
06/17/10 15-494 Cognitive Robotics 1

State Machines

15-494 Cognitive Robotics
David S. Touretzky &
Ethan Tira-Thompson

Carnegie Mellon
June 2010

06/17/10 15-494 Cognitive Robotics 2

Robot Control Architectures

● State machines are the simplest and most widely used
robot control architecture.

● Easy to implement; easy to understand.

● Not very powerful:

– Action sequences must be laid out in advance, as a series of
state nodes.

– No dynamic planning.

– Failure handling must be programmed explicitly.

● But a good place to start.

06/17/10 15-494 Cognitive Robotics 3

Basic Idea

● Robot moves from state to state.

● Each state has an associated action: speak, move, etc.

● Transitions triggered by sensory events or timers.

06/17/10 15-494 Cognitive Robotics 4

Tekkotsu State Nodes

● In Tekkotsu, state machine nodes are behaviors.

● StateNode is a child of BehaviorBase.

● To enter a state, call its start() method, which will call
its DoStart() method if one has been supplied.

● To leave a state, call its stop() method.

● StateNodes can listen for and process events just like
any other behavior.

06/17/10 15-494 Cognitive Robotics 5

Types of State Nodes

BehaviorBase

SoundNode

● State nodes encapsulate complex actions, such as
creating and launching a motion command.

LogNode

VisualRoutinesStateNode

StateNode

MCNode<T>

MotionSequenceNode

WalkToTargetNode

LedNode

WalkEngineNode

TailWagNode

PostureNode

All of these
contain Motion
Commands

HeadPointerNode

ArmNode

SpeechNode

06/17/10 15-494 Cognitive Robotics 6

Transitions
● Transitions in Tekkotsu are also behaviors.

– Transition and StateNode are both subclasses of BehaviorBase.

● A transition's start() is called whenever its source state
node becomes active.

● Transitions listen for sensor, timer, or other events, and
when their conditions are met, they fire.

● When a transition fires, it deactivates its source node(s)
and then activates its destination node(s).

06/17/10 15-494 Cognitive Robotics 7

Look Turn

Reach

Wait

Transition firing activates state node Look.

06/17/10 15-494 Cognitive Robotics 8

Look Turn

Reach

Wait

Look's start() calls StateNode::start().

06/17/10 15-494 Cognitive Robotics 9

Look Turn

Reach

Wait

Outgoing transitions become active and
begin listening for events.

06/17/10 15-494 Cognitive Robotics 10

Look Turn

Reach

Wait

Random things happen....

Event EventEvent

06/17/10 15-494 Cognitive Robotics 11

Look Turn

Reach

Wait

And then, something we've been looking for...

Event EventEvent Event!

06/17/10 15-494 Cognitive Robotics 12

Look Turn

Reach

Wait

Transition decides to fire.

Event!

06/17/10 15-494 Cognitive Robotics 13

Look Turn

Reach

Wait

Transition deactivates the source node, Look.

Event!

06/17/10 15-494 Cognitive Robotics 14

Look Turn

Reach

Wait

Transition activates the destination node, Reach.

06/17/10 15-494 Cognitive Robotics 15

Look Turn

Reach

Wait

Transition deactivates.

06/17/10 15-494 Cognitive Robotics 16

Look Turn

Reach

Wait

Reach activates its outgoing transition, which
starts listening for events as Reach performs
whatever action it's supposed to.

06/17/10 15-494 Cognitive Robotics 17

Transition Types

RandomTrans

LostTargetTrans

SmoothCompareTrans<T>

06/17/10 15-494 Cognitive Robotics 18

State Machine Compiler

● Tekkotsu programmers don't normally write C++ code
to build state machines one node or link at a time.

● They use a shorthand notation instead.

● The shorthand is turned into C++ by a state machine
compiler.

● But to understand what
the shorthand is doing,
we need to build our first
state machine by hand.

06/17/10 15-494 Cognitive Robotics 19

Programs As State Machines

Your program is the parent StateNode:

#include “Behaviors/StateMachine.h”

class BarkHowlBlinkBehavior : public StateNode {

public:
 BarkHowlBlinkBehavior() :
 StateNode("BarkHowlBlinkBehavior") {}

06/17/10 15-494 Cognitive Robotics 20

Setup and Teardown
● Programs must include a setup() function to construct

the state machine as a child of the parent state node.

● setup() is called automatically the first time the parent's
start() is called.

● A teardown() function is automatically provided to
destroy the state machine. Called by ~StateNode().

06/17/10 15-494 Cognitive Robotics 21

Registering Nodes and Links

● Each node created by setup() must be registered with
its parent using the addNode() method.

SoundNode *bark_node = new SoundNode("bark","barkmed.wav");
addNode(bark_node);

● Transitions are registered with their source nodes via
the source node's addTransition() method.

bark_node->addTransition(new TimeOutTrans(howl_node,5000));

● The variable startnode must be set to point to
the starting node of the state machine.

06/17/10 15-494 Cognitive Robotics 22

Setup Example
virtual void setup() {

 SoundNode *bark_node = new SoundNode("bark","barkmed.wav");
 SoundNode *howl_node = new SoundNode("howl","howl.wav");
 StateNode *wait_node = new StateNode("wait");
 addNode(bark_node); addNode(howl_node); addNode(wait_node);

 EventTrans *btrans =
 new EventTrans(wait_node,

 EventBase::buttonEGID,
 ChiaraInfo::GreenButOffset,

 EventBase::activateETID);
 btrans->setSound("ping.wav");
 bark_node->addTransition(btrans);

 howl_node->addTransition(new CompletionTrans(wait_node));
 wait_node->addTransition(new TimeOutTrans(bark_node,15000));

 startnode = bark_node;
 }

06/17/10 15-494 Cognitive Robotics 23

Extensions to the Basic Formalism

● Extension 1: multi-states (parallelism).

– Several states can be active at once.

– Provides for parallel processing (but coroutines, not threads).

● Extension 2: hierarchical structure.

– State machines can nest inside other state machines.

● Extension 3: message passing.

– When a state posts an event that triggers a transition, it can
include a message that will be passed to the destination state.

– This makes state transitions resemble procedure calls.

06/17/10 15-494 Cognitive Robotics 24

Multi-State Machines

06/17/10 15-494 Cognitive Robotics 25

Blink Using LedEngine::cycle()
● Blink uses a motion command called LedMC, which is a

child of LedEngine.

● The LedEngine::cycle() method never completes.

● When the howl completes, we want to leave both the
howl state and the blink state.

● We can do this by telling CompletionTrans that only one
of its source nodes needs to signal a completion in
order for the transition to fire.

● When it does fire, it will deactivate both source nodes.

06/17/10 15-494 Cognitive Robotics 26

Setting Up the Blink

LedNode *blink_node = new LedNode(“blink”);
addNode(blink_node);
blink_node->getMC()->cycle(RobotInfo::AllLEDMask,1500,1.0);

TimeOutTrans *htrans = new TimeOutTrans(howl_node,5000);
htrans->addDestination(blink_node);
bark_node->addTransition(htrans);

CompletionTrans *ctrans = new CompletionTrans(wait_node,1);
howl_node->addTransition(ctrans);
blink_node->addTransition(ctrans);

htrans ctrans

06/17/10 15-494 Cognitive Robotics 27

Cleaning Up the Blink:
Turn The LEDs Off

LedNode *noblink = new LedNode(“noblink”);

noblink->getMC()->set(RobotInfo::AllLEDMask, 0.0);
noblink->setPriority(MotionManager::kBackgroundPriority);

StateNode *launcher = new Statenode(“launcher”);

NullTrans *ntrans = new NullTrans(bark_node);
ntrans->addDestination(noblink);

launcher->addTransition(ntrans);

startnode = launcher;

06/17/10 15-494 Cognitive Robotics 28

Shorthand Notation

bark: SoundNode($,”barkmed.wav”)

howl: SoundNode($,”howl.wav”)

wait: StateNode

bark =T(5000)=> howl

bark =B(RobotInfo::GreenButOffset)=> wait

06/17/10 15-494 Cognitive Robotics 29

Shorthand Notation
● Node definition:

nodename: NodeClass(constructor_args)[initializers]

● Transition, short form examples:

 source =C=> target
 source =T(n)=> target
 source =E(g,s,t)=> target

● Transition, long form:

source >== transname:
 TransitionClass(constructor_args)[initializers] ==> targetnode

● Multiple sources/targets:

source >==Transition==> {targ1name, targ2name, ...}

06/17/10 15-494 Cognitive Robotics 30

$ and $$
● Use $ to refer to the name of the current node, e.g., these

are equivalent:

foo: Statenode ---

foo: StateNode($) bar: SoundNode($,”howl.wav”)

foo: StateNode(“foo”) bar: SoundNode(“bar”,”howl.wav”)

● In long form, use $$ to refer to the destination node of a
transition, e.g., these are equivalent:

foo >==EventTrans($$,EventBase::buttonEGID)==> bar

foo >==EventTrans(bar,EventBase::buttonEGID)==> bar

Must be present
to allow second

 argument

06/17/10 15-494 Cognitive Robotics 31

More Shorthand
>==NullTrans==> =N=>

>==CompletionTrans==> =C=>

>==CompletionTrans($,$$,n)==> =C(n)=>

>==TimeoutTrans($,$$,t)==> =T(t)=>

>==EventTrans($,$$,g,s,t)==> =E(g,s,t)=>

>== EventTrans($,$$,
 EventBase::buttonEGID,s) ==> =B(s)=>

>== TextMsgTrans($,$$,str)==> =TM(str)=>

>==RandomTrans==> =RND=>

>==SignalTrans<T>($,$$) ==> =S<T>=>

>==SignalTrans<T>($,$$,v)==> =S<T>(v)=>

>==SignalTrans<bool>($,$$,false)==>=F=>

06/17/10 15-494 Cognitive Robotics 32

 virtual void setup() {
#statemachine
 startnode:StateNode =N=> {noblink, bark}

 noblink: LedNode
[setPriority(MotionManager::kBackgroundPriority);
 getMC()->set(RobotInfo::FaceLEDMask,0.0)]

 bark: SoundNode($,"barkmed.wav")
 =B(GreenButOffset)[setSound("ping.wav")]=> wait

 wait: StateNode =T(15000)=> bark

 bark =T(5000)=> {howl, blink}

 howl: SoundNode($,"howl.wav")

 blink: LedNode [getMC()->cycle(RobotInfo::AllLEDMask, 1500, 1.0)]

 {howl, blink} =C(1)=> wait
#endstatemachine

} // end of setup()

file: BarkHowlBlinkBehavior.cc.fsm

06/17/10 15-494 Cognitive Robotics 33

#nodeclass MyMachine

 #shortnodeclass Greet : StateNode

 virtual void doStart() {

 cout << “Hello there!” << endl;

 }

 #shortnodeclass Sendoff : StateNode

 virtual void doStart() {

 cout << “So long!” << endl;

 }

 virtual void setup() {

 #statemachine

 startnode: Greet =T(5000)=> Sendoff

 #endstatemachine

 }

#endnodeclass

06/17/10 15-494 Cognitive Robotics 34

Compiling Your FSM

● The Makefile looks for files with names of form *.fsm
and automatically runs them through the state machine
compiler, called “stateparser”.

● BarkHowlBlinkBehavior.cc.fsm generates a pure C++
file called BarkHowlBlinkBehavior-fsm.cc.

● The .cc file is stored in:
 ~/project/build/PLATFORM_LOCAL/TARGET_xxx/

● You can run the stateparser directly:

 Tekkotsu/tools/stateparser BarkHowlBlinkBehavior.cc.fsm –

06/17/10 15-494 Cognitive Robotics 35

State Machine Events
● Entering or leaving a state generates a

stateMachineEGID event.

– activateETID for entering

– deactivateETID for leaving

● Firing of a transition generates a stateTransitionEGID
event.

● SignalTrans looks for a stateSignalEGID event

● You can use the Tekkotsu Event Logger to monitor
these events:

 Root Control > Status Reports > Event Logger

06/17/10 15-494 Cognitive Robotics 36

Storyboard Tool:
State Machine
Layout

06/17/10 15-494 Cognitive Robotics 37

Storyboard Tool: Storyboard Display

06/17/10 15-494 Cognitive Robotics 38

Storyboard Tool: Snapshots

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

