
02/14/16 15-494 Cognitive Robotics 1

Architectures for Robot Control

15-494/694 Cognitive Robotics
David S. Touretzky &
Ethan Tira-Thompson

Carnegie Mellon
Spring 2016

02/14/16 15-494 Cognitive Robotics 2

Why Is Robot Control Hard?

Coste-Maniere and Simmons (ICRA 2000):

● High-level, complex goals

– Assemble this water pump

– Cook my breakfast

● Dynamic (changing) environment

● Robot has dynamic constraints of its own
(don't fall over)

● Sensor noise and uncertainty

● Unexpected events (collisions, dropped objects, etc.)

02/14/16 15-494 Cognitive Robotics 3

Approaches To Control

1.Hierarchical: classic sense-plan-act
● “Top-down” approach

● Start with high level goals, decompose into subtasks

● Not very flexible

2.Behavioral
● “Bottom-up” approach

● Start with lots of independent modules executing concurrently,
monitoring sensor values and triggering actions.

● Hard to organize into complex behaviors; gets messy quickly.

3.Hybrid
● Deliberative at high level; reactive at low level

02/14/16 15-494 Cognitive Robotics 4

Levels of Control Problem

Robots pose multiple control problems, at different levels.

● Low-level control:

– Example: where to place a leg as robot takes its next step

– Generally, continuous-valued problems

– Short time scale (under a second); high frequency loop

● Intermediate level control:

– Navigating to a destination, or picking up an object.

– Continuous or discrete valued problems

– Time scale of a few seconds

● High level control:

– What is the plan for moving these boxes out of the room?

– Discrete problems, long time scale (minutes)

02/14/16 15-494 Cognitive Robotics 5

Low-Level Control Issues

● Real-time performance requirement

– Code to issue motor commands or process sensor readings
must run every so many milliseconds.

● Safety: avoid states with disastrous consequences

– Never turn on the rocket engine if the telescope is uncovered.

– Never fail to turn off the rocket engine after at most n seconds.

– Therac-25 accident (see IEEE Computer, July 1993)

– Safety properties sometimes provable using temporal logic.

● Liveness: every request must eventually be satisfied

● Deadlock-free

02/14/16 15-494 Cognitive Robotics 6

“Reactive” Architectures

● Sensors directly determine actions.

● In its most extreme form, stateless control.

● “Let the world be its own model.”

● Example: light-chasing robot:

light detectors

motors,
wheels

light source

(behavior chase-light
 :period (1 ms)
 :actions
 ((set left-motor (right-sensor-value))
 (set right-motor (left-sensor-value))))

02/14/16 15-494 Cognitive Robotics 7

Overriding a Behavior

● If robot loses sight of the light, turn clockwise until the
light comes back into view.

light source

light detectors

motors,
wheels

0?

(behavior chase-light
 :period (1 ms)
 :actions
 ((set left-motor (right-sensor-value))
 (set right-motor (left-sensor-value))))

(behavior find-light
 :overrides (chase-light)
 :test (0? (+ (left-sensor-value)
 (right-sensor-value)))
 :actions
 ((set left-motor 0.5)))

02/14/16 15-494 Cognitive Robotics 8

Light Chasing in a
State Machine Formalism

● States treated as equal alternatives.

● State is discrete, but control signal is continuous.

● “Find Light” has to know which state to return control to
when the light is found.

● Usually not parallel (but can be).

Chase
Light

Find
Light

Lost light

Found light

02/14/16 15-494 Cognitive Robotics 9

Rod Brooks' Subsumption Idea

● In 1986 Rod Brooks proposed the “subsumption”
architecture, a kind of reactive controller.

● Robot control program is a collection of little
autonomous modules (state machines).

● Hierarchy of layers of control.

● Some modules override (subsume)
 inputs or outputs of lower layer
 modules.

02/14/16 15-494 Cognitive Robotics 10

Genghis: Six-Legged Walker

02/14/16 15-494 Cognitive Robotics 11

Hannibal (Breazeal)

Three Distinct Insect Gaits:
(1) slow wave, (2) ripple,
(3) tripod

02/14/16 15-494 Cognitive Robotics 12

Coping With a Noisy World

● URBI (Baillie, 2005) provides a ~ operator to test if a
condition has held true for a certain duration.

● Onleave test is true when condition ceases to hold.

● You can build a
state machine
from these
primitives.

02/14/16 15-494 Cognitive Robotics 13

Guarded Commands vs.
Finite State Machines

whenever (foo_test) foo_action;

at (bar_test) bar_action; onleave baz_action;

foo
guard

foo
action

foo test

NullTrans

bar
guard

bar
action

bar test baz
action

! bar test

NullTrans

02/14/16 15-494 Cognitive Robotics 14

Why Is Complex State Bad?

● Can be expensive to compute (vision)

● Error-prone: what if you make a map, and it's wrong?

● Goes stale quickly: the world constantly changes

● But...

– Non-trivial intelligent behavior can't be achieved without
complex world state.

– You really do need a map of the environment.

– Can't use a subsumption architecture to play chess.

– Or even chase a ball well...

02/14/16 15-494 Cognitive Robotics 15

Chase Ball 1

● Cooperation between two simple processes:

– Point the camera at the ball

– Walk in the direction the camera is pointing

● Each process can execute independently.

● Purely reactive control.

02/14/16 15-494 Cognitive Robotics 16

Chase Ball 2

● If we lose sight of the ball, must look for it.

● Now we introduce some internal state:

Track
Ball

Follow
Head

Pan
Head

Lost sight Rotate
Body

Timeout

Timeout

 Found ball

02/14/16 15-494 Cognitive Robotics 17

Chase Ball 3

● More intelligent search: direction of turn should depend
on where the ball was last seen.

● Now we need to maintain world state (ball location).

02/14/16 15-494 Cognitive Robotics 18

Chase Ball 4
● Must avoid obstacles while chasing the ball.

– May need to move the head to look for obstacles.

– Attention divided between ball tracking and obstacle checking.

● May need to detour around obstacles.

– Subgoal “detouring” temporarily overrides “chasing”.

● Where will the ball be when the
detour is completed?

– Mapping, trajectory extrapolation...

Say “goodbye” to
reactive control!

02/14/16 15-494 Cognitive Robotics 19

Mid-Level Control:
Task Control Languages

● Takes the robot through a sequence of actions to
achieve some simple task.

● Must be able to deal with failures, unexpected events.

● There are many architectures for mid-level control.
Various design tradeoffs:

– Specialized language vs. extensions to Lisp or C

– Client/server vs. publish/subscribe communication model

– Provide special exception states, or treat all states the same?

– How to provide for and manage concurrency.

● Lots of languages/tools: RAPs, TCA, PRS, Propice, ESL,
MaestRo, TDL, Orccad, ControlShell, 3T, Circa.

02/14/16 15-494 Cognitive Robotics 20

Gat's ESL
● ESL: Execution Support Language (Gat, AAAI 1992;

AAAI Fall Symposium, 1996) provides special primitives
for handling failures and limiting retries.

(defun move-object-to-table ()
 (with-recovery-procedures
 ((:dropped-object :retries 2)
 (locate-dropped-object)
 (retry))
 (pick-up-object)
 (move-to-table)
 (put-down-object)))

(defun pick-up-object ()
 (open-gripper)
 (move-gripper-to-object)
 (close-gripper)
 (raise-arm)
 (if (gripper-empty)
 (fail :dropped-object)))

02/14/16 15-494 Cognitive Robotics 21

ESL (Continued)

● Cleanup procedures are necessary to ensure safe state
after failure.

● Deadlock prevention: ESL includes “resource locking”
primitives for mutual exclusion and deadlock prevention.

● Synchronization: “checkpoints” allow one process to wait
until another has caught up.

(with-cleanup-procedure
 ((shut-down-motors)
 (close-camera-port))
 (do-some-thing-that-might-fail))

02/14/16 15-494 Cognitive Robotics 22

High Level Control: Planning
“Deliberative” architectures may run slowly, infrequently.

– Path planning for navigation.

– Planning as problem solving: achieve (on A B) & (on B C) by
moving only one block at a time (gripper can't hold two blocks).

C

A

B C B

A

CA B CA

B

C

B

A

Greedy
algorithm

X
Start
State

Goal
State

02/14/16 15-494 Cognitive Robotics 23

Shakey the Robot (1968)
And The STRIPS Planner

02/14/16 15-494 Cognitive Robotics 24

Really High Level Control
● Can use cognitive modeling architectures such as SOAR

(Newell) or ACT-R (Anderson) to control robots.

● RoboSoar (Laird and Rosenbloom, 1990):
plan-then-compile architecture.

– Generate high level plan.

– Then compile into reactive rules for execution.

● ACT-R has been used in simulated worlds (Unreal
Tournament).

● Grubb and Proctor (2006): Tekkotsu interface for ACT-R.
Patton & Brudzinski (2009): ACT-R solving Towers of
Hanoi with the Tekkotsu planar hand/eye system.

02/14/16 15-494 Cognitive Robotics 25

Gat's Three-Level Architecture
● Gat (Artificial Intelligence and Mobile Robots, ch. 8, 1998)

proposed a different three-level architecture:

● The Controller:

– collection of reactive “behaviors”

– each behavior is fast and has minimal internal state

● The Sequencer

– decides which primitive behavior to run next

– doesn't do anything that takes a long time to compute, because
the next behavior must be specified soon

● The Deliberator

– slow but smart

– can either produce plans for the sequencer, or respond to
queries from it

02/14/16 15-494 Cognitive Robotics 26

What Does Tekkotsu Provide?

● Low-level control implemented by motion commands,
e.g., for walking.

● Mid-level control via state machine formalism can be
reactive or use a more hybrid approach.

● Behaviors can execute in parallel; event-based
communication follows a publish/subscribe model.

● Main/Motion dichotomy – but Motion is only for ultra-
low-level control.

● Specialized path planners for navigation and
manipulation, but no general high level control layer.

● Future plans: add a high level task planner to Tekkotsu.

02/14/16 15-494 Cognitive Robotics 27

The Tekkotsu “Crew”
● The Lookout controls the head:

– visual search

– target tracking

– obstacle detection

● The MapBuilder does vision

● The Pilot controls the body:

– walking, rotating in place

– path planning

– trajectory following

● The Grasper controls the arm

– grasping, pushing, toppling, flipping, etc.

02/14/16 15-494 Cognitive Robotics 28

Potential for Lookout/Pilot
Interactions

● The Lookout may need to turn the body in order to
conduct a visual search, when head motion alone isn't
enough.

– Lookout makes a request to the Pilot for a turn.

● The Pilot may need to ask the Lookout to locate some
landmarks so it can self-localize.

– Pilot makes a request to the Lookout for a search.

● Interactions must be managed to prevent deadlock,
infinite loops.

● But the user shouldn't have to worry about this.

02/14/16 15-494 Cognitive Robotics 29

Robot Cooperation
● An even higher level of control is cooperation among

multiple robots working as a team.

● Tekkotsu allows robots to communicate by subscribing
to each other's events.

● Can also subscribe to state updates using

 requestRemoteStateUpdates(ip, state_type, interval)

● This is only a low-level form of coordination, but
cooperation could be built on top of this.

doStart:
 int ip = EventRouter::stringToIntIP("172.16.0.4");
 erouter->addRemoteListener(this, ip, EventBase::motmanEGID);

doEvent:
 if (event.getHostID() == ip)
 cout << “Got remote event “ << event.getDescription() << endl;

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

