
02/24/14 1

Kinematics

15-494 Cognitive Robotics
David S. Touretzky &
Ethan Tira-Thompson

Carnegie Mellon
Spring 2014

02/24/14 2

Outline

Kinematics is the study of how things move.

● Kinematic chains

– Robots are described as collections of kinematic chains

● Reference frames

● Homogeneous coordinates

● Kinematics and PostureEngine classes

● Forward kinematics: calculating limb positions from
joint angles. (Straightforward matrix multiply.)

● Inverse kinematics: calculating joint angles to achieve
desired limb positions. (Hard.)

02/24/14 3

Robots As Kinematic Chains

● Tekkotsu allows branching chains, so robots are trees.

● The root of the tree is called the BaseFrame in Tekkotsu.

● It is typically at the center of the robot's body.

02/24/14 4

Chains = Joints + Links

● A chain is a sequence of joints separated by links.

● We can use transformation matrices to calculate the
position of the tip of the chain (joint J

2
) from the joint

angles 
0
, 

1
 and the link lengths L

1
, L

2
.

● Each rotational joint has a rotation transform; each link
has a translation transform.

● The math for this will be shown later in this lecture.

L
1 L 2

J
0

J
1

J 2

02/24/14 5

AIBO Kinematic Chains

● The AIBO has 9 kinematic chains instead of 6 because
branched chains were formerly not supported:

– 4 for the legs

– 1 for the head (ending in the camera), 1 for the mouth

– 3 for the IR range sensors

● All chains begin at the center of the body (base frame).

02/24/14 6

Chiara Kinematic Chains

● The Chiara has 8 major
kinematic chains:

– Head / camera / IR

– Arm

– Left front leg

– Right front leg (4-dof)

– Left middle leg

– Right middle leg

– Left back leg

– Right back leg

02/24/14 7

Calliope Kinematic Chains

BaseFrame

 center of axle
 WHEEL:L, WHEEL:R

 NECK:PAN
 NECK:TILT
 CameraFrame

 ARM:base
 ARM:shoulder
 ARM:elbow
 ARM:wrist
 ARM:wristrot
 GripperFrame
 ARM:gripperleft
 LeftFingerFrame
 ARM:gripperright
 RightFingerFrame

Use the DisplayKinTree demo to
show the kinematic tree of the
robot.

Root Control
 > Framework Demos
 > Kinematics Demos
 > DisplayKinTree

02/24/14 8

Reference Frames

● Every joint has an associated reference frame.

● Additional reference frames for camera, toes, etc.

● Denavit-Hartenberg
conventions: joints
rotate about their
z-axes.

● The x and y axes
follow the right
hand rule.

 x

y
z

02/24/14 9

Chain of Reference Frames
● BaseFrame: z is up, x is forward, y is left.

– This convention is also used for localShS and worldShS.

● Axis of rotation determines z
for a joint.

● The head chain:

– Base frame 0 z
0
 = “up”

– Tilt joint 1 y
1
 = “up”

– Pan joint 2

– Nod joint 3

– Camera 4 z
4
 = “out”,

x
4
,y

4
 = image plane

02/24/14 10

Reference Frame Naming Conventions

● Use the same offset-based indexing scheme as for joint
names in motion commands and world state vectors:

– BaseFrameOffset

– HeadOffset+TiltOffset, HeadOffset+PanOffset

– CameraFrameOffset

– ArmShoulderOffset, ArmElbowOffset, ArmWristOffset, etc.

– GripperFrameOffset

● Denavit-Hartenberg conventions specify how to express
the relationship between one reference frame and the
next: d, , r, .

02/24/14 11

Denavit-Hartenberg Video

http://www.youtube.com/watch?v=rA9tm0gTln8

02/24/14 12

Summary of D-H Conventions

1) Move by d along z
n-1

2)

Rotate by  around z

n-1

3)

Move by r along x

n
,

which is the common
normal of z

n-1
 and z

n

4)

Rotate by  along x

n

When z
n-1

 and z
n
 are

parallel:

● d is arbitrary

●  is 0

Side view

Top view

02/24/14 13

The Tekkotsu .kin File

● See project/ms/config/Calliope5KP.kin

● Contains four types of information:

– Kinematic description of the robot following D-H
conventions, used by Tekkotsu's kinematics solvers.

– Additional joint and link information, such as min, max, and
offset values, mass, center of mass, etc.

– Paths to mesh files (models) for selected joints, used by
Mirage to render the robot.

– Collision models for selected components, used by Mirage
to determine how the robot interacts with the world.

02/24/14 14

DH Wizard
● Tool for editing kinematic descriptions. Outputs a kin file.

 D-H
 params

02/24/14 15

DH Wizard

02/24/14 16

DH Wizard

02/24/14 17

Now, The Math...

● How do we represent transformations from one
reference frame to the next in a kinematic chain?

– Homogeneous coordinates

– Transformation matrices

● How do we perform these calculations in C++?

– The fmat package

● How do I get Tekkotsu to do the work for me?

– Forward kinematics solver

02/24/14 18

Homogeneous Coordinates
● Represent a point in N-space by an (N+1)-dimensional

vector. (Extra component is an inverse scale factor.)

– In “normal” form, last component is always 1.

– Exception: points at infinite distance: last component is 0.

● Allows us to perform a variety of transformations using
matrix multiplication:

 Rotation, Translation, Scaling

● Tekkotsu uses 3D coordinates (so 4-dimensional
vectors) for everything.

v = [
x
y
z
1

]

02/24/14 19

Transformation Matrices

● Let  be rotation angle in the x-y plane.
Let dx, dy, dz be translation amounts.
Let 1/s be a scale factor.

T = [
cosθ sinθ 0 dx
−sinθ cosθ 0 dy

0 0 1 dz
0 0 0 s

] v⃗ = [
x
y
z
1

]
T v⃗ = [

xcosθ + y sinθ + dx
−x sinθ + ycosθ + dy

z + dz
s

] = [
(xcosθ + y sinθ + dx)/s

(−x sinθ + ycosθ + dy)/s
(z + dz)/s

1
]

02/24/14 20

Transformations Are
Composable

● To rotate about point p: translate p to the origin, rotate,
then translate back.

Translatep = [
1 0 0 p.x
0 1 0 p.y
0 0 1 p.z
0 0 0 1

]
Rotate = [

cos sin 0 0
−sin cos 0 0

0 0 1 0
0 0 0 1

]
RotateAbout p, = Translate p ⋅ Rotate ⋅ Translate −p

02/24/14 21

fmat

● Tekkotsu uses the fmat package to represent
coordinates and transformation matrices.

● fmat is optimized for efficient representation of small,
fixed-size matrices and vectors.

fmat::Column<4> v, w;

v = fmat::pack(5.75, 30.0, 115, 1);

w = fmat::pack(17, -4.2f, 100, 1);

fmat::Matrix<4,4> T;

T = v * w.transpose();

02/24/14 22

fmat::Transform

● Transformation matrices using homogenous
coordinates are 4 4.

● But the last row is always [0 0 0 1].

● So fmat eliminates the last row and overloads the
arithmetic operators to make the math work correctly.

● fmat::Transform is really a Matrix<3,4>

02/24/14 23

The Kinematics Class

● Tekkotsu contains its own kinematics engine for
kinematics calculations, modeled after ROBOOP.

● The Kinematics class provides access to basic
functionality for forward kinematics.

● Defined in Tekkotsu/Motion/Kinematics.h

● Global variable kine holds a
special Kinematics instance:

– Joint values reference WorldState.

● PostureEngine is a child of Kinematics
so it can do kinematics calculations
too.

02/24/14 24

Converting Between
Reference Frames

● Most common conversions are between the base frame
(body coordinates) and a limb or camera frame.

● Conversion requires computing a transformation matrix.

● Specify the frame with an unsigned int (a joint offset).

 fmat::Transform linkToBase(unsigned int link)

 fmat::Transform baseToLink(unsigned int link)

 fmat::Transform linkToLink(unsigned int ilink,
 unsigned int olink)

02/24/14 25

Reference Frame Conversion 1

● Transform Base to Base:

fmat::Transform t = kine->linkToBase(BaseFrameOffset);

cout << t.fmt(“%8.3f”) << endl;

● Result:

1.000 0.000 0.000 0.000

0.000 1.000 0.000 0.000

0.000 0.000 1.000 0.000

0.000 0.000 0.000 1.000

02/24/14 26

Reference Frame Conversion 2

Translate Calliope head pan frame to base frame:

const float headpan = state->outputs[HeadOffset+PanOffset];
cout << "Head pan is " << headpan * 180/M_PI

 << " degrees." << endl;

fmat::Transform tPan = kine->linkToBase(HeadOffset+PanOffset);

cout << "pan linkToBase=\n" << tPan.fmt(“%8.3f”) << endl;

02/24/14 27

At ~Zero Degree Pan Angle

Head pan is 0.0016182 degrees.

pan linkToBase=
[1.000 -0.000 0.000 75.230
 0.000 1.000 0.000 0.000
 0.000 0.000 1.000 383.916]

02/24/14 28

At ~ 30 Degree Pan Angle
Head pan is 32.7 degrees.

pan linkToBase=
[0.846 -0.534 0.000 75.230
 0.534 0.846 -1.000 0.000
 0.000 0.000 0.000 383.916]

cos(30o) = 0.866
sin(30o) = 0.500

02/24/14 29

How About Tilt w/Head Centered?

Head pan is -0.001547 degrees.

pan linkToBase=
[1.000 -0.000 0.000 75.230
 0.000 1.000 0.000 0.000
 0.000 0.000 1.000 383.916]

Head tilt is 0.009223 degrees.

tilt linkToBase=
[1.000 -0.000 -0.000 97.730
 -0.000 -0.000 1.000 -0.001
 0.000 1.000 -0.000 422.916]

02/24/14 30

Forward Kinematics: Measure
Distance From Wrist to Arm Base

$nodeclass ComputeDistance : StateNode : doStart {

 fmat::Transform wrist =
 kine->linkToBase(ArmWristOffset);
 fmat::Column<3> wristPos = wrist.translation();

 fmat::Transform armbase =
 kine->linkToBase(ArmBaseOffset);
 fmat::Column<3> armbasePos = armbase.translation();

 float dist = (wristPos-armbasePos).norm();

 cout << “Distance is “ << setw(5) < dist << “ mm.” << endl;

}

 startnode: ComputeDistance =T(1000)=> startnode

02/24/14 31

Inverse Kinematics

● Inverse kinematics finds the joint angles to put an
effector at a particular point in space.

● Hard problem:

– solution space can be discontinuous

– can be highly nonlinear

– multiple solutions may be possible

– maybe no solution (so find closest approximation)

● Example: lookAtPoint(x,y,z)

– point described in base frame coordinates

– calculates head joint angles

02/24/14 32

CameraTrackGripper Demo

Root Control > Framework Demos > Kinematics Demos > CameraTrackGripper

$nodeclass CameraTrackGripper : StateNode : {

 $nodeclass HeadMover : HeadPointerNode : doStart {
 fmat::Transform tGripper =

 kine->linkToBase(GripperFrameOffset);

 fmat::Column<3> pGripper = tGripper.translation();

 std::cout << "Transform:\n"
 << tGripper.fmt("%8.3f") << std::endl;

 getMC()->lookAtPoint(pGripper[0], pGripper[1], pGripper[2]);
 }

02/24/14 33

CameraTrackGripper (2)

 virtual void setup() {
 MotionManager::MC_ID headmc =
 addMotion(MotionPtr<HeadPointerMC>());

 $statemachine{

 startnode: StateNode =N=> {headmover, unrelaxed}

 headmover: HeadMover[setMC(headmc)]
 =E(sensorEGID)=> headmover

 unrelaxed: SpeechNode("arm not relaxed")
 =B(GreenButOffset)=> armrelaxer

 armrelaxer: SpeechNode("arm is relaxed")
 =N=> PIDNode(ArmOffset, ArmOffset+NumArmJoints, 0.f)
 =B(GreenButOffset)=> unrelaxed
 }

 }

Initializer
expression

02/24/14 34

Solving the 1-Link Arm

L 1


0

 Target (x,y)

Reachable if: L1 = √x2
+y2

Solution: θ0 = atan2(y , x)

02/24/14 35

Configuration Space vs.
Work Space

Consider a 2-link arm, with joint constraints
 0° <θ0 < 90°, -90° < θ1 < 90°

Configuration Space: robot’s
internal state space (e.g. joint

angles)

Work Space: set of all
possible end-effector

positions

02/24/14 36

Solving the 2-Link Planar Arm

L 1


0

Target (x,y)


c2 =
x2+y2−L1

2−L2
2

2L1L2

s2
+

= √1−c2
2

θ1
+

= atan2(s2
+ ,c2)

K1 = L1+c2L2

K2 = s2
+L2

θ0 = atan2(y , x) − atan2(K2,K1)

Reachable if: c2
2

≤ 1

L 2




02/24/14 37

Two Possible Solutions

L 1


0

Target (x,y)


s2
+ = √1−c2

2

θ1
+ = atan2(s2

+ ,c2)

L 2


1

L 1


0

 Target (x,y)
 L 2


1

s2
− = −√1−c2

2

θ1
− = atan2(s2

− ,c2)

“Elbow up” “Elbow down”

02/24/14 38

How Many Degrees of Freedom
Are Enough?

● With 2 dof you can put the end effector at any point in
the workspace.

● But you can't control end-effector orientation.

– What if the arm is holding
a screwdriver?

● With 3 dof in the same plane
you can control both position
and orientation.

02/24/14 39

L
3

Solving the 3-Link Planar Arm

L 1


0

Target (x
t
,y

t
) 

L 2


1



● Choose tool angle 

● Given target position x
t
, y

t
,

calculate wrist position:
 x

w
 and y

w

● Solve 2-link problem to put
wrist at x

w
, y

w
.

If you don't know , pick an
arbitrary value and search
from there until you find a
solution that works.

02/24/14 40

Towers of Hanoi in the Plane

Video by Michel Brudzinski and Evan Patton at RPI.

02/24/14 41

Customized Kinematics Solvers

● For some simple kinematic chains, such as a pan/tilt,
we can write analytical solutions to the IK problem.

● For the general case, must use gradient descent
search.

See IK videos.

02/24/14 42

Inverse Kinematics Functions
● Inverse kinematics solver included in PostureEngine:

solveLinkPosition(const fmat::Column<3> &Ptgt,
unsigned int link,
const fmat::Column<3> &Peff)

– Ptgt is the target point to move to (in base frame coordinates)

– link is the index of some effector on the body, e.g.,
GripperFrameOffset

– Peff is a point on the effector that is to be moved to Ptgt, in the
reference fame of that effector.

● Returns true if a solution was found. False if no solution
exists (e.g., joint limits exceeded, distance too far, etc.)

● Solution is stored in the PostureEngine as joint values.

02/24/14 43

GripperTrackCamera

$nodeclass GripperTrackCamera : StateNode {

 $nodeclass ArmMover : PostureNode : doStart {

 fmat::Column<3> targetInCam = fmat::pack(0, 0, 100);
 fmat::Column<3> targetInBase =
 kine->linkToBase(CameraFrameOffset) * targetInCam;
 fmat::Column<3> noOffset = fmat::pack(0, 0, 0);

 getMC()->solveLinkPosition(targetInBase,
 LeftFingerFrameOffset,
 noOffset);
 }

02/24/14 44

GripperTrackCamera (2)

virtual void setup() {

 MotionManager::MC_ID armmc =
 addMotion(MotionPtr<PostureMC>());

 $statemachine{
 startnode: ArmMover[setMC(armmc)]
 =E(sensorEGID)=> startnode
 }

}

02/24/14 45

Additional IK Functions

PostureEngine provides:

● solveLinkPosition(...)

● solveLinkVector(...)

● solveLinkOrientation(...)

● solveLink(...)

The actual IK calculations for Calliope are done in
Tekkotsu/Motion/IKCalliope.cc

02/24/14 46

Calliope's 5-dof ARM

● Only one degree of freedom in
the horizontal plane:

– ARM:base

● Three degrees of freedom in a vertical plane:

– ARM:shoulder, ARM:elbow, ARM:wrist

● An additional degree of freedom in an orthogonal plane:

– ARM:wristrot

● Conclusion: can only partially control the 3D pose of the
end-effector.

– What kinds of motions can this arm not make?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

