
01/27/10 15-494 Cognitive Robotics 1

Shape Representations

15-494 Cognitive Robotics
David S. Touretzky &
Ethan Tira-Thompson

Carnegie Mellon
Spring 2010

01/27/10 15-494 Cognitive Robotics 2

Types of Shapes

● Basic:

– PointData, LineData, EllipseData

● Complex:

– PolygonData, BlobData, MarkerData

● 3-D:

– SphereData, BrickData

● Robot shape:

– AgentData

01/27/10 15-494 Cognitive Robotics 3

Shapes Live in a ShapeSpace

● SketchSpace and ShapeSpace are duals:

● We'll be using camSkS and camShS: the camera
spaces.

SketchSpace ShapeSpace

Rendering

Extraction

01/27/10 15-494 Cognitive Robotics 4

SHAPEVEC and SHAPEROOTVEC
● Often we want to work with collections of shapes.

● A “SHAPEVEC” is a vector of shapes of a specific type:

 std::vector<Shape<BlobData> >

● A “SHAPEROOTVEC” is a vector of generic
shapes, useful when we mix shapes of different types:

 std::vector<ShapeRoot>

● There are macros for creating and iterating over these
vectors:

– NEW_SHAPEVEC, NEW_SHAPEROOTVEC

– SHAPEVEC_ITERATE, SHAPEROOTVEC_ITERATE

This space is
required

01/27/10 15-494 Cognitive Robotics 5

Vectors of Shapes

#nodeclass ShapeExample : VisualRoutinesStateNode : DoStart
 NEW_SKETCH(camFrame, uchar, sketchFromSeg());

 NEW_SHAPEVEC(blob_shapes, BlobData,
 BlobData::extractBlobs(camFrame,100));

 if (blob_shapes.size() > 0) {
 NEW_SKETCH(blob0, bool, blob_shapes[0]->getRendering());
 }

 SHAPEVEC_ITERATE(blob_shapes, BlobData, myblob)
 cout << "Id: " << myblob->getId()
 << " Color: " << myblob->getColor()
 << " Area: " << myblob->getArea()
 << endl;
 END_ITERATE;

#endnodeclass

01/27/10 15-494 Cognitive Robotics 6

Some Orange and Yellow Blobs

01/27/10 15-494 Cognitive Robotics 7

Extracted Blob Shapes

Inverted:
right click

Id: 10001 Color: [253,119,15] Area: 2351
Id: 10002 Color: [253,119,15] Area: 1256
Id: 10003 Color: [193,177,9] Area: 1378
Id: 10004 Color: [193,177,9] Area: 1065
Id: 10005 Color: [193,177,9] Area: 705

01/27/10 15-494 Cognitive Robotics 8

Line Shapes

● A line has two endpoints, which can be

– Valid or invalid (e.g., line runs out of the camera frame)

– Active or inactive

If both endpoints are inactive, line extends to infinity.

● Lines have several derived properties that are
maintained automatically:

– Length

– Orientation (0 to )

– Normal vector )




line

normal
vector

01/27/10 15-494 Cognitive Robotics 9

Extracting the Lines
#nodeclass LineExample : VisualRoutinesStateNode : DoStart
 NEW_SKETCH(camFrame, uchar, sketchFromSeg());

 NEW_SKETCH(pink_stuff, bool,
 visops::colormask(camFrame,"pink"));

 NEW_SHAPEVEC(lines, LineData,
 LineData::extractLines(pink_stuff));

#endnodeclass

01/27/10 15-494 Cognitive Robotics 10

Extracted Line Shapes

● “Select All Shapes” displays everything.

● “ID” checkbox displays shape IDs.

01/27/10 15-494 Cognitive Robotics 11

Line EndPoints
● Lines have two endpoints: end1Pt and end2Pt

● Order is arbitrary

● Extracting endpoints:

– end1Pt(), end2Pt() -- simple accessor functions

– leftPt(), rightPt() –- compare X coords.

– topPt(), bottomPt() –- compare Y coords.

● Orientation predicates:

– IsHorizontal –- true if slope is < 60 degrees

– IsVertical –- true if slope is > 30 degrees

– These thresholds are user-adjustable

01/27/10 15-494 Cognitive Robotics 12

Extracting the Leftmost Point

#nodeclass LineExample : VisualRoutinesStateNode : DoStart
 NEW_SKETCH(camFrame, uchar, sketchFromSeg());

 NEW_SKETCH(orange_stuff, bool,
 visops::colormask(camFrame,"orange"));

 NEW_SHAPE(line, LineData,
 LineData::extractLine(orange_stuff));

 NEW_SHAPE(leftpt, PointData, line->leftPtShape());

 leftpt->setColor(rgb(0,255,0));

#endnodeclass

01/27/10 15-494 Cognitive Robotics 13

Extracted Point Shape

● leftpt's parent is line

● line's parent is orange_stuff: a shape
whose parent is a sketch

01/27/10 15-494 Cognitive Robotics 14

Logical EndPoint Descriptions

● firstPt() –- if line is horizontal, returns leftPt(), else
returns topPt()

● secondPt() –- similar: returns rightPt() or bottomPt()

● How do we compare two lines? Example:

– Two lines are “close” if their first endpoints are close,
and their second endpoints are also close.

– But what about lines whose orientations
straddle the critical horizontal/vertical
threshold of 60 degrees?

● line1->firstPt(line2) –- returns first point of line2 based
on line1's decision about horizontal/vertical

first=left

first=top

01/27/10 15-494 Cognitive Robotics 15

Constructing New Lines

● Use a LineData(camShS, ...) constructor to make new
lines in camera space.

● Since we want to use smart pointers for shapes, the
result should be fed to a Shape<LineData> constructor.

– The NEW_SHAPE macro does this for us:

NEW_SHAPE(myline, LineData, new LineData(camShS, ...));

● Can define a new line by specifying:

– two points

– a point plus an orientation (0 to )

01/27/10 15-494 Cognitive Robotics 16

NEW_SHAPE

● NEW_SHAPE is a bit of syntactic sugar:

 NEW_SHAPE(myline, LineData,
 new LineData(camShS,pt1,pt2))

● Expands into:

 Shape<LineData> myline(new LineData(camShS,pt1,pt2));
if (myline.isValid())
 myline->V(“myline”); // make viewable

● Use NEW_SHAPE_N for shapes not to be viewable.

01/27/10 15-494 Cognitive Robotics 17

Parents and Viewable IDs

foo
 id: 11
 parentId: 0

bar
 id: 17
 parentId: 11

baz
 id: 19
 parentId: 17

xam
 id: 23
 parentId: 19

foo 11

xam 23

On the Robot SketchGUI
Display

Not
viewable

01/27/10 15-494 Cognitive Robotics 18

Mixing Sketches and Shapes

● Problem: which side of an orange line has more yellow
blobs?

● If all we have is a line segment, people can still
interpret it as a “barrier”.

● How do we make the robot do this?

01/27/10 15-494 Cognitive Robotics 19

Lines as Barriers
#nodeclass LineExample : VisualRoutinesStateNode : DoStart
 NEW_SKETCH(camFrame, uchar, sketchFromSeg());
 NEW_SKETCH(orange_stuff, bool,

 visops::colormask(camFrame,"orange"));
 NEW_SKETCH(yellow_stuff, bool,

 visops::colormask(camFrame,"yellow"));

 NEW_SHAPE(boundary_line, LineData,
 LineData::extractLine(orange_stuff));

 NEW_SKETCH(topside, bool,
 visops::topHalfPlane(boundary_line));

 NEW_SKETCH(side1, bool, yellow_stuff & topside);
 NEW_SKETCH(side2, bool, yellow_stuff & ! topside);

01/27/10 15-494 Cognitive Robotics 20

Lines as Barriers (cont.)
 NEW_SHAPEVEC(side1blobs, BlobData,

 BlobData::extractBlobs(side1,50));
 NEW_SHAPEVEC(side2blobs, BlobData,

BlobData::extractBlobs(side2,50));

 vector<Shape<BlobData> > &winners =
 side1blobs.size() > side2blobs.size() ?

side1blobs : side2blobs;

 NEW_SKETCH(result, bool, visops::zeros(yellow_stuff));

 SHAPEVEC_ITERATE(winners, BlobData, b)
 result |= b->getRendering();
 END_ITERATE;

 boundary_line->setInfinite(); // for display purposes

#endnodeclass

01/27/10 15-494 Cognitive Robotics 21

Lines As Barriers

Subtle point: bool overrides uchar in the SketchGUI, so
selecting yellow_stuff allows the top yellow blob to display even
though the inverted (orange) topside is covering its appearance
in camFrame. (Competing bools are averaged.)

01/27/10 15-494 Cognitive Robotics 22

Lines As Barriers

01/27/10 15-494 Cognitive Robotics 23

Constructing a Perpendicular
#nodeclass LineExample : VisualRoutinesStateNode: DoStart
 NEW_SKETCH(camFrame, uchar, sketchFromSeg());
 NEW_SKETCH(orange_stuff, bool,

 visops::colormask(camFrame,"orange"));

 NEW_SHAPE(line1, LineData,
LineData::extractLine(orange_stuff));

 line1->leftPt().setActive(false);

 NEW_SHAPE(line2, LineData,
new LineData(camShS,line1->rightPt(),

 line1->getThetaNorm()));

 NEW_SKETCH(corner, bool,
 visops::seedfill(line1->getRendering() |

line2->getRendering(), 0));

 corner->setColor(rgb(0,255,0));
#endnodeclass

01/27/10 15-494 Cognitive Robotics 24

Constructing a Perpendicular

● Why isn't line2 shown as a child of line1?

01/27/10 15-494 Cognitive Robotics 25

Ellipses

● Used to describe circular or elliptical shapes.

● Different from blobs. Ellipse properties:

– semi-major, semi-minor axis lengths

– major axis orientation

● Ellipse extraction routine will ignore regions that aren't
roughly elliptical in shape.

01/27/10 15-494 Cognitive Robotics 26

Extracting Ellipses
#nodeclass EllipseExample : VisualRoutinesStateNode : DoStart
 NEW_SKETCH(camFrame, uchar, sketchFromSeg());
 NEW_SKETCH(orange_stuff, bool,

 visops::colormask(camFrame,"orange"));
 NEW_SKETCH(yellow_stuff, bool,

 visops::colormask(camFrame,"yellow"));

 NEW_SHAPEVEC(ellipses, EllipseData,
 EllipseData::extractEllipses(yellow_stuff));

 NEW_SHAPEVEC(ellipses2, EllipseData,
 EllipseData::extractEllipses(orange_stuff));

#endnodeclass

01/27/10 15-494 Cognitive Robotics 27

Extracting Ellipses

01/27/10 15-494 Cognitive Robotics 28

Assignment and Copying
● Sketches: assignment is deep; copying is shallow.

“A = 1” only makes sense for deep assignment.

“A += B” only makes sense for deep assignment.

So “A = B” should be deep as well.

NEW_SKETCH(A, bool, B) does shallow copy. For deep copy, do:
NEW_SKETCH(A, bool, visops::copy(B))

For shallow assignment, do: A.bind(B)

● Shapes: assignment and copying are both shallow.

Mostly we want to just pass shapes around, so shallow copy is all
that's necessary.

For deep copy, do: NEW_SHAPE(A, LineData, B->copy())

Deep assignment is not supported.

01/27/10 15-494 Cognitive Robotics 29

Point vs. PointData

● Point(x,y,z) uses fmat::Column<4>.

● Operators +-*/ == are defined on Point objects.

● EndPoint is a subclass of Point with a few extra
properties: valid, active.

● LineData contains two EndPoints.
EllipseData contains one Point defining its center.

● PointData is a shape representation with a Point inside.

● Why have both Point and PointData?

– Shapes aren't allowed to nest, so you can't put a PointData
inside a LineData or EllipseData.

01/27/10 15-494 Cognitive Robotics 30

Other Shape Types

● PolygonData can represent boundaries (like the edge of
the robot's playpen) or containers.

● SphereData can be used to represent a ball in 3-D.

● BrickData will be used for blocks world tasks.

● AgentData represents the robot's position (as a Point)
and orientation (as an AngTwoPi).

01/27/10 15-494 Cognitive Robotics 31

ShapeSpace:

A Look
Under

the Hood

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

