
06/17/10 15-494 Cognitive Robotics 1

Tekkotsu Behaviors & Events

15-494 Cognitive Robotics
David S. Touretzky &
Ethan Tira-Thompson

Carnegie Mellon
June 20010

06/17/10 15-494 Cognitive Robotics 2

● This lecture will show you how Tekkotsu works at the
basic level of behaviors and events.

● Some slides will contain...

ugly computer source code.

● Tekkotsu programmers don't really code this way.

● They use the state machine shorthand instead.

● That's the next lecture.

Disclaimer

06/17/10 15-494 Cognitive Robotics 3

Behaviors
● Behaviors are classes defined in .h files:

– Add them to the ControllergGUI
“User Behaviors” menu using the
REGISTER_BEHAVIOR macro

– Double click on the “User Behaviors”
menu item to instantiate and run

– When you stop a behavior (double
click on the menu item again), the
instance is deleted

06/17/10 15-494 Cognitive Robotics 4

Five Behavior Components

#include “Behaviors/BehaviorBase.h”

class PoodleBehavior : public BehaviorBase {

Constructor

PoodleBehavior() : BehaviorBase(“PoodleBehavior”) {}

DoStart() is called when the behavior is activated

 virtual void doStart() {
 cout << getName() << “ is starting up.” << endl;
}

06/17/10 15-494 Cognitive Robotics 5

Five Behavior Components

DoStop() is called when the behavior is deactivated, but
you rarely need to bother with this.

 virtual void doStop() {
 cout << getName() << “ is shutting down.” << endl;
}

doEvent processes requested event types

 virtual void doEvent() {
 cout << getName() << “ got event: “
 << event->getDescription() << endl;
}

06/17/10 15-494 Cognitive Robotics 6

Five Behavior Components

getClassDescription() returns a string displayed by
ControllerGUI pop-up help

virtual std::string getClassDescription() {
 return “Demonstration of a simple behavior”;
}

}; // end of PoodleBehavior class definition

06/17/10 15-494 Cognitive Robotics 7

Behaviors are Coroutines

● Behaviors are coroutines, not threads:

– Many can be “active” at once, but...

– Only one is actually running at a time.

– No worries about mutual exclusion.

– Must voluntarily relinquish control so that other active
behaviors can run.

● BehaviorBase is a subclass of:

– EventListener

– ReferenceCounter

● Behaviors will be deleted if they are deactivated and
the reference count goes to zero.

06/17/10 15-494 Cognitive Robotics 8

Browsing the Documentation

● Go to Tekkotsu.org and click on “Reference” in the gray
nav bar.

● “Class List” in the left nav bar

– Click on a class name (BehaviorBase) to see documentation

– Then click on a method name (processEvent) to jump to
detailed description

– Click on line number to go to source code

● “Directories” in left nav bar shows major components

– Look at the Behaviors and Events directories

06/17/10 15-494 Cognitive Robotics 9

Searching the Source

● The “search” box in the online documentation can be
used to search for classes, methods, variables,
enumerated types, etc.

● Use the “ss” shell script to grep the source code:

> cd /usr/local/Tekkotsu

> ss RMdLeg

> ss IRDist

06/17/10 15-494 Cognitive Robotics 10

Events
● Events are subclasses of EventBase

● Three essential components:

 Generator ID: what kind of event is this?

buttonEGID, visionEGID, timerEGID, ...

 Source ID: which sensor/actuator/behavior/thing
 generated this event?

ChiaraInfo::GreenButOffset
ERS7Info::HeadButOffset

 Type ID, which must be one of:

activateETID
statusETID
deactivateETID

06/17/10 15-494 Cognitive Robotics 11

Where are these Defined?

● EventGeneratorID_t defined in EventBase.h

● EventTypeID_t defined in EventBase.h

enum EventTypeID_t {
 activateETID,
 statusETID,
 deactivateETID,
 numETIDs
};

● Event source ids are specific to the event type:

– GreenButOffset defined in ChiaraInfo.h

– visPinkBallSID defined in ProjectInterface.h

06/17/10 15-494 Cognitive Robotics 12

Subscribing to Events

addListener(listener,generator,source,type)

#include “EventRouter.h”

virtual void doStart() {
 erouter->addListener(this,
 EventBase::buttonEGID,
 RobotInfo::GreenButOffset,
 EventBase::activateETID);
}

06/17/10 15-494 Cognitive Robotics 13

Processing Events

virtual void doEvent() {
 switch (event->getGeneratorID()) {

 case EventBase::buttonEGID:
 cout << “Button press: “ << event->getDescription()
 << endl;
 break;

 default:
 cout << “Unexpected event: “
 << event->getDescription() << endl;
 }
}

06/17/10 15-494 Cognitive Robotics 14

Types of Events

● What are some subclasses of EventBase?

06/17/10 15-494 Cognitive Robotics 15

Vision Object Events

● VisionObjectEvent is a subclass of EventBase

● The vision pipeline includes an “object detector” that
looks for pink roundish blobs, like a pink ball.

● The center and area of the largest blob are reported by
posting a VisionObjectEvent (if anyone's listening.)

– visObjEGID

– visPinkBallSID

– activate, status, deactivate ETIDs

06/17/10 15-494 Cognitive Robotics 16

The Event Router

● Runs in the Main process.

● Distributes events to the Behaviors listening for them.

06/17/10 15-494 Cognitive Robotics 17

Subscribing to Vision Events

#include “Events/VisionObjectEvent.h”
#include “Shared/ProjectInterface.h”

virtual void doStart() {
 erouter->addListener(this,

 EventBase::visObjEGID,
 ProjectInterface::visPinkBallSID);
}

06/17/10 15-494 Cognitive Robotics 18

Casting VisionObject Events

void doEvent() {
 switch (event->getGeneratorID()) {

 case EventBase::visObjEGID: {
 const VisionObjectEvent *visev =
 dynamic_cast<const VisionObjectEvent*>(event);
 if (visev->getTypeID() == EventBase::activateETID ||
 visev->getTypeID() == EventBase::statusETID)
 cout << “Saw pink ball at (“
 << visev->getCenterX() << “, “
 << visev->getCenterY() << “)” << endl;
 else // deactivate event
 cout << “Lost sight of the ball!” << endl;
 };
 break;

 case EventBase::buttonEGID:
 ...

06/17/10 15-494 Cognitive Robotics 19

Text Message Events

 You can send text messages to
the AIBO via the ControllerGUI's
“Send Input” window:

 !msg Hi there

 This causes the behavior
controller to post a textmsgEvent.

 You can also give the msg
command to Tekkotsu's command
line (with no exclamation point).

06/17/10 15-494 Cognitive Robotics 20

Subscribing to TextMsg Events

#include “Events/TextMsgEvent.h”

virtual void doStart() {
 erouter->addListener(this, EventBase::textmsgEGID);
}

The source ID is meaningless (it's -1).

The type ID is always statusETID.

06/17/10 15-494 Cognitive Robotics 21

Casting TextMsg Events

void doEvent() {
 switch (event->getGeneratorID()) {

 case EventBase::textmsgEGID: {
 const TextMsgEvent *txtev =
 dynamic_cast<const TextMsgEvent*>(event);
 cout << “I heard: '” << txtev->getText() << “'” << endl;
 };
 break;

 case EventBase::buttonEGID:
 ...

06/17/10 15-494 Cognitive Robotics 22

The Event Logger

● Root Control
 > Status Reports
 > Event Logger

● Outputs to console

06/17/10 15-494 Cognitive Robotics 23

Timers

Timers are good for two kinds of things:

● Repetitive actions: “Bark every 30 seconds.”

– Whenever a timer expires and a timer expiration event is
posted, the timer should be automatically restarted.

● Timeouts: “If you haven't seen the ball for 5 seconds,
 bark and turn around.”

– One-shot timer. Will need to be cancelled if we see the ball
before the time expires.

06/17/10 15-494 Cognitive Robotics 24

addTimer

● addTimer(listener, source, duration, repeat)
– listener is normally this

– source is an arbitrary integer

– duration is in milliseconds

– repeat should be “true” if a sequence of timer events is desired

● Starts timer and automatically listens for the event.

● Timers are specific to a behavior instance; can use the
same source id in other behaviors without interference.

● Behaviors can receive another's timer events if they
use addListener to explicitly listen for them.

● removeTimer(listener, source)

06/17/10 15-494 Cognitive Robotics 25

Timer Example

#include “Behaviors/BehaviorBase.h”
#include “EventRouter.h”

virtual void doStart() {

 erouter->addListener(this,
 EventBase::buttonEGID,
 RobotInfo::GreenButffset,
 EventBase::activateETID);

 erouter->addListener(this,
 EventBase::buttonEGID,
 RobotInfo::YellowButOffset,
 EventBase::activateETID);
}

06/17/10 15-494 Cognitive Robotics 26

Timer Example
virtual void doEvent() {
 switch (event->getGeneratorID()) {

 case EventBase::buttonEGID:
 if (event->getSourceID() == RobotInfo::GreenOffset)
 erouter->addTimer(this, 1234, 5000, false);
 else if (event->getSourceID() == RobotInfo::YellowButOffset)
 erouter->removeTimer(this, 1234);
 break;

 case EventBase::timerEGID:
 cout << “On no!!!! Timer expired!” << endl;
 }

}

What does this behavior do?

06/17/10 15-494 Cognitive Robotics 27

Simulating Your Robot

● For some robots, code is compiled right on the robot.

● If you want to simulate that robot on the PC, just install
Tekkotsu on the PC and compile it there.

● Then you can direct Tekkotsu to use camera images
and sensor values from a real robot that you previously
saved to disk.

● Alternative (coming soon): the Mirage simulator
provides a virtual environment in which you can run
your simulated robot.

06/17/10 15-494 Cognitive Robotics 28

ControllerGUI Can Post Events
to the Simulator

Type this command in
the “Send Input” box:

 !post buttonEGID GreenBut A

● Monitor the result using the
Event Logger

● You can also use the post
command in the Tekkotsu
command line (no exclamation
point).

06/17/10 15-494 Cognitive Robotics 29

Tekkotsu Architecture: Main

06/17/10 15-494 Cognitive Robotics 30

World State

● Shared memory structure between Main and Motion

● Updated every 32 msec

● sensorEGID events announce each update

● Contents:

– joint positions, duty cycles, and PID settings

– button states: state->buttons[GreenButOffset]

– IR range readings: state->sensors[CenterIRDistOffset]

– accelerometer readings (if installed)

– battery state, thermal sensor

– commanded walking velocity (x,y,a)

06/17/10 15-494 Cognitive Robotics 31

Sensor Observer

● Root Control
 > Status Reports
 > Sensor Observer

● Try monitoring the
IR range sensors.

● Then move your hand
in front of the robot.

06/17/10 15-494 Cognitive Robotics 32

Control of Effectors

● How do we make the robot move?

● Must send commands to each device (head, legs, arm,
LED display, etc.) every 32 ms.

● This is real-time programming.

● Can't spend too long computing command values!

● Best to do all this in another process, independent of
user-written behaviors, so motion can be smooth.

06/17/10 15-494 Cognitive Robotics 33

Tekkotsu Architecture: Motion

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

