
Global Illumination
and Radiosity

OUTLINE:

What is Global Illumination?

Radiosity Methods
Radiosity Equations

Progressive Radiosity

The Math Behind Radiosity

Global Illumination

Observation: light comes from other surfaces, not just designated light
sources.

Goal: simulate interreflection of light in 3-D scenes.

Difficulty : you can no longer shade surfaces one at a time, since they’re
now interrelated!

Two general classes of algorithms:

1. ray tracing methods: simulate motion of photons one by one, tracing
photon paths either backwards (“eye ray tracing”) or forwards (“light ray
tracing”) -- good for specular scenes

2. radiosity methods: set up a system of linear equations whose solution is
the light distribution -- good for diffuse scenes

Classical Radiosity Method

Definitions:
surfaces are divided into elements
radiosity = integral of emitted radiance plus reflected radiance over a

hemisphere. units: [power/area]

Assumptions:
– no participating media (no fog) → shade surfaces only, not vols.

– opaque surfaces (no transmission)

– reflection and emission are diffuse → radiance is direction-indep.,
radiance is a function of 2-D surface parameters and λ

– reflection and emission are independent of λ within each of several
wavelength bands; typically use 3 bands: R,G,B → solve 3 linear
systems of equations

– radiosity is constant across each element → one RGB radiosity per
element

Typically (but not exclusively):
– surfaces are polygons, elements are quadrilaterals or triangles

The Unit of Radiosity

Radiance (a.k.a. intensity) is power from/to an area in a given
direction.

units: power / (area × solid angle)

Radiosity is outgoing power per unit area due to emission or
reflection over a hemisphere of directions.

units: power / area

radiosity = radiance × integral of [cos(polar angle) × d(solid angle)] over a
hemisphere = π × radiance

So radiosity and radiance are linearly interrelated.

Thus, “radiosity” is both a unit of light and an algorithm.

Radiant emitted flux density is the unit for light emission.
units: power / area

Deriving Radiosity Equations, 1

Let
 = area of element (computable)
 = radiant emitted flux density of element (given)
 = reflectance of element (given)
 = radiosity of element (unknown)
 = form factor from to = fraction of power leaving that arrives at
 (computable)

So the equation above can be rewritten :

A i
e i

i
b i
F i j i j

A b A e F A b

i
i
i
i
ij

i i i i i ji

j

n

j j

ρ

ρ= +
=

∑
1

outgoing
power
of elem i











 =

power
emitted
by elem i











 +

power
reflected
by elem i













outgoing
power
of elem i











 =

power
emitted
by elem i











 +

reflectance
of elem i



 


 ×

fraction of power
leaving elem j that
arrives at elem i













elem j
∑ ×

outgoing
power
of elem j













Form Factors

Define the form factor Fij to be the fraction of light leaving element
i that arrives at element j

Where
vij is a boolean visibility function: 0 if point on i is occluded with respect to

point on j, 1 if unoccluded.

This is a double area integral. Difficult! We end up approximating it.

dAi and dAj are infinitesimal areas on elements i and j, respectively

θi and θj are polar angles: the angles between ray and normals on elements i
and j, respectively

Projected area of dAi from j is cos θi dAi, hence the cosines

r is distance from point on i to point on j

Reciprocity law: AiFij = AjFji.

F
r

v dA dAij
A

i j
ij j i

AAi
ji

= ∫∫1
2

cos cosθ θ
π

Deriving Radiosity Equations, 2

 Earlier, we had :

Dividing by :

By the reciprocity law, , so for all elems

Or, in matrix/vector notation :

where is the vector of unknown radiosities, is the vector of known emissions,
and

A b A e F A b

A b e F
A

A
b

F A A F b e F b i

i i i i i ji

j

n

j j

i i i i ji

j

n
j

i
j

ji j i ij i i i ij

j

n

j

= +

= +

= = +

=

=

=

∑

∑

∑

ρ

ρ

ρ

1

1

1

(/)

b = e + Kb
b e

K is a square matrix of reflectance times form factor is a square matrix of reflectance times form factor :
Subtracting from both sides, we get , or

where is an identity matrix.
This is a linear system of equations in unknowns (the).

There are three such systems of equations, one for the red channel, one for
green, and one for blue. The variables , , and are RGB vectors.

K F

n n b

e b

ij i ij

i

i i i

= ρ

ρ

Kb b - Kb = e
(I - K)b = e

I

Computing Visibility for Form Factors

Computing visibility in the form factor integral is like solving a
hidden surface problem from the point of view of each surface in
the scene.

Two methods:

ray tracing: easy to implement, but can be slow without spatial subdiv.

hemicube: exploit speed of z-buffer algorithm, compute visibility between one
element and all other elements. Good when you have z-buffer hardware, but
some tricky issues regarding hemicube resolution

You end up approximating the double area integral with a double summation, just
like numerical methods for approximating integrals.

When two elements are known to be inter-visible (no occluders), you can use
analytic form factor formulas and skip all this.

Two Radiosity Algorithms

Matrix radiosity: Compute form factors and store the matrix I-K , solve
system of equations, then display.

Solving can be done in several ways (Successive Overrelaxation, Gauss-
Seidel, Conjugate Gradient, ...)

Time and memory cost: O(n2), where n=#elements.

n is commonly many thousand, so the memory cost is excessive.

Progressive radiosity: Solves system of equations incrementally as matrix
of form factors is computed, one column at a time. Partial solutions can
be displayed, yielding progressive refinement of image.

Time cost: O(ns) where s=#shooting steps

Memory cost: O(n)

This is much more commonly used.

Progressive Radiosity, Intuitively

• Turn hemicube around so that you’re shooting light out to other
elements, not gathering it in from other elements.

• Shoot from light sources initially, then shoot from reflective
surfaces in decreasing order of brightness, treating reflective
surfaces as secondary light sources, like repeated application of a
shadow algorithm.

• Display an approximate picture as you go (optional).

• Converges to correct solution in the limit as you shoot an infinite
number of times, and hopefully it will reach an acceptable
approximation very quickly.

• If you stop after only lights have “shot”, you’ve simulated
shadows only, not interreflection.

Progressive Radiosity Algorithm

generate mesh by subdividing polygons into elements

for each element i

bi ← ei radiosity

∆bi ← ei unshot radiosity

until convergence (quantitative, or user gets impatient)

i = index of element with maximum “unshot power” Ai∆bi

Compute Fij for all elements j using hemicube or ray tracing

for each element j

∆Rad ← ρj ∆bi Fij Ai / Aj incremental radiosity shot from i to j

bj ← bj + ∆Rad update total radiosity of element j

∆bj ← ∆bj + ∆Rad update unshot radiosity of element j

∆bi ← 0 reset unshot radiosity for element i to zero

display scene using radiosities bj, if desired

This is progressive radiosity without substructuring. Substructuring (shooting
from polygons to elements, not from elements to elements) speeds things up.

Systems Issues

All algorithms require the following operations:

1. Input scene (geometry, emissions, reflectances).

2. Choose mesh (important!), subdividing polygons into elements.

3. Compute form factors using ray tracing or hemicube for visibility
(expensive).

4. Solve system of equations (indirectly, if progressive radiosity).

5. Display picture.

If mesh is chosen too coarse, approximation is poor, you get blocky shadows.

If mesh is chosen too fine, algorithm is slow. A good mesh is critical!

In radiosity simulations, because scene is assumed diffuse, surfaces’ radiance will
be view-independent.

Changes in viewpoint require only visibility computations, not shading. Do with z-
buffer hardware for speed. This is commonly used for “architectural
walkthroughs” and virtual reality.

Changes in scene geometry or reflectance require a new radiosity simulation.

Summary of Radiosity Algorithms

Radiosity algorithms allow indirect lighting to be simulated.

Classical radiosity algorithms:
• Generality: limited to diffuse, polygonal scenes.

• Realism: acceptable for simple scenes; blocky shadows on complex scenes.
Trial and error is used to find the right mesh.

• Speed: good for simple scenes. If all form factors are computed, O(n2), but if
progressive radiosity or newer “hierarchical radiosity” algorithms are used,
sometimes O(n).

Generalizations:
• curved surfaces: easy - radiosity samples are like a surface texture.

• non-diffuse (specular or general) reflectance: much harder; radiosity is now a
function of not just 2-D position on surface, but 2-D position and 2-D direction.
Lots of memory required, but it can be done.

The Math Behind Radiosity

Radiosity methods are the discrete way to think about global
illumination.

The continuous way is:

This is called an integral equation because the unknown function
“radiosity(x)” appears inside an integral.

Can be solved by radiosity methods or randomized “Monte Carlo”
techniques also, by simulating millions of photon paths.

radiosity emitted reflectance formfactor radiosity

other
surface
points

() () () (,) ()x x x x t t dt

t

= + × ×∫
where x and t are
surface points

References

Some good books and papers on the radiosity method:

[Cohen & Wallace, Radiosity and Realistic Image Synthesis]

[Sillion & Puech, Radiosity & Global Illumination]

[Ashdown, Radiosity: A Programmer’s Perspective]

[Cohen, SIGGRAPH 88] -- paper on progressive radiosity algorithm

