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Robot Control Architectures

● State machines are the simplest and most widely used 
robot control architecture.

● Easy to implement; easy to understand.

● Not very powerful:

– Action sequences must be laid out in advance, as a series of 
state nodes.

– No dynamic planning.

– Failure handling must be programmed explicitly.

● But a good place to start.
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Basic Idea

● Robot moves from state to state.

● Each state has an associated action: speak, move, etc.

● Transitions triggered by sensory events or timers.
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Types of State Nodes

BehaviorBase

SoundNode

● State nodes encapsulate complex actions, such as 
creating and launching a motion command.

LogNode

VisualRoutinesStateNode

StateNode

MCNode<T>

MotionSequenceNode

WalkToTargetNode

LedNode

WalkEngineNode

TailWagNode

PostureNode

All of these 
contain Motion 
Commands

HeadPointerNode

ArmNode

SpeechNode
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Types of
Transitions
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Both State Nodes and 
Transitions Are Behaviors

● StateNode and Transition are both subclasses of  
BehaviorBase.

● Tekkotsu behaviors can contain arbitrary C++ code 
and can generate and/or receive events.

● Transitions:

– A transition's start() method is called whenever its source 
state node becomes active.

– Transitions listen for sensor, timer, or other events, and 
when their conditions are met, they fire.

– When a transition fires, it deactivates its source node(s) 
and then activates its target node(s).
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Look Turn

Reach

Wait

Transition firing activates state node Look.
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Look Turn

Reach

Wait

Look's start() calls StateNode::start().
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Look Turn

Reach

Wait

Outgoing transitions become active and 
begin listening for events.
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Look Turn

Reach

Wait

Random things happen....

Event EventEvent
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Look Turn

Reach

Wait

And then, something we've been looking for...

Event EventEvent Event!
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Look Turn

Reach

Wait

Transition decides to fire.

Event!
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Look Turn

Reach

Wait

Transition deactivates the source node, Look.

Event!
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Look Turn

Reach

Wait

Transition activates the target node, Reach.
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Look Turn

Reach

Wait

Transition deactivates.



01/19/15 15-494 Cognitive Robotics 16

Look Turn

Reach

Wait

Reach activates its outgoing transition, which 
starts listening for events as Reach performs 
whatever action it's supposed to.
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State Machine Compiler

● Tekkotsu programmers don't normally write C++ code 
to build state machines one node or link at a time.

● Why not?

– It's tedious.

– It's error-prone.

● Instead they use a shorthand notation.

● The shorthand is turned into C++ by a state machine 
compiler.
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Shorthand Notation

bark: SoundNode(”barkmed.wav”)

howl: SoundNode(”howl.wav”)

wait: StateNode

bark =T(5000)=> howl

bark =B(RobotInfo::PlayButOffset)[setSound(“ping.wav”)]=> wait

howl =C=> wait

wait =T(15000)=> bark
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Real Code: AnnoyingDog.cc.fsm
#include “Behaviors/StateMachine.h”

$nodeclass AnnoyingDog {

  $setupmachine{

    bark: SoundNode(”barkmed.wav”)
howl: SoundNode(”howl.wav”)
wait: StateNode

    bark =T(5000)=> howl
bark =B(RobotInfo::PlayButOffset)[setSound(“ping.wav”)]=> wait

howl =C=> wait

wait =T(15000)=> bark

  }

}

REGISTER_BEHAVIOR(AnnoyingDog);
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Advanced Shorthand: Chaining
● “Kiddie code”:

    say_hi: SpeechNode(“Hi”)
    say_bye: SpeechNode(“Bye”)
    say_why: SpeechNode(“Why”)

    say_hi =T(3000)=> say_bye

    say_bye =T(3000)=> say_why

● Chained code:

    SpeechNode(“hi”) =T(3000)=> 
      SpeechNode(“bye”)  =T(3000)=>
        SpeechNode(“why”)
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Good Coding Style

● If a node has multiple outgoing transitions, don't use 
chaining.

– Define the node first, on a separate line, with a label.

– Then write each of the transitions below it.

● It's good to chain if a node has only one transition.

● Example:

      look: LookForToys
      look  =S=>  SpeechNode(“a toy!”)  =C=>  trygrab
      look  =F=>  askforhelp
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Extensions to the Basic Formalism

● Extension 1: multi-states (parallelism).

– Several states can be active at once. 

– Provides for parallel processing (but coroutines, not threads).

● Extension 2: hierarchical structure.

– State machines can nest inside other state machines.

● Extension 3: message passing.

– When a state posts an event that triggers a transition, it can 
include a message that will be passed to the destination state.

– This makes state transitions resemble procedure calls.
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Multi-State Machines
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Blink Using LedEngine::cycle()
● Blink uses a motion command called LedMC, which is a 

child of LedEngine.

● The LedEngine::cycle() method never completes.

● When the howl completes, we want to leave both the 
howl state and the blink state.

● We can do this by telling CompletionTrans that only one 
of its source nodes needs to signal a completion in 
order for the transition to fire.

● When it does fire, it will deactivate both source nodes.
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  $setupmachine{
    // Annoying dog with blinking LEDs

    launch: StateNode =N=> {noblink, bark}

    noblink: 
                

    bark: SoundNode("barkmed.wav")
    bark =B(PlayButOffset)[setSound("ping.wav")]=> wait
    bark =T(5000)=> {howl, blink}

    howl: SoundNode("howl.wav")

    blink: LedNode[getMC()->cycle(RobotInfo::AllLEDMask, 1500, 1.0)]

    {howl, blink} =C(1)=> wait
 
    wait: StateNode =T(15000)=> bark

   }

file:   BarkHowlBlinkBehavior.cc.fsm

deferred

What if we instead wrote this?
  {howl, blink} =C=> wait
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NoBlink in the Background

● When the robot isn't howling, we want all its LEDs to 
stay dark.

● But we can terminate the Blink node at any time; the 
LedNode might leave the LEDs in a partially-on state.

● Solution: have a second LEDNode called NoBlink 
programmed to keep the LEDs dark, but assign it a low 
priority.

● The Blink node will override NoBlink when it's active.

● When Blink is not active, NoBlink will keep the LEDs 
dark.
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  $setupmachine{
    // Annoying dog with blinking LEDs

    launch: StateNode =N=> {noblink, bark}

    noblink: LedNode [setPriority(MotionManager::kBackgroundPriority);
                      getMC()->set(RobotInfo::AllLEDMask,0.0)]       

    bark: SoundNode("barkmed.wav")
    bark =B(PlayButOffset)[setSound("ping.wav")]=> wait
    bark =T(5000)=> {howl, blink}

    howl: SoundNode("howl.wav")

    blink: LedNode[getMC()->cycle(RobotInfo::AllLEDMask, 1500, 1.0)]

    {howl, blink} =C(1)=> wait
 
    wait: StateNode =T(15000)=> bark

   }

file:   BarkHowlBlinkBehavior.cc.fsm



01/19/15 15-494 Cognitive Robotics 28

Summary of Shorthand Notation
● Instantiating a node:

  label: NodeClass(constructor_args)[initializers]

  Labels must begin with a lowercase letter.
  Class names must begin with an uppercase letter.

● Transition, short form examples:
  source =C=> target
  source =T(n)=> target
  source =E(g,s,t)=> target

● Transition, long form:
  source >== transname:
     TransitionClass(constructor_args)[initializers] ==> targetnode

● Multiple sources/targets:

{src1, src2, ...}   =Transition=>   {targ1, targ2, ...}
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Short and Long Forms
>==NullTrans==> =N=>

>==CompletionTrans==> =C=>

>==CompletionTrans(n)==> =C(n)=>

>==TimeoutTrans(t)==> =T(t)=>

>==EventTrans(g,s,t)==> =E(g,s,t)=>

>== EventTrans(EventBase::buttonEGID,
   s) ==> =B(s)=>

>== TextMsgTrans(str)==> =TM(str)=>

>==RandomTrans==> =RND=>

>==SignalTrans<T>==> =S<T>=>

>==SignalTrans<T>(v)==> =S<T>(v)=>

success or failure transitions =S=> or =F=>
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Defining the Start Node

● If there is a node labeled startnode, it will be taken as 
the start node of the state machine.

● If there is no startnode, then the first node instance 
defined in the file is taken as the start node.

● Example:

     apple =C=> pear =C=> apple
     pear: SpeechNode(“pear”)
     apple: SpeechNode(“apple”)

The start node will be pear, since it is the first node 
instance defined.
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#include “Behaviors/StateMachine.h”

$nodeclass MyMachine {

  $nodeclass Greet : StateNode : doStart {
    cout << “Hello there!” << endl;
  }

  $nodeclass Sendoff : SpeechNode : doStart {
    textstream << “So long!” << endl;
  }

  $setupmachine{
      startnode: Greet =T(5000)=> Sendoff
  }

}

REGISTER_BEHAVIOR(MyMachine);

Defining New Node Classes
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Compiling Your FSM

● The Makefile looks for files with names of form *.fsm 
and automatically runs them through the state machine 
compiler, called “stateparser”.

● BarkHowlBlinkBehavior.cc.fsm generates a pure C++ 
file called BarkHowlBlinkBehavior-fsm.cc.

● The .cc file is stored in:
    ~/project/build/PLATFORM_LOCAL/TARGET_xxx/

● You can run the stateparser directly:

   stateparser  BarkHowlBlinkBehavior.cc.fsm  –
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Storyboard Tool:
State Machine
Layout
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Storyboard Tool: Storyboard Display



01/19/15 15-494 Cognitive Robotics 35

Storyboard Tool: Snapshots
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