput, (small) increase in latency
– Individual latency usually isn’t important

Parallelism

Extra processors for uniform tasks

SIMD
– One instruction affects multiple operands

– “Disable bit” for conditional operations

– Advantage: no extra control logic

– Disadvantage: inflexible for non-uniform tasks

– Examples: MMX, 3DNow

MIMD
– Each processor has its own instruction stream

– Synchronization/interconnect can be difficult

Pipeline Front End

Many distinct stages naturally lead to pipelining

CPU usually handles display traversal

Geometry subsystem is floating-point intensive
– Transformations can be done in parallel

By component

By vector (vertex or normal)

– Transformation bundled with trivial accept/reject

– One processor per clip plane

– Division by w is expensive
Compute 1/w and multiply x, y, and z by that

Geometry Engine (1982)

Used in early SGI machines

~One chip per stage of front-end pipeline
– Configuration word determines which stage

Each chip reads and writes command stream
– Vertices inserted and deleted during clipping

Replaced by commodity chips in later SGIs
– Weitek 3332 and Intel i860

Parallel Front End

Significantly harder than pipelining front end
– Need to recombine streams at back end for ordered

rendering algorithms

– Processor contention over shared database

RealityEngine processes geometry in parallel
– Command processor sends primitives to geometry

engines in round robin order

– Geometry engine is not pipelined (single i860)

– Triangle bus broadcasts transformed triangles to back-
end processors

Back-End Multiprocessing

Taxonomy

Object order: outer loop over objects
– Z-buffer, depth-sort, and BSP-tree algorithms

Image order: outer loop over pixels

Image parallel = parallel object order
– Parallel inner loop over image pixels

– Partitioned image, logic-enhanced memory

Object parallel = parallel image order
– Parallel inner loop over objects

– Processor-per-primitive, tree-structured

Pipelined Object Order

Polygon-edge-span processor pipeline
– Polygon unit finds x, z, and rgb deltas for each edge

– Edge unit computes left/right x, z, and rgb
bounds/deltas for each span

– Span unit interpolates z and rgb for each pixel
Implements z buffer compare

Poor load balance: span processor is bottleneck
– Polygons*edges*spans*pixels

– Pixel cache to increase memory bandwidth
Excellent locality

Pipelined Image Order

Scan-line pipeline
– Y sorter finds first scan line of each polygon

– Active segment sorter sorts segments on scan line by x
A segment is a span of a single polygon

– Visible span generator compares z values of segments

– Shader computes rgb values of visible spans

No frame buffer if hardware is fast enough (!)

Again, poor load balance: shader is bottleneck
– Need more than 1 processor/stage: parallel processing

Parallel Object Order/Image Parallel

Multiple processors render pixels in parallel
– Predominant back-end architecture

Contiguous partition
– Each processor handles a specific block of pixels

– Don’t look at primitives outside my region

Interleaved partition
– Each processor handles every nth pixel

– Must look at every primitive

– Worst case isn’t as bad, best case isn’t as good

– Predominant architecture

Parallel Object Order/Image Parallel

SIMD
– All processors work on same nxn pixel block

– Single control logic for all processors

– Many conditional branches (complex algorithms) result
in poor utilization

MIMD
– Processors can work on pixels in different blocks

– Requires control logic for each processor

– Better utilization, but needs fast interconnect

RealityEngine (1993)

Third-generation SGI graphics architecture

Processing units
– Command processor breaks commands into primitives

– Geometry engines (i860s) transform, light, and clip

– Triangle bus broadcasts transformed triangles

– Fragment generators scan convert triangles into
subsample masks and single rgb and z

Traverses vertically: every 5th column

– Image engines combine subsamples in local memory

– Display generator assembles colors from subsamples

Logic Enhanced Memory

Massively parallel approach

Processing elements built into memory chips
– Overcomes memory bandwidth limitations

Interconnect between chips can be difficult

Custom logic increases cost of chips
– Ordinary DRAM has vast economy of scale

Pixel Planes (1981)

1-bit processor associated with each pixel
– Enable bit for pixels inside polygon

Linear expression tree evaluates linear equations
in parallel
– F(x, y) = Ax + By + C

– Edges of convex polygon

– Depth value of points in a triangle

– Color components for Gouraud shading

Constant rendering time for any size polygon!

Parallel Polygon Rasterization

Used by RealityEngine fragment generators

Edge functions similar to Pixel Planes linear
expressions

nxn block of pixel logic traverses frame buffer

Traversal algorithm affects performance
– Vertex bounding box (simplest)

– Edge-to-edge: search for left edge at each scan line

– Center line: search left and right from interior

Can clip just by adding edges

Parallel Image Order/Object Parallel

Specific primitives assigned to each processor
– Usually 1 primitive per processor

Fragments combined from each processor output

Processor-per-primitive pipeline
– My z > previous z: pass my rgb and z to next

– My z < previous z: pass rgb and z unchanged

 Processor-per-primitive tree
– Merge rgb and z streams using binary tree

Performance drops if #primitives > #processors

Talisman (1996)

Microsoft design for PC 3D hardware

Retained mode API

Distinct image layers for independent objects

Image layers are composited during video signal
generation

Layer transformations for simple effects

Layers are compressed by hardware

References

Foley and van Dam, Chapter 18

Kurt Akeley, “RealityEngine Graphics”, SIGGRAPH ‘93

Kurt Akeley, “High-Performance Polygon Rendering”, SIGGRAPH
‘88

James H. Clark, “The Geometry Engine: A VLSI Geometry System for
Graphics”, SIGGRAPH ‘82

Juan Pineda, “A Parallel Algorithm for Polygon Rasterization”,
SIGGRAPH ‘88

Jay Torborg and James T. Kajiya, “Talisman: Commodity Realtime
3D Graphics for the PC”, SIGGRAPH ‘96

