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● This lecture will show you how Tekkotsu works at the 
basic level of behaviors and events.

● Some slides will contain...

ugly computer source code.

● Tekkotsu programmers don't really code this way.

● They use the state machine shorthand instead.

● That's the next lecture.

Disclaimer
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Behaviors
● Behaviors are classes defined in .h files:

– Add them to the ControllergGUI 
“User Behaviors” menu using the
REGISTER_BEHAVIOR macro

– Double click on the “User Behaviors”
menu item to instantiate and run

– When you stop a behavior (double
click on the menu item again), the 
instance is deleted
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Five Behavior Components

#include “Behaviors/BehaviorBase.h”

class PoodleBehavior : public BehaviorBase {

Constructor

PoodleBehavior() : BehaviorBase(“PoodleBehavior”) {}

DoStart() is called when the behavior is activated

  virtual void doStart() {
  cout << getName() << “ is starting up.” << endl;
}
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Five Behavior Components

DoStop() is called when the behavior is deactivated, but 
you rarely need to bother with this.

  virtual void doStop() {
  cout << getName() << “ is shutting down.” << endl;
}

doEvent processes requested event types

  virtual void doEvent() {
  cout << getName() << “ got event: “
       << event->getDescription() << endl;
}
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Five Behavior Components

getClassDescription() returns a string displayed by 
ControllerGUI pop-up help

  
virtual std::string getClassDescription() {
  return “Demonstration of a simple behavior”;
}

};  // end of PoodleBehavior class definition
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Behaviors are Coroutines

● Behaviors are coroutines, not threads:

– Many can be “active” at once, but...

– Only one is actually running at a time.

– No worries about mutual exclusion.

– Must voluntarily relinquish control so that other active 
behaviors can run.

● BehaviorBase is a subclass of:

– EventListener

– ReferenceCounter

● Behaviors will be deleted if they are deactivated and 
the reference count goes to zero.
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Browsing the Documentation

● Go to Tekkotsu.org and click on “Reference” in the gray 
nav bar.

● “Class List” in the left nav bar

– Click on a class name (BehaviorBase) to see documentation

– Then click on a method name (processEvent) to jump to 
detailed description

– Click on line number to go to source code

● “Directories” in left nav bar shows major components

– Look at the Behaviors and Events directories
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Searching the Source

● The “search” box in the online documentation can be 
used to search for classes, methods, variables, 
enumerated types, etc.

● Use the “ss” shell script to grep the source code:

> cd /usr/local/Tekkotsu

> ss RMdLeg

> ss IRDist
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Events
● Events are subclasses of EventBase

● Three essential components:

 Generator ID:  what kind of event is this?

buttonEGID, visionEGID, timerEGID, ...

 Source ID:  which sensor/actuator/behavior/thing
 generated this event?

ChiaraInfo::GreenButOffset
ERS7Info::HeadButOffset

 Type ID, which must be one of:

activateETID
statusETID
deactivateETID
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Where are these Defined?

● EventGeneratorID_t defined in EventBase.h

● EventTypeID_t defined in EventBase.h

enum EventTypeID_t {
  activateETID,
  statusETID,
  deactivateETID,
  numETIDs
};

● Event source ids are specific to the event type:

– GreenButOffset defined in ChiaraInfo.h

– visPinkBallSID defined in ProjectInterface.h
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Subscribing to Events

addListener(listener,generator,source,type)

#include “EventRouter.h”

virtual void doStart() {
  erouter->addListener(this,
                       EventBase::buttonEGID,
                       RobotInfo::GreenButOffset,
                       EventBase::activateETID);
}
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Processing Events

virtual void doEvent() {
  switch ( event->getGeneratorID() ) {

    case EventBase::buttonEGID:
      cout << “Button press: “ << event->getDescription()
           << endl;
      break;

    default:
      cout << “Unexpected event: “ 
           << event->getDescription() << endl;
  }
}
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Types of Events

● What are some subclasses of EventBase?



06/17/10 15-494 Cognitive Robotics 15

Vision Object Events

● VisionObjectEvent is a subclass of EventBase

● The vision pipeline includes an “object detector” that 
looks for pink roundish blobs, like a pink ball.

● The center and area of the largest blob are reported by 
posting a VisionObjectEvent (if anyone's listening.)

– visObjEGID

– visPinkBallSID

– activate, status, deactivate ETIDs
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The Event Router

● Runs in the Main process.

● Distributes events to the Behaviors listening for them.
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Subscribing to Vision Events

#include “Events/VisionObjectEvent.h”
#include “Shared/ProjectInterface.h”

virtual void doStart() {
  erouter->addListener(this,

 EventBase::visObjEGID,
                       ProjectInterface::visPinkBallSID);
}
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Casting VisionObject Events

void doEvent() {
  switch ( event->getGeneratorID() ) {

  case EventBase::visObjEGID: {
    const VisionObjectEvent *visev =
      dynamic_cast<const VisionObjectEvent*>(event);
    if ( visev->getTypeID() == EventBase::activateETID ||
         visev->getTypeID() == EventBase::statusETID)
      cout << “Saw pink ball at (“
           << visev->getCenterX() << “, “
           << visev->getCenterY() << “)” << endl;
    else  // deactivate event
      cout << “Lost sight of the ball!” << endl;
    };
    break;

  case EventBase::buttonEGID:
    ...
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Text Message Events

   You can send text messages to
the AIBO via the ControllerGUI's
“Send Input” window:

    !msg Hi there

   This causes the behavior 
controller to post a textmsgEvent.

   You can also give the msg
command to Tekkotsu's command
line (with no exclamation point).
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Subscribing to TextMsg Events

#include “Events/TextMsgEvent.h”

virtual void doStart() {
  erouter->addListener(this, EventBase::textmsgEGID);
}

The source ID is meaningless (it's -1).

The type ID is always statusETID.
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Casting TextMsg Events

void doEvent() {
  switch ( event->getGeneratorID() ) {

  case EventBase::textmsgEGID: {
    const TextMsgEvent *txtev =
      dynamic_cast<const TextMsgEvent*>(event);
    cout << “I heard: '” << txtev->getText() << “'” << endl;
    };
    break;

  case EventBase::buttonEGID:
    ...
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The Event Logger

● Root Control
  > Status Reports
    > Event Logger

● Outputs to console
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Timers

Timers are good for two kinds of things:

● Repetitive actions:  “Bark every 30 seconds.”

– Whenever a timer expires and a timer expiration event is 
posted, the timer should be automatically restarted.

● Timeouts:  “If you haven't seen the ball for 5 seconds,
                   bark and turn around.”

– One-shot timer.  Will need to be cancelled if we see the ball 
before the time expires.
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addTimer

● addTimer(listener, source, duration, repeat)
– listener is normally this

– source is an arbitrary integer

– duration is in milliseconds

– repeat should be “true” if a sequence of timer events is desired

● Starts timer and automatically listens for the event.

● Timers are specific to a behavior instance; can use the 
same source id in other behaviors without interference.

● Behaviors can receive another's timer events if they 
use addListener to explicitly listen for them.

● removeTimer(listener, source)
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Timer Example

#include “Behaviors/BehaviorBase.h”
#include “EventRouter.h”

virtual void doStart() {

  erouter->addListener(this,
                       EventBase::buttonEGID,
                       RobotInfo::GreenButffset,
                       EventBase::activateETID);

  erouter->addListener(this,
                       EventBase::buttonEGID,
                       RobotInfo::YellowButOffset,
                       EventBase::activateETID);
}
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Timer Example
virtual void doEvent() {
  switch ( event->getGeneratorID() ) {

  case EventBase::buttonEGID:
    if ( event->getSourceID() == RobotInfo::GreenOffset )
      erouter->addTimer(this, 1234, 5000, false);
    else if (event->getSourceID() == RobotInfo::YellowButOffset)
      erouter->removeTimer(this, 1234);
  break;

  case EventBase::timerEGID:
    cout << “On no!!!!  Timer expired!” << endl;
  }

}

What does this behavior do?



06/17/10 15-494 Cognitive Robotics 27

Simulating Your Robot

● For some robots, code is compiled right on the robot.

● If you want to simulate that robot on the PC, just install 
Tekkotsu on the PC and compile it there.

● Then you can direct Tekkotsu to use camera images 
and sensor values from a real robot that you previously 
saved to disk.

● Alternative (coming soon): the Mirage simulator 
provides a virtual environment in which you can run 
your simulated robot.



06/17/10 15-494 Cognitive Robotics 28

ControllerGUI Can Post Events 
to the Simulator

Type this command in
the “Send Input” box:

    !post buttonEGID GreenBut A

● Monitor the result using the
Event Logger

● You can also use the post
command in the Tekkotsu
command line (no exclamation
point).
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Tekkotsu Architecture: Main
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World State

● Shared memory structure between Main and Motion

● Updated every 32 msec

● sensorEGID events announce each update

● Contents:

– joint positions, duty cycles, and PID settings

– button states:  state->buttons[GreenButOffset]

– IR range readings:  state->sensors[CenterIRDistOffset]

– accelerometer readings (if installed)

– battery state, thermal sensor

– commanded walking velocity (x,y,a)
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Sensor Observer

● Root Control
  > Status Reports
    > Sensor Observer

● Try monitoring the
IR range sensors.

● Then move your hand
in front of the robot.
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Control of Effectors

● How do we make the robot move?

● Must send commands to each device (head, legs, arm, 
LED display, etc.) every 32 ms.

● This is real-time programming.

● Can't spend too long computing command values!

● Best to do all this in another process, independent of 
user-written behaviors, so motion can be smooth.
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Tekkotsu Architecture: Motion
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