Project 1

Andrei Aiordachioaie

0) Description
1) Bells and whistles
2) Small images
3) Large images

0) Description

I used Matlab's dirty little function corr2 to compute the best alignment between the three color channels. While I also tested extensively the sum of squared differences, I found that the NCC works best. The only catch was that the black margins needed cropping. The margins introduce unneccessary noise in the image and interfere with the correlation.

I wrote 3 Matlab programs:

1) Bells and Whistles


2) Small images

Jump to Top

Displacements are next to the images :)
00017v.jpg


Green displacement: 2 -2
Red displacement: 2 -3
00056v.jpg


Green displacement: 7 2
Red displacement: 14 2
00084v.jpg


Green displacement: 5 -4
Red displacement: 12 -9
00362v.jpg


Green displacement: 6 0
Red displacement: 12 -5
00498v.jpg


Green displacement: 5 4
Red displacement: 11 4
00646v.jpg


Green displacement: 8 3
Red displacement: 15 5
00704v.jpg


Green displacement: 7 3
Red displacement: 14 4
00858v.jpg


Green displacement: 7 4
Red displacement: 14 5
00872v.jpg


Green displacement: -3 -1
Red displacement: -2 -2
01039v.jpg


Green displacement: 6 3
Red displacement: 12 3

3) Large images

Jump to Top
The color channels' displacements are below the actual images. I have rescaled the resulting 60Mb TIFF images and saved them as JPEGs.


00033u.jpg

Green displacement: 54 12
Red displacement: 105 16

00797u.jpg

Green displacement: 68 13
Red displacement: 145 15

00153u.jpg

Green displacement: 70 26
Red displacement: 140 46

00794u.jpg

Green displacement: 54 17
Red displacement: 124 19

01443u.jpg

Green displacement: 34 22
Red displacement: 80 45