### Kodu in Tekkotsu

15-494 Cognitive Robotics David S. Touretzky

Carnegie Mellon Spring 2015

## Overview

- Implements a subset of Microsoft's Kodu Game Lab.
- No GUI. Kodu source code is read from a text file.
- Features:
  - Perception: "see" and "bump", "close" and "far"
  - Objects: apple (red), tree (green), rock (blue)
  - Navigation: "move", "turn", NSEW and various directions
  - Manipulation: "grab", "got", and "drop"
  - Speech and sound effects output ("say" and "play")
  - Timers, Scores, Randomness
  - Rule dependency (indentation)
  - Multiple pages (mechanism for state machines)

# Sample Program

#### PAGE 1

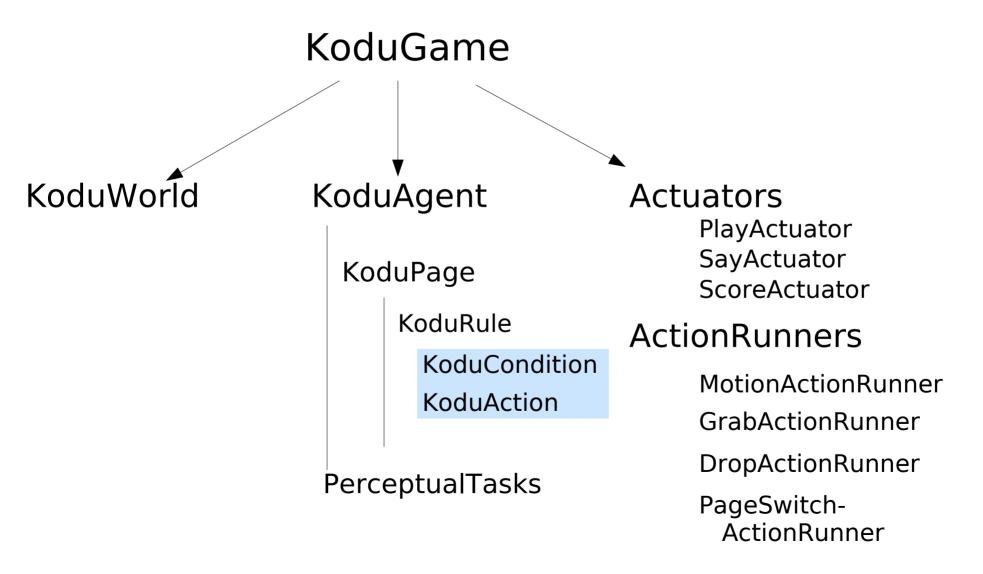
WHEN see red apple DO move toward WHEN bump red apple DO grab it

: WHEN DO say "Yum"

: WHEN DO switch\_to\_page 2

#### PAGE 2

WHEN see green tree DO move towards WHEN bump green tree DO drop


# **Parsing**

- All parsing functions are in the Parsing/ subdirectory.
- A page has a number and an ordered list of rules.
- Rule = WHEN condition-phrase DO action-phrase
- A phrase has a head token (verb) and optional modifier tokens (nouns, adjectives, adverbs).
- Token types: keywords, numbers, and strings
- Two phrase types: condition phrase, action phrase
- Every head token has a parsing function to verify that the modifiers supplied are valid for that head.

#### Rule Execution

- All the rules on the current page run in parallel.
- First, all conditions are evaluated.
  - Objects are bound if predicates satisfied, e.g.,
    "red apple" binds to the nearest red apple.
- Next, the actions of rules with true predicates are queued for execution.
  - In case of conflict, the lower numbered rule takes priority.
  - "Switch to page" short circuits any following actions.
- Action runners are separate processes that run independent of the rule interpreter.

## **Execution Structure**



### **Actuators**

#### PlayActuator

- Queues sound files to play
- Can play multiple sounds at once, but an individual rule can only queue one sound at a time.

#### SayActuator

- The kodu can only say one thing at a time.
- Maintains a queue of things to be said.

#### ScoreActuator

- Any number of score actions can execute simultaneously.
- Execution happens in rule order: this is important for noncommutative operations such as "set score".

## ActionRunners

- Physical actions are complex and extended in time, occupying many rule interpreter frames.
- ActionRunners run asynchronously, so the kodu can move, speak, and play sound effects at the same time.
- Some actions require suspension of the rule interpreter until the action completes.
  - Can't perform a "move" during a "grab" or "drop".
  - Can't switch pages during a "grab" or "drop".

### MotionActionRunner

- Plans a path toward an object, and executes it.
- Can also execute simple motions such as "move north" or "turn left".
- May stop periodically to do localization.

### GrabActionRunner

- Uses the Grasper to pick up an object.
- Does its own failure detection and recovery because the Grasper doesn't do this yet.

# DropActionRunner

 Uses the Grasper to drop an object at the current location.

# PageSwitchActionRunner

 Page switching must be suspended until the current grab or drop operation has completed.

# Perceptual Tasks

- In the PerceptualTasks/ subdirectory.
- Gripper monitoring (for dropped objects).
  - Currently visual, but could use force feedback.
- Visual bump detection.
- Visual localization (AprilTags on walls serve as visual landmarks.)
- Navigation error monitoring: when navigating towards an object, if it's not where you think it should be, then you're not where you think you should be.

## Other Code Subdirectories

#### Objects

Represents Kodu objects, such as apples and trees.

#### Generators

 Generates string or numeric values on demand. These will either be constants, or randomly drawn from a set of allowable values if the "random" tile is used.

#### Keepers

- ScoreKeeper maintains a score.
- ObjectKeeper maintains a reference to an object.