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Robot Control Architectures

● State machines are the simplest and most widely used 
robot control architecture.

● Easy to implement; easy to understand.

● Not very powerful:

– Action sequences must be laid out in advance, as a series of 
state nodes.

– No dynamic planning.

– Failure handling must be programmed explicitly.

● But a good place to start.
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Basic Idea

● Robot moves from state to state.

● Each state has an associated action: speak, move, etc.

● Transitions triggered by sensory events or timers.
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Tekkotsu State Nodes

● In Tekkotsu, state machine nodes are behaviors.

● StateNode is a child of BehaviorBase.

● To enter a state, call its start() method, which will call 
its DoStart() method if one has been supplied.

● To leave a state, call its stop() method.

● StateNodes can listen for and process events just like 
any other behavior.
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Types of State Nodes

BehaviorBase

SoundNode

● State nodes encapsulate complex actions, such as 
creating and launching a motion command.

LogNode

VisualRoutinesStateNode

StateNode

MCNode<T>

MotionSequenceNode

WalkToTargetNode

LedNode

WalkEngineNode

TailWagNode

PostureNode

All of these 
contain Motion 
Commands

HeadPointerNode

ArmNode

SpeechNode
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Transitions
● Transitions in Tekkotsu are also behaviors.

– Transition and StateNode are both subclasses of BehaviorBase.

● A transition's start() is called whenever its source state 
node becomes active.

● Transitions listen for sensor, timer, or other events, and 
when their conditions are met, they fire.

● When a transition fires, it deactivates its source node(s) 
and then activates its destination node(s).
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Look Turn

Reach

Wait

Transition firing activates state node Look.
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Look Turn

Reach

Wait

Look's start() calls StateNode::start().
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Look Turn

Reach

Wait

Outgoing transitions become active and 
begin listening for events.
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Look Turn

Reach

Wait

Random things happen....

Event EventEvent
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Look Turn

Reach

Wait

And then, something we've been looking for...

Event EventEvent Event!
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Look Turn

Reach

Wait

Transition decides to fire.

Event!
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Look Turn

Reach

Wait

Transition deactivates the source node, Look.

Event!
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Look Turn

Reach

Wait

Transition activates the destination node, Reach.
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Look Turn

Reach

Wait

Transition deactivates.
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Look Turn

Reach

Wait

Reach activates its outgoing transition, which 
starts listening for events as Reach performs 
whatever action it's supposed to.
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Transition Types

RandomTrans

LostTargetTrans

SmoothCompareTrans<T>
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State Machine Compiler

● Tekkotsu programmers don't normally write C++ code 
to build state machines one node or link at a time.

● They use a shorthand notation instead.

● The shorthand is turned into C++ by a state machine 
compiler.

● But to understand what
the shorthand is doing,
we need to build our first
state machine by hand.
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Programs As State Machines

Your program is the parent StateNode:

#include “Behaviors/StateMachine.h”

class BarkHowlBlinkBehavior : public StateNode {

public:
  BarkHowlBlinkBehavior() :
        StateNode("BarkHowlBlinkBehavior") {}
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Setup and Teardown
● Programs must include a setup() function to construct 

the state machine as a child of the parent state node.

● setup() is called automatically the first time the parent's 
start() is called.

● A teardown() function is automatically provided to 
destroy the state machine.  Called by ~StateNode().
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Registering Nodes and Links

● Each node created by setup() must be registered with 
its parent using the addNode() method.

SoundNode *bark_node = new SoundNode("bark","barkmed.wav");
addNode(bark_node);

● Transitions are registered with their source nodes via 
the source node's addTransition() method.

bark_node->addTransition(new TimeOutTrans(howl_node,5000));

● The variable startnode must be set to point to 
the starting node of the state machine.
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Setup Example
virtual void setup() {
   
    SoundNode *bark_node = new SoundNode("bark","barkmed.wav");
    SoundNode *howl_node = new SoundNode("howl","howl.wav");
    StateNode *wait_node = new StateNode("wait");
    addNode(bark_node); addNode(howl_node); addNode(wait_node);

    EventTrans *btrans =
      new EventTrans(wait_node,

 EventBase::buttonEGID,
                     ChiaraInfo::GreenButOffset,

 EventBase::activateETID);
    btrans->setSound("ping.wav");
    bark_node->addTransition(btrans);

    
    howl_node->addTransition(new CompletionTrans(wait_node));
    wait_node->addTransition(new TimeOutTrans(bark_node,15000));

    startnode = bark_node;
  }
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Extensions to the Basic Formalism

● Extension 1: multi-states (parallelism).

– Several states can be active at once. 

– Provides for parallel processing (but coroutines, not threads).

● Extension 2: hierarchical structure.

– State machines can nest inside other state machines.

● Extension 3: message passing.

– When a state posts an event that triggers a transition, it can 
include a message that will be passed to the destination state.

– This makes state transitions resemble procedure calls.
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Multi-State Machines
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Blink Using LedEngine::cycle()
● Blink uses a motion command called LedMC, which is a 

child of LedEngine.

● The LedEngine::cycle() method never completes.

● When the howl completes, we want to leave both the 
howl state and the blink state.

● We can do this by telling CompletionTrans that only one 
of its source nodes needs to signal a completion in 
order for the transition to fire.

● When it does fire, it will deactivate both source nodes.
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Setting Up the Blink

LedNode *blink_node = new LedNode(“blink”);
addNode(blink_node);
blink_node->getMC()->cycle(RobotInfo::AllLEDMask,1500,1.0);

TimeOutTrans *htrans = new TimeOutTrans(howl_node,5000);
htrans->addDestination(blink_node);
bark_node->addTransition(htrans);

CompletionTrans *ctrans = new CompletionTrans(wait_node,1);
howl_node->addTransition(ctrans);
blink_node->addTransition(ctrans);

htrans ctrans
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Cleaning Up the Blink:
Turn The LEDs Off

LedNode *noblink = new LedNode(“noblink”);

noblink->getMC()->set(RobotInfo::AllLEDMask, 0.0);
noblink->setPriority(MotionManager::kBackgroundPriority);

StateNode *launcher = new Statenode(“launcher”);

NullTrans *ntrans = new NullTrans(bark_node);
ntrans->addDestination(noblink);

launcher->addTransition(ntrans);

startnode = launcher;
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Shorthand Notation

bark: SoundNode($,”barkmed.wav”)

howl: SoundNode($,”howl.wav”)

wait: StateNode

bark =T(5000)=> howl

bark =B(RobotInfo::GreenButOffset)=> wait
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Shorthand Notation
● Node definition:

nodename: NodeClass(constructor_args)[initializers]

● Transition, short form examples:

  source =C=> target
  source =T(n)=> target
  source =E(g,s,t)=> target

● Transition, long form:

source >== transname:
  TransitionClass(constructor_args)[initializers] ==> targetnode

● Multiple sources/targets:

source >==Transition==> {targ1name, targ2name, ...}
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$ and $$
● Use $ to refer to the name of the current node, e.g., these 

are equivalent:

foo: Statenode --- 

foo: StateNode($) bar: SoundNode($,”howl.wav”)

foo: StateNode(“foo”) bar: SoundNode(“bar”,”howl.wav”)

● In long form, use $$ to refer to the destination node of a 
transition, e.g., these are equivalent:

foo >==EventTrans($$,EventBase::buttonEGID)==> bar

foo >==EventTrans(bar,EventBase::buttonEGID)==> bar

Must be present
to allow second

 argument
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More Shorthand
>==NullTrans==> =N=>

>==CompletionTrans==> =C=>

>==CompletionTrans($,$$,n)==> =C(n)=>

>==TimeoutTrans($,$$,t)==> =T(t)=>

>==EventTrans($,$$,g,s,t)==> =E(g,s,t)=>

>== EventTrans($,$$, 
 EventBase::buttonEGID,s) ==> =B(s)=>

>== TextMsgTrans($,$$,str)==> =TM(str)=>

>==RandomTrans==> =RND=>

>==SignalTrans<T>($,$$) ==> =S<T>=>

>==SignalTrans<T>($,$$,v)==> =S<T>(v)=>

>==SignalTrans<bool>($,$$,false)==>=F=>
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  virtual void setup() {
#statemachine
  startnode:StateNode =N=> {noblink, bark}

  noblink: LedNode 
[setPriority(MotionManager::kBackgroundPriority);
                    getMC()->set(RobotInfo::FaceLEDMask,0.0)]

  bark: SoundNode($,"barkmed.wav")
          =B(GreenButOffset)[setSound("ping.wav")]=> wait

  wait: StateNode =T(15000)=> bark

  bark =T(5000)=> {howl, blink}

  howl: SoundNode($,"howl.wav")

  blink: LedNode [getMC()->cycle(RobotInfo::AllLEDMask, 1500, 1.0)]

  {howl, blink} =C(1)=> wait
#endstatemachine

} // end of setup() 

file:   BarkHowlBlinkBehavior.cc.fsm
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#nodeclass MyMachine

  #shortnodeclass Greet : StateNode

  virtual void doStart() {

    cout << “Hello there!” << endl;

  }

  #shortnodeclass Sendoff : StateNode

  virtual void doStart() {

    cout << “So long!” << endl;

  }

  virtual void setup() {

    #statemachine

      startnode: Greet =T(5000)=> Sendoff

    #endstatemachine

  }

#endnodeclass
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Compiling Your FSM

● The Makefile looks for files with names of form *.fsm 
and automatically runs them through the state machine 
compiler, called “stateparser”.

● BarkHowlBlinkBehavior.cc.fsm generates a pure C++ 
file called BarkHowlBlinkBehavior-fsm.cc.

● The .cc file is stored in:
    ~/project/build/PLATFORM_LOCAL/TARGET_xxx/

● You can run the stateparser directly:

   Tekkotsu/tools/stateparser  BarkHowlBlinkBehavior.cc.fsm  –
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State Machine Events
● Entering or leaving a state generates a 

stateMachineEGID event.

– activateETID for entering

– deactivateETID for leaving

● Firing of a transition generates a stateTransitionEGID 
event.

● SignalTrans looks for a stateSignalEGID event

● You can use the Tekkotsu Event Logger to monitor 
these events:

      Root Control > Status Reports > Event Logger
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Storyboard Tool:
State Machine
Layout
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Storyboard Tool: Storyboard Display
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Storyboard Tool: Snapshots
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