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Abstract—Based on serial sectioning data, materials mi-
crostructure can be reconstructed to digitally represent each
grain in three dimensions. This paper attempts to calculate
the average shape of the grains through Principal Compo-
nent Analysis(PCA) , with a theoretical introduction to how
this method can be generalized into calculating an average
shape of the microstructure. Also investigated is the relation
between the commonly assumed average shapes, sphere and
ellipsoid, and the average shapes calculated, which for the
current case proves to be very similar. Finally, the knowl-
edge acquired from the first two steps is applied to creating
new grain shapes which possess the characteristic of the mi-
crostructure.

Index Terms—Three-dimensional Morphing, PCA,
Three-dimensional Reconstruction, Microstructure

I. INTRODUCTION

T HREE-DIMENSIONAL reconstruction of mi-
crostructures from two-dimensional serial section-

ing data, acquired through different techniques have been
around for some time now. Following the development
of new technical opportunities, one of the latest ideas is
to acquire the serial sectioning data with a focused ion
beam microscope, combine it with information detected
from orientation imaging microscopy and to apply both
pieces of information as an attempt to build more accurate
representation of microstructures. Starting with a 3D
reconstructed Ni-based superalloy microstructure, this
project aims to investigate the shape characteristics of the
microstructure acquired through a principal component
analysis (PCA) approach. The major curiosity is to be
able to calculate an average shape of the grains and see if
this average shape deviates from the commonly assumed
sphere or ellipsoid, and if yes, how. Also, investigated is
a beginners approach to 3D morphing and see if this can
be applied to microstructural grains.

II. PARAMETERIZATION

Two entities can only be compared using a common
basis. In this case this basis will be constructed through
defining a set of corresponding points in 3D, for both

Fig. 1. The distance mapping procedure; Left: A layer from a
solid cube, Middle: Distance map of the cube, shown is a cut
through the structure, Right: The thresholded image showing
the surface voxels

shapes. Assuming the shapes are different, as would be the
case with microstructural grains, correspondence is to be
defined by directions. This process involves several steps.

First, the chosen grains are thresholded and separated
from the microsturcture. Then, the orientation informa-
tion is extracted from the experimental data in terms of
euler angles and the grains are aligned with respect to the
’laboratory reference frame’. This involves defining three
rotation matrices corresponding to these euler angles and
multiplying each voxel with the inverse of these matrices.
Once done, the xyz corrdinates of each voxel in the struc-
ture is used to calculate a center of mass, such that

cm = [(
∑

Xcoord)/n, (
∑

Ycoord)/n, (
∑

Zcoord)/n] (1)

where n is the number of points used and cm corresponds to the
xyz coordinates of the center of mass of the grain. The center of
mass is calculated for all grains of interest, separately. Then, a
global center is defined, which most of the time corresponds to
the center of the array the grains are extracted from. Each grain
is then shifted such that their center of mass corresponds to this
global center.

As the grains are aligned in the right manner, next step is
to define the voxels that contribute to the outermost surface
of the structure and eliminate the enclosed ones. This arises
the need for a distance map. The aim is to construct a grain
map such that the farthest voxels from the center of the struc-
ture will be assumed as the surface. For this project a three-
dimensional distance map is constructed using Interactive Data
Language(IDL)’s the built-in MORPH DISTANCE function.
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Fig. 2. The {100},{110},{111}directions, half shown

Fig. 3. Determination of directions; Left: March to find the
surface voxels in the corresponding pre-determined directions,
Right: March in random directions, which may or may not end
up at a surface voxel

This function assigns the maximum value to the structure cen-
ter and decreases this value by one calculating the next-nearest
neighbors until the surrounding is reached, which is defined by
0’s. Thresholding the map by 1, as seen in figure 1, it is possib-
ble to extract the surface voxels.

Next step is to define a set of directions. In this case, di-
mensions fall into two categories: the pre-defined ones and
the randomly generated ones. The pre-defined directions are
the {100},{110} and {111}. These directions are shown, us-
ing a cube, in figure 2 where the center of the cube is as-
sumed to be origin, at [0,0,0], and the cube has dimensions
2unitsx2unitsx2units.

Next step is to define a set of directions. In this case, di-
mensions fall into two categories: the pre-defined ones and the
randomly generated ones. The pre-defined directions are the
100, 110 and 111. These directions are shown, using a cube, in
figure where the center of the cube is assumed to be origin, at
[0,0,0], and the cube has dimensions 2unitsx2unitsx2units. The

random direction generation is a little more tricky. The idea is
that, in order to move in 3D one has to take steps in x, y, and
z directions. The algorithm developed, generates three random
numbers, where these numbers have the freedom of being posi-
tive or negative, and assumes these to be the step sizes taken in
corresponding directions. Theoretically, since the outcome of
the random number generator can be negative or positive, the
system is allowed to march in all possible directions. An exam-
ple, simplified to 2D for visualization purposes can be observed
in figure 3.

When dealing with voxelized structures, the surface voxels
determined do not span a continuous surface. Therefore, de-
pending on the shape of the structure, it is possible not to land
on a surface voxel or in other words to ’miss’ the surface in any
given direction. An example has been given on figure 3, right.
These directions are eliminated and instead a new direction is
randomly generated in order to account for the desired density
of sampling. While dealing with multiple images, the aim is
to sample the structures by finding their corresponding surface
voxels along the same directions. Therefore, one has to account
for the fact that if a surface is missed in one of the structures
in a certain direction then the results of that direction should be
eliminated from all the surfaces.

III. APPROACH

Given any two shapes, the corresponding points can be ac-
quired, at a desired sampling density, using the approach which
has been extensively explained in section two. The denser the
sampling is, the closer the shapes can be approximated. The
mean shape can be directly calculated by finding the average
coordinates of each sampling point, such that

avec = [(Xi1 + Xi2)/2, (Yi1 + Yi2)/2, (Zi1 + Zi2)/2] (2)

where avec is the average coordinate array of the form 3 by n
and Xi1, Xi2.... indicate the xyz coordinates of a point in two
different images.

However, the mean shape is not the only shape of interest.
The aim of this project is to be able to generate any shape that
lie in between two shapes as well as, given several shapes, ex-
tract the characteristics that correspond to the bunch and be able
to create shapes that possess the same characteristics. This is
possible through a principal component analysis (PCA).

PCA is a method that transforms the current coordinate sys-
tem into another such that the largest variance will be visible and
the eigenvectors acquired correspond to the dimensions with the
strongest correlation.

A = [U][S][VT] (3)

where U,S,VT are the orthogonal eigenspace vectors. Before
PCA, the coordinates of the points has to be normalized such
that the center of mass lies on [0,0,0]. The result gives a set of
vector that define the characteristics of the major variances in
the data set.

Once applied, out of the results, the first eigen vector turns
out to be the step size that need to be taken while transforming
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Fig. 4. The 3D reconstructed grains: Grain#1

Fig. 5. The 3D reconstructed grains: Grain#2

one set of points to the next one, giving the average shape at
50-50. Therefore it is possible to morph one three-dimensional
shape into another using a single eigen vector, assuming the
sampling is dense enough to represent the shapes as close as
possible. An example will be provided in the next section.

IV. EXPERIMENTAL RESULTS

A. Application to Basic Shapes

The first shapes investigated include rectangular prisms and
cubes since they are relatively easy to work with due to the al-
most perfect corresponding of their 8 corner points. Also impor-
tant is the fact that rectangular prisms are easy to generate ran-
domly. Using these shapes have provided insight to the project
and have been very useful in improving the algorithm.

B. Application to Microstructural Grains

Grains possess far more complex shapes than the prisms.
They are harder to deal with because, first of all, they are much
bigger, which causes them to take up more memory as well as
increasing the running time. They are also much more vox-
elized which makes finding random corresponding directions
much harder, especially as the number of the grains taken into
consideration increases. On the other hand, being able to extract
the shape characteristics of a data set is very exciting from a ma-
terials science point of view. The information on whether these
characteristics change from material to material may prove to be

Fig. 6. The 3D reconstructed grains; Top: A cut through the
surface of grain 1, Middle: The average shape calculated using
equation (2), Bottom: A cut through the surface of grain 2

important in terms of investigating a link between microstruc-
ture and materials physical behavior. Although there is still a
long way to the point where this link can be investigated, the
explained method has been applied to two grains taken from a
real Ni-based superalloy microstructure. The serial-sectioning
data set is a courtesy of M. Uchic of Air Force Research Lab
at Wright Patterson Air Force Base and has been digitally re-
constructed at Carnegie Mellon University by E.B. Gulsoy and
Prof. M. DeGraef where orientation work has been completed
by Sukbin Lee.

Figures 4 and 5 show the three dimensionally reconstructed
grains. The two grains chosen appear to be thin and elongated.
Following the procedure, figure 6 shows a cut through the 3D
structures with the middle image representing the average shape
calculated from equation 2. 27 attempts were made to determine
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Fig. 7. The first eigen vector

Fig. 8. A new shape created by F=9 for e0 and F=30 for e1

corresponding directions between grains, 21 of which were suc-
cesful.The average shape, represented as a cut through the cloud
of corresponding points, is a reasonable approximation between
the top and bottom shapes in figure 6. This shows that the sam-
pling was, even though not very dense, was enough.

Figure 7 represents the first eigen vector calculated through
PCA of the two grains. Applying the first eigen vector to the
sampling points from the first grain enables the generation of
all the shapes that appear as one shape is morphed into another.
A slice through the 3D shapes in showm on figure 9. The eigen
vector has been applied as:

Newpts = pt1arr + e0 ∗ F (4)

where Newpts represent the new coordinates of the sampling
points, pt1arr holds the sampling points of the first grain, e0
corresponds to the first eigen vector and F is a multiplication
factor.

Using the same idea, and therefore the eigen vectors it is also
possible to generate new grains, which have the same character-
istics. An example has been given in 8

Fig. 9. Transforming from one shape into the next, using the
first eigen vector

V. CONCLUSIONS

This project has attempted to investigate the shape charac-
teristics of a microstructure. Although no large scale research
could be done, it was shown that it is possible to transform
shapes into each other in 3D through the usage of PCA anal-
ysis and eigen vectors. It was also shown that an average shape
could be determined using the same approach. It would be in-
teresting to see if this idea can be extended to compare different
materials shape distribution and average shape with their phys-
ical behavior and investigate if a correlation exists.
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