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What Makes
Object Recognition Hard?

« Translation invariance

« Scale invariance

« Rotation invariance (2D)

« Rotation invariance (3D)

* Occlusion

* Figure/ground segmentation (where is the object?)

« Articulated objects (limbs, scissors)
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Template Matching

« Simplest possible object recognition scheme.

« Compare template pixels against image pixels at each
Image position.

Source image Template Match Score
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Template Matcher

Sketch<uint> templateMatch(const Sketch<uchar> &sketch,
Sketch<uchar> &kernel, int istart, int jstart, int width, int height)
{

Sketch<uint> result("templateMatch("+sketch->getName()+")",6 sketch);
result->setColorMap(jetMapScaled);
int const npix = width * height;
int const di - (int) (width/2);
int const dj - (int) (height/2);
for (int si=0; si<sketch.width; si++)
for (int sj=0; sj<sketch.height; sj++) {
int sum = 0;
for (int ki=0; ki<width; ki++)
for (int kj=0; kj<height; kj++) {
int kK pix = kernel(istart+ki,jstart+kj);
if ( si+di+ki >= 0 && si+di+ki < sketch.width &&
sj+dj+kj >= 0 && sj+dj+kj < sketch.height ) {
int s pix = sketch(si+di+ki,sj+dj+kj);
sum += (s pix - k pix) * (s pix - k pix);
}
else
sum += K pix * k pix;

}
result(si,sj) = uint (65535 - sqrt(sum/float(npix)));
}
result -= result->min();
return result;

}
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Limited Invariance Properties

Original Occluded Rotated

Sideways Diagonal
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Color Histograms (Swain)

i Color Inspector 3D {v2.0) /images/baboon400.jpg
File Options Help

* Invariant to T L
translati on, e
2D rotation,
and scale.
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Object Classes

Test Images

Figure from M. A. Stricker,
http://www.cs.uchicago.edu/files/tr_authentic/TR-92-22.ps
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Blocks World Vision

 One of the earliest computer vision domains.

- Roberts (1965) used line drawings of block scenes: the first
“computer vision” program.

« Simplified problem because shapes were reqgular.

— Occlusions could be handled.

« Still a hard problem. No standard blocks world vision
package exists.
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AIBO Blocks World

e Matt Carson's senior thesis (CMU CSD, 2006).

 Goal: recover positions, orientations, and sizes of
blocks.
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Find the
Block Faces
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Find the Block From the Faces
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AprilTags

« Robust fiducial markers created by Edwin Olson at the
University of Michigan.

* Inspired by ARTag (Fiala) and ARToolkit.

Wearable objects with
ARTag markers

Projection
Screen
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How AprilTags Work (1/4)

1. Convert to greyscale and apply a Gaussian blur.

l

—
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How AprilTags Work (2/4)

3. Generate a list of two-pixel “Edges”.

4. Group aligned edges into Clusters;
color indicates gradient direction.

5. Fit lines to the clusters, forming
Segments. (The notch points toward
the bright side of each line.)
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How AprilTags Work (3/4)

6. For each Segment, find others that begin where this
segment ends.

7. Find loops of length 4, called Quads.
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How AprilTags Work (4/4)

8. Decode the Quads by looking at the pixels inside the
border to see if they represent a valid tag code.

9. Search for overlapping tag detections and keep only the
best ones (lowest Hamming distance or largest
perimeter.)
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SIFT (Lowe, 2004)

e Scale-Invariant Feature Transform

« Can recognize objects independent of scale, translation,
rotation, or occlusion.

« Can segment cluttered scenes.

« Slow training, but fast recognition.

- A .".__
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How Does SIFT Work?

 Generate large numbers of features that densely cover
each training object at various scales and orientations.

« A500 x 500 pixel image may
generate 2000 stable features.

« Store these features in a library. §

* For recognition, find clusters of
features present in the image
that agree on the object position,
orientation, and scale.
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SIFT Feature Generation

1) Scale-space extrema detection

> Use differences of Gaussians to find potential interest points.
2) Keypoint localization

> Fit detailed model to determine location and scale.
3) Orientation assignment

> Assign orientations based on local image gradients.
4) Keypoint descriptor

> Extract description of local gradients at selected scale.
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Gaussian Smoothing




Difference of Gaussians:
Edge Detection
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Scale Space Extrema

-

Figure 2: Maxima and minima of the difference-of-Gaussian images are detected by comparing a

pixel {marked with X to its
with circles).
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26 neighbors in 3x3 regions at the current and adjacent scales (marked
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Filtering the Features

Figure 5: This 1 gure shows the stages of kKeypoint selection. {a) The 2353x189 pixel original image.
(b) The initial 832 keypoints locations at maxima and minima of the difference-of-Gaussian function.
Kevpoints are displaved as vectors indicating scale, orientation, and location. ¢y After applving
a threshold on minimum contrast, 729 kevpoints remain. (d) The final 336 kevpoints that remain
following an additional threshold on ratio of principal curvatures.
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Keypoint Descriptors
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Image gradients Keypoint descriptor

Figure 7: A kevpoint descriptor is created by first computing the gradient magnitude and orientation
at each image sample point in a region around the keyvpoint location, as shown on the left. These are
welghted by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated
into orientation histograms summarizing the contents over 4x4 subregions, as shown on the right. with
the length of each arrow corresponding to the sum of the gradient magnitudes near that direction within
the region. This i gure shows a 2x2 descriptor array computed rom an Bx8 set of samples, whereas
the experiments in this paper use 4x4 descriptors computed from a 16x 16 sample arrav.
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i o e
Figure 13: This example shows location recognition within a complex scene. The training images for
locations are shown at the upper left and the 640x3 15 pixel test image taken from a different viewpoint
1s on the upper right. The recognized regions are shown on the lower image. with kevpoints shown
as squares and an outer parallelogram showing the boundaries of the traming images under the affine

transform used for recognition.
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Real-Time SIFT Example

Fred Birchmore used SIFT to recognize soda cans.

http://eyecanseecan.blogspot.com

See demo
videos on
his blog.
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SIFT In Tekkotsu

« Xinghao Pan implemented a SIFT tool for Tekkotsu:

- Allow users to construct libraries of objects
- Each object has a collection of representative images
- User can control which SIFT features to use for matching

- Java GUI provides for easy management of the library
« How to integrate SIFT with the dual coding system?

- Object scale can be used to estimate distance
- Match in camera space must be converted to local space
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Tekkotsu SIFT Video

http://www.youtube.com/watch?v=2QVSTtjenCs
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SIFT Tool

" Input Image: cherrylimeadeol.|—|[o][x] ~ Input Image: cherrylimeade0l. — [0 x|

[T Input Image: cherrylimeade02.[— o] x| 'T1 Matched: object "Object #1", [ |o](x/’
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bject Recognition in the Brain

Temporal o

Pulvinar nugleus

Lateral geniculate
fucleus

Superior colliculus

Oiptic radiation

Frimary visual car
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Object Recognition in the Brain

« Mishkin & Ungerleider: dual visual pathways.

- The dorsal, “where” pathway lies in parietal cortex.

- The ventral, “what” pathway lies in temporal cortex.

- Lesions to these areas yield very specific effects.
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The Macaque “Vision Pipeline”
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DJ Felleman and DC Van Essen (1991),
Cerebral Cortex 1:1-47.

RGC = retinal ganglion cells ——»
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Serre & Poggio (PAMI 2007):
Model Based on Temporal Cortex
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To Learn More About
Computer and Biological Vision

« Take Tal Sing Lee's Computer Vision class, 15-385.

« Take Tai Sing Lee's Computational Neuroscience class,
15-490.

 There are many books on this subject. One of the
classics is “Vision” by David Marr.
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