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Outline

Kinematics is the study of how things move.

● Kinematic chains

– Robots are described as collections of kinematic chains

● Reference frames

● Homogeneous coordinates

● Kinematics and PostureEngine classes

● Forward kinematics: calculating limb positions from 
joint angles.  (Straightforward matrix multiply.)

● Inverse kinematics: calculating joint angles to achieve 
desired limb positions.  (Hard.)



02/24/14 3

Robots As Kinematic Chains

● Tekkotsu allows branching chains, so robots are trees.

● The root of the tree is called the BaseFrame in Tekkotsu.

● It is typically at the center of the robot's body.
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Chains = Joints + Links

● A chain is a sequence of joints separated by links.

● We can use transformation matrices to calculate the 
position of the tip of the chain (joint J

2
) from the joint 

angles 
0
, 

1
 and the link lengths L

1
, L

2
.

● Each rotational joint has a rotation transform; each link 
has a translation transform.

● The math for this will be shown later in this lecture.

L
1 L 2

J
0

J
1

J 2
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AIBO Kinematic Chains

● The AIBO has 9 kinematic chains instead of 6 because 
branched chains were formerly not supported:

– 4 for the legs

– 1 for the head (ending in the camera), 1 for the mouth

– 3 for the IR range sensors

● All chains begin at the center of the body (base frame).
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Chiara Kinematic Chains

● The Chiara has 8 major
kinematic chains:

– Head / camera / IR

– Arm

– Left front leg

– Right front leg (4-dof)

– Left middle leg

– Right middle leg

– Left back leg

– Right back leg
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Calliope Kinematic Chains

BaseFrame

  center of axle
    WHEEL:L, WHEEL:R

  NECK:PAN
    NECK:TILT
      CameraFrame

  ARM:base
    ARM:shoulder
      ARM:elbow
        ARM:wrist
          ARM:wristrot
            GripperFrame
            ARM:gripperleft
                LeftFingerFrame
            ARM:gripperright
                RightFingerFrame

Use the DisplayKinTree demo to 
show the kinematic tree of the 
robot.

Root Control 
   > Framework Demos
      > Kinematics Demos
         > DisplayKinTree
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Reference Frames

● Every joint has an associated reference frame.

● Additional reference frames for camera, toes, etc.

● Denavit-Hartenberg 
conventions: joints 
rotate about their 
z-axes.

● The x and y axes
follow the right
hand rule.

                  x

y
z
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Chain of Reference Frames
● BaseFrame: z is up, x is forward, y is left.

– This convention is also used for localShS and worldShS.

● Axis of rotation determines z
for a joint.

● The head chain:

– Base frame 0 z
0
 = “up”

– Tilt joint 1 y
1
 = “up”

– Pan joint 2

– Nod joint 3

– Camera 4    z
4
 = “out”,

x
4
,y

4
 = image plane
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Reference Frame Naming Conventions

● Use the same offset-based indexing scheme as for joint 
names in motion commands and world state vectors:

– BaseFrameOffset

– HeadOffset+TiltOffset, HeadOffset+PanOffset

– CameraFrameOffset

– ArmShoulderOffset, ArmElbowOffset, ArmWristOffset, etc.

– GripperFrameOffset

● Denavit-Hartenberg conventions specify how to express 
the relationship between one reference frame and the 
next: d, , r, .
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Denavit-Hartenberg Video

http://www.youtube.com/watch?v=rA9tm0gTln8
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Summary of D-H Conventions

1) Move by d along z
n-1

2)
 
Rotate by  around z

n-1

3)
 
Move by r along  x

n
, 

which is the common 
normal of z

n-1
 and z

n

4)
 
Rotate by  along x

n

When z
n-1

 and z
n
 are 

parallel:

● d is arbitrary

●  is 0

Side view

Top view
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The Tekkotsu .kin File

● See project/ms/config/Calliope5KP.kin

● Contains four types of information:

– Kinematic description of the robot following D-H 
conventions, used by Tekkotsu's kinematics solvers.

– Additional joint and link information, such as min, max, and 
offset values, mass, center of mass, etc.

– Paths to mesh files (models) for selected joints, used by 
Mirage to render the robot.

– Collision models for selected components, used by Mirage 
to determine how the robot interacts with the world.
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DH Wizard
● Tool for editing kinematic descriptions. Outputs a kin file.

                  D-H
                  params
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DH Wizard
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DH Wizard
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Now, The Math...

● How do we represent transformations from one 
reference frame to the next in a kinematic chain?

– Homogeneous coordinates

– Transformation matrices

● How do we perform these calculations in C++?

– The fmat package

● How do I get Tekkotsu to do the work for me?

– Forward kinematics solver
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Homogeneous Coordinates
● Represent a point in N-space by an (N+1)-dimensional 

vector.  (Extra component is an inverse scale factor.)

– In “normal” form, last component is always 1.

– Exception: points at infinite distance: last component is 0.

● Allows us to perform a variety of transformations using  
matrix multiplication:

 Rotation, Translation,  Scaling

● Tekkotsu uses 3D coordinates (so 4-dimensional 
vectors) for everything.

v = [
x
y
z
1

]
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Transformation Matrices

● Let  be rotation angle in the x-y plane.
Let dx, dy, dz be translation amounts.
Let 1/s be a scale factor.

T = [
cosθ sinθ 0 dx
−sinθ cosθ 0 dy

0 0 1 dz
0 0 0 s

] v⃗ = [
x
y
z
1

]
T v⃗ = [

xcosθ + y sinθ + dx
−x sinθ + ycosθ + dy

z + dz
s

] = [
(xcosθ + y sinθ + dx)/s

(−x sinθ + ycosθ + dy )/s
(z + dz )/s

1
]
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Transformations Are 
Composable

● To rotate about point p: translate p to the origin, rotate, 
then translate back.

Translatep = [
1 0 0 p.x
0 1 0 p.y
0 0 1 p.z
0 0 0 1

]
Rotate = [

cos sin 0 0
−sin cos 0 0

0 0 1 0
0 0 0 1

]
RotateAbout p, = Translate p ⋅ Rotate ⋅ Translate −p



02/24/14 21

fmat

● Tekkotsu uses the fmat package to represent 
coordinates and transformation matrices.

● fmat is optimized for efficient representation of small, 
fixed-size matrices and vectors.

fmat::Column<4> v, w;

v = fmat::pack(5.75, 30.0, 115, 1);

w = fmat::pack(17, -4.2f, 100, 1);

fmat::Matrix<4,4> T;

T = v * w.transpose();
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fmat::Transform

● Transformation matrices using homogenous 
coordinates are 4 4.

● But the last row is always [0  0  0  1].

● So fmat eliminates the last row and overloads the 
arithmetic operators to make the math work correctly.

● fmat::Transform  is really a  Matrix<3,4>
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The Kinematics Class

● Tekkotsu contains its own kinematics engine for 
kinematics calculations, modeled after ROBOOP.

● The Kinematics class provides access to basic 
functionality for forward kinematics.

● Defined in Tekkotsu/Motion/Kinematics.h

● Global variable kine holds a 
special Kinematics instance:

– Joint values reference WorldState.

● PostureEngine is a child of Kinematics
so it can do kinematics calculations
too.
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Converting Between 
Reference Frames

● Most common conversions are between the base frame 
(body coordinates) and a limb or camera frame.

● Conversion requires computing a transformation matrix.

● Specify the frame with an unsigned int (a joint offset).

    fmat::Transform linkToBase(unsigned int link)

    fmat::Transform baseToLink(unsigned int link)

    fmat::Transform linkToLink(unsigned int ilink,
     unsigned int olink)
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Reference Frame Conversion 1

● Transform Base to Base:

fmat::Transform t = kine->linkToBase(BaseFrameOffset);

cout << t.fmt(“%8.3f”) << endl;

● Result:

1.000   0.000   0.000   0.000

0.000   1.000   0.000   0.000

0.000   0.000   1.000   0.000

0.000   0.000   0.000   1.000
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Reference Frame Conversion 2

Translate Calliope head pan frame to base frame:

const float headpan = state->outputs[HeadOffset+PanOffset];
cout << "Head pan  is " << headpan * 180/M_PI 

  << " degrees." << endl;

fmat::Transform tPan = kine->linkToBase(HeadOffset+PanOffset);

cout << "pan linkToBase=\n" << tPan.fmt(“%8.3f”) << endl;
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At ~Zero Degree Pan Angle

Head pan is 0.0016182 degrees.

pan linkToBase=
[  1.000  -0.000   0.000  75.230
   0.000   1.000   0.000   0.000
   0.000   0.000   1.000 383.916 ]
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At ~ 30 Degree Pan Angle
Head pan is 32.7 degrees.

pan linkToBase=
[  0.846  -0.534   0.000  75.230
   0.534   0.846  -1.000   0.000
   0.000   0.000   0.000 383.916 ]

cos(30o) = 0.866
sin(30o)  = 0.500
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How About Tilt w/Head Centered?

Head pan is -0.001547 degrees.

pan linkToBase=
[  1.000  -0.000   0.000  75.230
   0.000   1.000   0.000   0.000
   0.000   0.000   1.000 383.916 ]

Head tilt is 0.009223 degrees.

tilt linkToBase=
[  1.000  -0.000  -0.000  97.730
  -0.000  -0.000   1.000  -0.001
   0.000   1.000  -0.000 422.916 ]
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Forward Kinematics: Measure 
Distance From Wrist to Arm Base

$nodeclass ComputeDistance : StateNode : doStart {

  fmat::Transform wrist =
    kine->linkToBase(ArmWristOffset);
  fmat::Column<3> wristPos = wrist.translation();

  fmat::Transform armbase =
    kine->linkToBase(ArmBaseOffset);
  fmat::Column<3> armbasePos = armbase.translation();

  float dist = (wristPos-armbasePos).norm();

  cout << “Distance is “ << setw(5) < dist << “ mm.” << endl;

}

   startnode: ComputeDistance =T(1000)=> startnode
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Inverse Kinematics

● Inverse kinematics finds the joint angles to put an 
effector at a particular point in space.

● Hard problem:

– solution space can be discontinuous

– can be highly nonlinear

– multiple solutions may be possible

– maybe no solution (so find closest approximation)

● Example:   lookAtPoint(x,y,z)

– point described in base frame coordinates

– calculates head joint angles
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CameraTrackGripper Demo

Root Control > Framework Demos > Kinematics Demos > CameraTrackGripper

$nodeclass CameraTrackGripper : StateNode :  {

  $nodeclass HeadMover : HeadPointerNode : doStart {
    fmat::Transform tGripper =

    kine->linkToBase(GripperFrameOffset);

    fmat::Column<3> pGripper = tGripper.translation();

    std::cout << "Transform:\n" 
              << tGripper.fmt("%8.3f") << std::endl;

    getMC()->lookAtPoint(pGripper[0], pGripper[1], pGripper[2]);
  }
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CameraTrackGripper (2)

 virtual void setup() {
   MotionManager::MC_ID headmc =
     addMotion(MotionPtr<HeadPointerMC>());

  $statemachine{

    startnode: StateNode =N=> {headmover, unrelaxed}

 headmover: HeadMover[setMC(headmc)]
         =E(sensorEGID)=> headmover

    unrelaxed: SpeechNode("arm not relaxed")
                  =B(GreenButOffset)=> armrelaxer

   armrelaxer: SpeechNode("arm is relaxed")
       =N=> PIDNode(ArmOffset, ArmOffset+NumArmJoints, 0.f)
         =B(GreenButOffset)=> unrelaxed
  }

 }

Initializer
expression
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Solving the 1-Link Arm

L 1


0

   Target (x,y)

Reachable if:  L1 = √x2
+y2

Solution:  θ0 = atan2(y , x)
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Configuration Space vs.
Work Space

Consider a 2-link arm, with joint constraints 
    0° <θ0 < 90°,       -90° < θ1 < 90°

Configuration Space: robot’s 
internal state space (e.g. joint 

angles)

Work Space: set of all 
possible end-effector 

positions
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Solving the 2-Link Planar Arm

L 1


0

Target (x,y)         


c2 =
x2+y2−L1

2−L2
2

2L1L2

s2
+

= √1−c2
2

θ1
+

= atan2(s2
+ ,c2)

K1 = L1+c2L2

K2 = s2
+L2

θ0 = atan2(y , x) − atan2(K2,K1)

Reachable if:  c2
2

≤ 1

L 2



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Two Possible Solutions

L 1


0

Target (x,y)         


s2
+ = √1−c2

2

θ1
+ = atan2(s2

+ ,c2)

L 2


1

L 1


0

    Target (x,y)
     L 2


1

s2
− = −√1−c2

2

θ1
− = atan2(s2

− ,c2)

“Elbow up” “Elbow down”
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How Many Degrees of Freedom 
Are Enough?

● With 2 dof you can put the end effector at any point in 
the workspace.

● But  you can't control end-effector orientation.

– What if the arm is holding
a screwdriver?

● With 3 dof in the same plane
you can control both position
and orientation.
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L
3

Solving the 3-Link Planar Arm

L 1


0

Target (x
t
,y

t
)    

L 2


1



● Choose tool angle 

● Given target position x
t
, y

t
,

calculate wrist position:
  x

w
 and y

w

● Solve 2-link problem to put 
wrist at x

w
, y

w
.

If you don't know , pick an 
arbitrary value and search 
from there until you find a 
solution that works.



02/24/14 40

Towers of Hanoi in the Plane

Video by Michel Brudzinski and Evan Patton at RPI.
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Customized Kinematics Solvers

● For some simple kinematic chains, such as a pan/tilt, 
we can write analytical solutions to the IK problem.

● For the general case, must use gradient descent 
search.

See IK videos.
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Inverse Kinematics Functions
● Inverse kinematics solver included in PostureEngine:

solveLinkPosition(const fmat::Column<3> &Ptgt,
unsigned int link,
const fmat::Column<3> &Peff)

– Ptgt is the target point to move to (in base frame coordinates)

– link is the index of some effector on the body, e.g., 
GripperFrameOffset

– Peff is a point on the effector that is to be moved to Ptgt, in the 
reference fame of that effector.

● Returns true if a solution was found.  False if no solution 
exists (e.g., joint limits exceeded, distance too far, etc.)

● Solution is stored in the PostureEngine as joint values.
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GripperTrackCamera

$nodeclass GripperTrackCamera : StateNode {

  $nodeclass ArmMover : PostureNode : doStart {

    fmat::Column<3> targetInCam = fmat::pack(0, 0, 100);
    fmat::Column<3> targetInBase =
      kine->linkToBase(CameraFrameOffset) * targetInCam;
    fmat::Column<3> noOffset = fmat::pack(0, 0, 0);

    getMC()->solveLinkPosition(targetInBase,
                               LeftFingerFrameOffset,
                               noOffset);
  }
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GripperTrackCamera (2)

virtual void setup() {

  MotionManager::MC_ID armmc =
    addMotion(MotionPtr<PostureMC>());

  $statemachine{
    startnode: ArmMover[setMC(armmc)]
       =E(sensorEGID)=> startnode
  }

}
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Additional IK Functions

PostureEngine provides:

● solveLinkPosition(...)

● solveLinkVector(...)

● solveLinkOrientation(...)

● solveLink(...)

The actual IK calculations for Calliope are done in
Tekkotsu/Motion/IKCalliope.cc
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Calliope's 5-dof ARM

● Only one degree of freedom in
the horizontal plane:

– ARM:base

● Three degrees of freedom in a vertical plane:

– ARM:shoulder, ARM:elbow, ARM:wrist

● An additional degree of freedom in an orthogonal plane:

– ARM:wristrot

● Conclusion: can only partially control the 3D pose of the 
end-effector.

– What kinds of motions  can this arm not make?
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