
01/19/15 15-494 Cognitive Robotics 1

State Machines

15-494 Cognitive Robotics
David S. Touretzky &
Ethan Tira-Thompson

Carnegie Mellon
January 2015

01/19/15 15-494 Cognitive Robotics 2

Robot Control Architectures

● State machines are the simplest and most widely used
robot control architecture.

● Easy to implement; easy to understand.

● Not very powerful:

– Action sequences must be laid out in advance, as a series of
state nodes.

– No dynamic planning.

– Failure handling must be programmed explicitly.

● But a good place to start.

01/19/15 15-494 Cognitive Robotics 3

Basic Idea

● Robot moves from state to state.

● Each state has an associated action: speak, move, etc.

● Transitions triggered by sensory events or timers.

01/19/15 15-494 Cognitive Robotics 4

Types of State Nodes

BehaviorBase

SoundNode

● State nodes encapsulate complex actions, such as
creating and launching a motion command.

LogNode

VisualRoutinesStateNode

StateNode

MCNode<T>

MotionSequenceNode

WalkToTargetNode

LedNode

WalkEngineNode

TailWagNode

PostureNode

All of these
contain Motion
Commands

HeadPointerNode

ArmNode

SpeechNode

01/19/15 15-494 Cognitive Robotics 5

Types of
Transitions

01/19/15 15-494 Cognitive Robotics 6

Both State Nodes and
Transitions Are Behaviors

● StateNode and Transition are both subclasses of
BehaviorBase.

● Tekkotsu behaviors can contain arbitrary C++ code
and can generate and/or receive events.

● Transitions:

– A transition's start() method is called whenever its source
state node becomes active.

– Transitions listen for sensor, timer, or other events, and
when their conditions are met, they fire.

– When a transition fires, it deactivates its source node(s)
and then activates its target node(s).

01/19/15 15-494 Cognitive Robotics 7

Look Turn

Reach

Wait

Transition firing activates state node Look.

01/19/15 15-494 Cognitive Robotics 8

Look Turn

Reach

Wait

Look's start() calls StateNode::start().

01/19/15 15-494 Cognitive Robotics 9

Look Turn

Reach

Wait

Outgoing transitions become active and
begin listening for events.

01/19/15 15-494 Cognitive Robotics 10

Look Turn

Reach

Wait

Random things happen....

Event EventEvent

01/19/15 15-494 Cognitive Robotics 11

Look Turn

Reach

Wait

And then, something we've been looking for...

Event EventEvent Event!

01/19/15 15-494 Cognitive Robotics 12

Look Turn

Reach

Wait

Transition decides to fire.

Event!

01/19/15 15-494 Cognitive Robotics 13

Look Turn

Reach

Wait

Transition deactivates the source node, Look.

Event!

01/19/15 15-494 Cognitive Robotics 14

Look Turn

Reach

Wait

Transition activates the target node, Reach.

01/19/15 15-494 Cognitive Robotics 15

Look Turn

Reach

Wait

Transition deactivates.

01/19/15 15-494 Cognitive Robotics 16

Look Turn

Reach

Wait

Reach activates its outgoing transition, which
starts listening for events as Reach performs
whatever action it's supposed to.

01/19/15 15-494 Cognitive Robotics 17

State Machine Compiler

● Tekkotsu programmers don't normally write C++ code
to build state machines one node or link at a time.

● Why not?

– It's tedious.

– It's error-prone.

● Instead they use a shorthand notation.

● The shorthand is turned into C++ by a state machine
compiler.

01/19/15 15-494 Cognitive Robotics 18

Shorthand Notation

bark: SoundNode(”barkmed.wav”)

howl: SoundNode(”howl.wav”)

wait: StateNode

bark =T(5000)=> howl

bark =B(RobotInfo::PlayButOffset)[setSound(“ping.wav”)]=> wait

howl =C=> wait

wait =T(15000)=> bark

01/19/15 15-494 Cognitive Robotics 19

Real Code: AnnoyingDog.cc.fsm
#include “Behaviors/StateMachine.h”

$nodeclass AnnoyingDog {

 $setupmachine{

 bark: SoundNode(”barkmed.wav”)
howl: SoundNode(”howl.wav”)
wait: StateNode

 bark =T(5000)=> howl
bark =B(RobotInfo::PlayButOffset)[setSound(“ping.wav”)]=> wait

howl =C=> wait

wait =T(15000)=> bark

 }

}

REGISTER_BEHAVIOR(AnnoyingDog);

01/19/15 15-494 Cognitive Robotics 20

Advanced Shorthand: Chaining
● “Kiddie code”:

 say_hi: SpeechNode(“Hi”)
 say_bye: SpeechNode(“Bye”)
 say_why: SpeechNode(“Why”)

 say_hi =T(3000)=> say_bye

 say_bye =T(3000)=> say_why

● Chained code:

 SpeechNode(“hi”) =T(3000)=>
 SpeechNode(“bye”) =T(3000)=>
 SpeechNode(“why”)

01/19/15 15-494 Cognitive Robotics 21

Good Coding Style

● If a node has multiple outgoing transitions, don't use
chaining.

– Define the node first, on a separate line, with a label.

– Then write each of the transitions below it.

● It's good to chain if a node has only one transition.

● Example:

 look: LookForToys
 look =S=> SpeechNode(“a toy!”) =C=> trygrab
 look =F=> askforhelp

01/19/15 15-494 Cognitive Robotics 22

Extensions to the Basic Formalism

● Extension 1: multi-states (parallelism).

– Several states can be active at once.

– Provides for parallel processing (but coroutines, not threads).

● Extension 2: hierarchical structure.

– State machines can nest inside other state machines.

● Extension 3: message passing.

– When a state posts an event that triggers a transition, it can
include a message that will be passed to the destination state.

– This makes state transitions resemble procedure calls.

01/19/15 15-494 Cognitive Robotics 23

Multi-State Machines

01/19/15 15-494 Cognitive Robotics 24

Blink Using LedEngine::cycle()
● Blink uses a motion command called LedMC, which is a

child of LedEngine.

● The LedEngine::cycle() method never completes.

● When the howl completes, we want to leave both the
howl state and the blink state.

● We can do this by telling CompletionTrans that only one
of its source nodes needs to signal a completion in
order for the transition to fire.

● When it does fire, it will deactivate both source nodes.

01/19/15 15-494 Cognitive Robotics 25

 $setupmachine{
 // Annoying dog with blinking LEDs

 launch: StateNode =N=> {noblink, bark}

 noblink:

 bark: SoundNode("barkmed.wav")
 bark =B(PlayButOffset)[setSound("ping.wav")]=> wait
 bark =T(5000)=> {howl, blink}

 howl: SoundNode("howl.wav")

 blink: LedNode[getMC()->cycle(RobotInfo::AllLEDMask, 1500, 1.0)]

 {howl, blink} =C(1)=> wait

 wait: StateNode =T(15000)=> bark

 }

file: BarkHowlBlinkBehavior.cc.fsm

deferred

What if we instead wrote this?
 {howl, blink} =C=> wait

01/19/15 15-494 Cognitive Robotics 26

NoBlink in the Background

● When the robot isn't howling, we want all its LEDs to
stay dark.

● But we can terminate the Blink node at any time; the
LedNode might leave the LEDs in a partially-on state.

● Solution: have a second LEDNode called NoBlink
programmed to keep the LEDs dark, but assign it a low
priority.

● The Blink node will override NoBlink when it's active.

● When Blink is not active, NoBlink will keep the LEDs
dark.

01/19/15 15-494 Cognitive Robotics 27

 $setupmachine{
 // Annoying dog with blinking LEDs

 launch: StateNode =N=> {noblink, bark}

 noblink: LedNode [setPriority(MotionManager::kBackgroundPriority);
 getMC()->set(RobotInfo::AllLEDMask,0.0)]

 bark: SoundNode("barkmed.wav")
 bark =B(PlayButOffset)[setSound("ping.wav")]=> wait
 bark =T(5000)=> {howl, blink}

 howl: SoundNode("howl.wav")

 blink: LedNode[getMC()->cycle(RobotInfo::AllLEDMask, 1500, 1.0)]

 {howl, blink} =C(1)=> wait

 wait: StateNode =T(15000)=> bark

 }

file: BarkHowlBlinkBehavior.cc.fsm

01/19/15 15-494 Cognitive Robotics 28

Summary of Shorthand Notation
● Instantiating a node:

 label: NodeClass(constructor_args)[initializers]

 Labels must begin with a lowercase letter.
 Class names must begin with an uppercase letter.

● Transition, short form examples:
 source =C=> target
 source =T(n)=> target
 source =E(g,s,t)=> target

● Transition, long form:
 source >== transname:
 TransitionClass(constructor_args)[initializers] ==> targetnode

● Multiple sources/targets:

{src1, src2, ...} =Transition=> {targ1, targ2, ...}

01/19/15 15-494 Cognitive Robotics 29

Short and Long Forms
>==NullTrans==> =N=>

>==CompletionTrans==> =C=>

>==CompletionTrans(n)==> =C(n)=>

>==TimeoutTrans(t)==> =T(t)=>

>==EventTrans(g,s,t)==> =E(g,s,t)=>

>== EventTrans(EventBase::buttonEGID,
 s) ==> =B(s)=>

>== TextMsgTrans(str)==> =TM(str)=>

>==RandomTrans==> =RND=>

>==SignalTrans<T>==> =S<T>=>

>==SignalTrans<T>(v)==> =S<T>(v)=>

success or failure transitions =S=> or =F=>

01/19/15 15-494 Cognitive Robotics 30

Defining the Start Node

● If there is a node labeled startnode, it will be taken as
the start node of the state machine.

● If there is no startnode, then the first node instance
defined in the file is taken as the start node.

● Example:

 apple =C=> pear =C=> apple
 pear: SpeechNode(“pear”)
 apple: SpeechNode(“apple”)

The start node will be pear, since it is the first node
instance defined.

01/19/15 15-494 Cognitive Robotics 31

#include “Behaviors/StateMachine.h”

$nodeclass MyMachine {

 $nodeclass Greet : StateNode : doStart {
 cout << “Hello there!” << endl;
 }

 $nodeclass Sendoff : SpeechNode : doStart {
 textstream << “So long!” << endl;
 }

 $setupmachine{
 startnode: Greet =T(5000)=> Sendoff
 }

}

REGISTER_BEHAVIOR(MyMachine);

Defining New Node Classes

01/19/15 15-494 Cognitive Robotics 32

Compiling Your FSM

● The Makefile looks for files with names of form *.fsm
and automatically runs them through the state machine
compiler, called “stateparser”.

● BarkHowlBlinkBehavior.cc.fsm generates a pure C++
file called BarkHowlBlinkBehavior-fsm.cc.

● The .cc file is stored in:
 ~/project/build/PLATFORM_LOCAL/TARGET_xxx/

● You can run the stateparser directly:

 stateparser BarkHowlBlinkBehavior.cc.fsm –

01/19/15 15-494 Cognitive Robotics 33

Storyboard Tool:
State Machine
Layout

01/19/15 15-494 Cognitive Robotics 34

Storyboard Tool: Storyboard Display

01/19/15 15-494 Cognitive Robotics 35

Storyboard Tool: Snapshots

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

