PostScript Internals

15-463 Graphics |
Spring 1999

Background

&> PostScript raster image processor for Mac
e All Leve 1 features
e Some support for color and multi-bit devices
& Undergrad independent study: MacRIP

& Commercial product: Teript
e S0ld by TeleTypesetting Co.
e Still around (!)

PostScript Features

& Device/resolution Independence

& Orthogonal ity
e Vector shapes, Images, text treated uniformly
e €.0. transforms and clips images and text

" Composability”
& Complete language
& High-quality outline fonts

Focus

&L evell Implementation
e Level 2 adds many complex features
o Level 3 adds even more

&=L aser printer-like output device
e One bit per pixd
e Medium resolution: ~300 dpi
o 2400x3000 pixels on apage = 1IMb frame buffer
o Non-interactive/batch model

Topics

& Language Overview

& Language | mplementation

& Graphics Overview

& Scan Conversion and Clipping
& Fonts

& | mages and Halftones

L anguage Overview

Syntax

& Stream of tokens with little structure
e Postfix notation
e NoO precedence, lexical scope, etc.

& Tokens
e Integerandreal:3 4.0 5e6
e String: (Call the doctor.)
e Name: John vyaya 3plus4 ==proc
e Procedure: { add 2 di v}

More Object Types

& Array:. vector of arbitrary objects

& Dictionary:finite mapping on objects
& Operator: built-in procedure

& Boolean: true and false

& Null

& Mark

Stacks

& Operand stack: accumulates arguments
& Execution stack: object to evaluate next
& Dictionary stack: explicit variable scope

&= Types checked at run time
e All objects have an inherent type

Object Attributes

&=L Iteral: push to the operand stack

& Executable
o Name: look up on dictionary stack
e Array: execute elementsin order
e String: parse and execute code
e Operator: execute built-in operation

& ACCESS
e unlimited > read-only > execute-only > none

10

Virtua Memory

& Virtual memory isjust the allocation heap

asave “shapshots’ all mutable objects
e SIrings, arrays, dictionaries

arestore returns virtual memory to a
previous snapshot
o All Intervening mutations are undone
e Throw away all new objects

& (G0ood for batch processing model

11

L anguage | mplementation

Object Representation

& struct object {

unsi gned short type: 4, exec:1,

unsi gned short | engt h;

uni on {
| nt 1 nteger;
float real;
unsi gned char *string;
struct nane *nane;
struct object *array;
struct dict *dict;
unsi gned I nt operator;
| nt bool ean;

access: 2;

13

Dictionary Representation

e Typically a hash table based on keys
e Corresponding values in parallel array

@ struct dict {
unsi gned i nt access;
unsi gned short | engt h;
unsi gned short maxl engt h;
struct object *keys[nmaxl ength];
struct object *val ues[nmaxl ength];

14

Name Representation

& Typically aglobal hash table for all names
& Cache with current binding for fast lookup

e
struct nane {
struct nane *next;
struct object cache;
unsi gned short hash;
unsi gned short | ength;
unsi gned char string[length];

15

lmplementing Virtual Memory

& Allocate objects linearly from alarge arena
asave remembers current allocation pointer
~restore resets allocation pointer

& \What about mutated values?
e Could just block copy active heap: slow!
e Better to savelocation on first modification
o restore just walks through the “undo list”

16

Graphics Overview

Path

& Seguence of line and curve segments
e Need not be connected or closed
e Connected segquences of segments are subpaths

& Specified by path e ements
o moveto starts a new, disconnected subpath
o lineto specifies a connected line
o curveto Specifies aconnected, cubic Bézier
o closepath connects an open subpath to its start

18

Graphics State

= Collects parameters for graphics operators
e Operatorsimplicitly refer to current gstate

& Saved and restored by gsave and grestore

& Some specific parameters
e Current matrix allows affine transformations
e Current color is color to paint with
o Current path is shapeto fill or outline
e Current clipping path restricts painted area
e Current font determines appearance of text

19

Graphics Operators

afill paintsinside of current path
e Uses non-zero winding number rule
o Permits arbitrary self-intersections
o Implicitly closes all open subpaths

~»stroke outlines current path
~image renders arectangular pixmap
~show renders astring using current font

20

Scan Conversion and Clipping

Flattening Curves

& Flattening approximates curves by lines

e Current flatness parameter limits deviation (in
pixels) from true curve

a~flattenpath flattens current path (in place)
& Recursive subdivision can work well

& Forward differencing has a faster inner loop

X[t+1] = x[t]+dx[t]
dx[t+1] = dx[t]+ddx[t]
ddx[t +1] = ddx[t] +dddx[O]

22

Approximating Circular Arcs

& Arcs are approximated by cubic Béziers
e Required, since user can iterate over paths
o Some affine transformations of arcs are not arcs

& Each arc segment < 90° gets one curve

& Control points are along tangentsto arc
o F = (4/3)(1/ (1+sqgrt(1+(d/r)"2)))

23

Filling Flattened Paths

& Can use active edge lists (Foley+van Dam)
& LInear DDA doesn’t need edge structures

&= Clear X trangition lists

loop curve segments in current path

loop t using curve DDA

loop y using line DDA
store x coordinate on transition list for y

repeat for clip path
sort transition lists
fill intersection of “inside” intervals according to rule

24

Stroking Flattened Paths

&= Stroke of a path is a path itself

&= Precise specification of line shape
e Current line width
e Current linejoin
e Current line cap

~strokepath replaces path with its stroke
& Special case for rendering zero-width lines

25

Clipping Fattened Paths

aclip Intersects current path and clip path
& Computes polygon intersections

&> Scan convert path and clip in parallel
e Useinterior of both paths for rasterization

& Can generate trapezoids from modified
scan converter

e Sample at segment extrema and intersections
e Reconstruct original segments, where possble

26

Fonts

Font Representation

& Fonts come in two flavors
e Type 1l are condensed path descriptions
e Type 3 areordinary PostScript programs

& Font matrix defines character coordinates

& Font encoding maps character codes to
character names

& Font cache retains bitmaps for most
commonly used characters

28

Type 3 BuildChar

& Algorithm:
Check font cache for character mask
Concatenate font matrix with current matrix
Call BuildChar with font dictionary and character code

Save bitsin font cache, if appropriate
&= Typical BuilldChar procedure:

L ook up character name in Encoding vector
Set character width and bounding box
Construct path for character outline

fill

29

Type 1 Font Hints

& Tunesrasterizer at low resolutions

= Blue values declare standard heights of
character features (from baseline)

& Sem width hints declare standard widths of
character features

& Character stem hints identify stemsin
character outlines

30

Interpreting Font Hints

& All feature heights for a given blue value
are rounded consistently

e “Fuzz’ parameter is slop for matching heights

& All standard stem widths are rounded
consistently

& Overshoot suppression gives “flat” and
“round” characters same height

&= Flex feature straightens shallow curves

31

lmages and Halftones

lmages

~image specifies absolute color values
aimagemask pours color through a stencil
M atrix specifies pixel coordinate system
&= Procedure supplies pixel/bitmap values

33

lmage Rendering

& Reverse sample through inverted matrix
& Scan convert clip path as additional mask
& Use anti-aliasing for multi-bit devices

34

Halftones

&L aser printers can’'t place pixelsin isolation
e => Can’t use standard dithering techniques

& Frequency specifies cells per inch

& Angle specifies orientation of grid lines

& Joot procedure determines shape of cells
e Circular spots are typical

& Example: 60 Ipi = 25 grays at 300 dpl

35

Halftone Rendering

& Offset cellsinto arepeating tile
o Usually, only discrete angles are available

&> Call spot function on pixel centers
& Set n pixelswith least spot values

e N = round((1l-gray | evel)*spot area)

36

Extensions

& Multi-bit devices

aLevel 2

o Forms and patterns

e Color spaces

e User paths and graphics states
& Display PostScript

e Concurrency

e View clip

37

References

& Adobe PostScript Language Reference
Manual (Second Edition)

& Adobe Type 1 Font Format

&"Tutorla on Forward Differencing’, Bob
Wallis, Graphics Gems |

" Fast Scan Conversion of Arbitrary
Polygons’, Bob Wallis, Graphics Gems |

38

