
PostScript Internals

15-463 Graphics II

Spring 1999

2

Background

PostScript raster image processor for Mac
All Level 1 features

Some support for color and multi-bit devices

Undergrad independent study: MacRIP

Commercial product: TScript
Sold by TeleTypesetting Co.

Still around (!)

3

PostScript Features

Device/resolution independence

Orthogonality
Vector shapes, images, text treated uniformly

e.g. transforms and clips images and text

“Composability”

Complete language

High-quality outline fonts

4

Focus

Level1 implementation
Level 2 adds many complex features

Level 3 adds even more

Laser printer-like output device
One bit per pixel

Medium resolution: ~300 dpi
• 2400x3000 pixels on a page = 1Mb frame buffer

Non-interactive/batch model

5

Topics

Language Overview

Language Implementation

Graphics Overview

Scan Conversion and Clipping

Fonts

Images and Halftones

Language Overview

7

Syntax

Stream of tokens with little structure
Postfix notation

No precedence, lexical scope, etc.

Tokens
Integer and real: 3 4.0 5e6

String: (Call the doctor.)

Name: John yaya 3plus4 ==proc

Procedure: {add 2 div}

8

More Object Types

Array: vector of arbitrary objects

Dictionary:finite mapping on objects

Operator: built-in procedure

Boolean: true and false

Null

Mark

9

Stacks

Operand stack: accumulates arguments

Execution stack: object to evaluate next

Dictionary stack: explicit variable scope

Types checked at run time
All objects have an inherent type

10

Object Attributes

Literal: push to the operand stack

Executable
Name: look up on dictionary stack

Array: execute elements in order

String: parse and execute code

Operator: execute built-in operation

Access
unlimited > read-only > execute-only > none

11

Virtual Memory

Virtual memory is just the allocation heap

save “snapshots” all mutable objects
Strings, arrays, dictionaries

restore returns virtual memory to a
previous snapshot

All intervening mutations are undone

Throw away all new objects

Good for batch processing model

Language Implementation

13

Object Representation

struct object {
unsigned short type:4, exec:1, access:2;
unsigned short length;
union {

int integer;
float real;
unsigned char *string;
struct name *name;
struct object *array;
struct dict *dict;
unsigned int operator;
int boolean;

} u;
};

14

Dictionary Representation

Typically a hash table based on keys

Corresponding values in parallel array

struct dict {
unsigned int access;
unsigned short length;
unsigned short maxlength;
struct object *keys[maxlength];
struct object *values[maxlength];

};

15

Name Representation

Typically a global hash table for all names

Cache with current binding for fast lookup

struct name {
struct name *next;
struct object cache;
unsigned short hash;
unsigned short length;
unsigned char string[length];

};

16

Implementing Virtual Memory

Allocate objects linearly from a large arena

save remembers current allocation pointer

restore resets allocation pointer

What about mutated values?
Could just block copy active heap: slow!

Better to save location on first modification

restore just walks through the “undo list”

Graphics Overview

18

Path

Sequence of line and curve segments
Need not be connected or closed

Connected sequences of segments are subpaths

Specified by path elements
moveto starts a new, disconnected subpath

lineto specifies a connected line

curveto specifies a connected, cubic

closepath connects an open subpath to its start

19

Graphics State

Collects parameters for graphics operators
Operators implicitly refer to current gstate

Saved and restored by gsave and grestore

Some specific parameters
Current matrix allows affine transformations

Current color is color to paint with

Current path is shape to fill or outline

Current clipping path restricts painted area

Current font determines appearance of text

20

Graphics Operators

fill paints inside of current path
Uses non-zero winding number rule

Permits arbitrary self-intersections

Implicitly closes all open subpaths

stroke outlines current path

image renders a rectangular pixmap

show renders a string using current font

Scan Conversion and Clipping

22

Flattening Curves

Flattening approximates curves by lines
Current flatness parameter limits deviation (in
pixels) from true curve

flattenpath flattens current path (in place)

Recursive subdivision can work well

Forward differencing has a faster inner loop
x[t+1] = x[t]+dx[t]
dx[t+1] = dx[t]+ddx[t]
ddx[t+1] = ddx[t]+dddx[0]

23

Approximating Circular Arcs

Arcs are approximated by cubic
Required, since user can iterate over paths

Some affine transformations of arcs are not arcs

Each arc segment

Control points are along tangents to arc
F = (4/3)(1/(1+sqrt(1+(d/r)^2)))

24

Filling Flattened Paths

Can use active edge lists (Foley+van Dam)

Linear DDA doesn’t need edge structures
clear x transition lists
loop curve segments in current path
 loop t using curve DDA
 loop y using line DDA
 store x coordinate on transition list for y
repeat for clip path
sort transition lists
fill intersection of “inside” intervals according to rule

25

Stroking Flattened Paths

Stroke of a path is a path itself

Precise specification of line shape
Current line width

Current line join

Current line cap

strokepath replaces path with its stroke

Special case for rendering zero-width lines

26

Clipping Flattened Paths

clip intersects current path and clip path

Computes polygon intersections

Scan convert path and clip in parallel
Use interior of both paths for rasterization

Can generate trapezoids from modified
scan converter

Sample at segment extrema and intersections

Reconstruct original segments, where possible

Fonts

28

Font Representation

Fonts come in two flavors
Type 1 are condensed path descriptions

Type 3 are ordinary PostScript programs

Font matrix defines character coordinates

Font encoding maps character codes to
character names

Font cache retains bitmaps for most
commonly used characters

29

Type 3 BuildChar

Algorithm:
 Check font cache for character mask
 Concatenate font matrix with current matrix
 Call BuildChar with font dictionary and character code
 Save bits in font cache, if appropriate

Typical BuildChar procedure:
 Look up character name in Encoding vector
 Set character width and bounding box
 Construct path for character outline
 fill

30

Type 1 Font Hints

Tunes rasterizer at low resolutions

Blue values declare standard heights of
character features (from baseline)

Stem width hints declare standard widths of
character features

Character stem hints identify stems in
character outlines

31

Interpreting Font Hints

All feature heights for a given blue value
are rounded consistently

“Fuzz” parameter is slop for matching heights

All standard stem widths are rounded
consistently

Overshoot suppression gives “flat” and
“round” characters same height

Flex feature straightens shallow curves

Images and Halftones

33

Images

image specifies absolute color values

imagemask pours color through a stencil

Matrix specifies pixel coordinate system

Procedure supplies pixel/bitmap values

34

Image Rendering

Reverse sample through inverted matrix

Scan convert clip path as additional mask

Use anti-aliasing for multi-bit devices

35

Halftones

Laser printers can’t place pixels in isolation
=> Can’t use standard dithering techniques

Frequency specifies cells per inch

Angle specifies orientation of grid lines

Spot procedure determines shape of cells
Circular spots are typical

Example: 60 lpi = 25 grays at 300 dpi

36

Halftone Rendering

Offset cells into a repeating tile
Usually, only discrete angles are available

Call spot function on pixel centers

Set n pixels with least spot values
n = round((1-gray_level)*spot_area)

37

Extensions

Multi-bit devices

Level 2
Forms and patterns

Color spaces

User paths and graphics states

Display PostScript
Concurrency

View clip

38

References

Adobe PostScript Language Reference
Manual (Second Edition)

Adobe Type 1 Font Format

“Tutorial on Forward Differencing”, Bob
Wallis, Graphics Gems I

“Fast Scan Conversion of Arbitrary
Polygons”, Bob Wallis, Graphics Gems I

