
02/01/16 15-494 Cognitive Robotics 1

Local and World Maps

15-494 Cognitive Robotics
David S. Touretzky &
Ethan Tira-Thompson

Carnegie Mellon
Spring 2016

02/01/16 15-494 Cognitive Robotics 2

Horizontal Field of View

Rat: 300 deg. Human: 200 deg. Typical webcam:
60 deg.

02/01/16 15-494 Cognitive Robotics 3

Seeing A Bigger Picture

● How can we assemble an accurate view of the robot's
surroundings from a series of narrow camera frames?

● First, convert each image to symbolic form: shapes.

● Then, match the shapes in one image against the
shapes in previous images.

● Construct a “local map” by matching up a series of
camera images.

Image Shapes Local Map

02/01/16 15-494 Cognitive Robotics 4

Can't Match in Camera Space

● We can't match up shapes from one image to the next if
the shapes are in camera coordinates. Every time the
head moves, the coordinates of the shapes in the
camera image change.

● Solution: switch to a body-centered reference frame.

● If we keep the body stationary and only move the head,
the coordinates of objects won't change (much) in the
body reference frame.

camera plane

02/01/16 15-494 Cognitive Robotics 5

Planar World Assumption

● How do we convert from camera-centered coordinates
to body-centered coordinates?

● Need to know the camera pose: can get that from the
kinematics system.

● Unfortunately, that's not enough.

● Add a planar world assumption: objects lie in the plane.
The robot is standing on that plane.

● Now we can get object coordinates in the body frame.

02/01/16 15-494 Cognitive Robotics 6

Shape Spaces

● camShS = camera space

● groundShS = camera shapes projected to ground plane

● localShS = body-centered (egocentric space);
constructed by matching and importing shapes
from groundShS across multiple images

● worldShS = world space (allocentric space);
constructed by matching and importing shapes
from localShS

● The robot is explicitly represented in worldShS

02/01/16 15-494 Cognitive Robotics 7

MapBuilderNode

● MapBuilderNode takes a constructor argument
specifying the kind of map to build.

● Types of maps:

– cameraMap (default)

– localMap

– worldMap

● If we ask for a localMap, the MapBuilder will project
shapes from camera space to ground space and then
import them into the local map.

02/01/16 15-494 Cognitive Robotics 8

Projecting To Ground

$nodeclass Example {

 // Construct line in camera space; MapBuilder projects to local space

 $nodeclass BuildIt : doStart {
 NEW_SHAPE(line, LineData, new LineData(camShS, Point(50,300),
 Point(150,450)));
 line->setColor("blue");
 }

 $nodeclass ProjectIt :
 MapBuilderNode(MapBuilderRequest::localMap) : doStart {
 mapreq.clearCamera = false;
 }

 $setupmachine{
 BuildIt =N=> ProjectIt =C=> SpeechNode("Done")
 }

}

02/01/16 15-494 Cognitive Robotics 9

Camera Space

02/01/16 15-494 Cognitive Robotics 10

Local Space

02/01/16 15-494 Cognitive Robotics 11

pursueShapes

● By default, the MapBuilder uses one image: whatever
view the camera is currently providing.

● We can ask it to move the camera around and construct
a local view from multiple images.

● Set pursueShapes = true to give the MapBuilder
permission to move the camera..

$nodeclass FindLines :
 MapBuilderNode(MapBuilderRequest::localMap) : doStart {
 mapreq.addObjectColor(lineDataType,”blue”);
 mapreq.pursueShapes = true;
}

02/01/16 15-494 Cognitive Robotics 12

Invoking The Map Builder

● Let's map the tic-tac-toe board:

02/01/16 15-494 Cognitive Robotics 13

Frame 1

02/01/16 15-494 Cognitive Robotics 14

Frame 2

02/01/16 15-494 Cognitive Robotics 15

Frame 3

02/01/16 15-494 Cognitive Robotics 16

Frame 4

02/01/16 15-494 Cognitive Robotics 17

Frame 5

02/01/16 15-494 Cognitive Robotics 18

Final Local Map

02/01/16 15-494 Cognitive Robotics 19

Where to Look?

● Start with the shapes visible in the camera frame.

● Move the camera to fixate each shape: get a better
look.

● If a line runs off the edge of the camera frame, move
the camera to try to find the line's endpoints.

– If the head can't rotate any further, give up on that endpoint.

● If an object is partially cut off by the camera frame,
don't add it to the map because we don't know its true
shape.

– Move the camera to bring the object into view.

02/01/16 15-494 Cognitive Robotics 20

Shape Matching Algorithm

● Shape type and color must match exactly.

● Coordinates must be a reasonably close match for
points, blobs, and ellipses.

● Lines and polygons are special, because endpoints may
be invalid:

– If endpoints are valid, coordinates should match.

– If invalid in local map but valid in ground space, update the
local map to reflect the true endpoint location.

● Coordinates are updated by weighted averaging.

02/01/16 15-494 Cognitive Robotics 21

Noise Removal

● Noise in the image can cause spurious shapes. A long
line might appear as 2 short lines separated by a gap,
or a noisy region might appear as a short line.

● Assign a confidence value to each shape in local map.

● Each time a shape is seen: increase its confidence.

● If a shape should be seen but is not, decrease its
confidence.

● Delete shapes with negative confidence.

02/01/16 15-494 Cognitive Robotics 22

MapBuilderRequest Parameters
● RequestType

– cameraMap

– groundMap

– localMap

– worldMap

● Shape parameters:

– objectColors

– occluderColors

– maxDist

– minBlobArea

– aprilTagFamily

– markerTypes

● Utility functions:

– clearCamera, clearLocal,
clearWorld

– RawY

● Lookout control:

– motionSettleTime

– numSamples

– sampleInterval

– pursueShapes

– searchArea

– doScan, dTheta

– manualHeadMotion

02/01/16 15-494 Cognitive Robotics 23

Relaxing the
Planar World Assumption

● We can perceive 3D shapes (e.g., cylinders) by
assuming the bottom edge lies on the ground plane.

● For cylinders:

– First look for non-trivial blobs
(minBlobArea > 1000)

– Bottom point of blob gives
distance to cylinder face

– Width of blob gives cylinder radius

– Top of blob gives cylinder height.

02/01/16 15-494 Cognitive Robotics 24

World Maps

● worldShS (the world shape space) holds the robot's
world map for navigation and localization.

● Examples of pre-specified world maps:

– Tic-tac-toe board of known size.

– Maze with known layout.

● Dynamically constructed world maps:

– Initialize from what's locally visible (localShS).

– As the robot moves, extend the world map.

– Transformation matrix maps local to world coordinates.

– SLAM: Simultaneous Localization and Matching
Not currentlly implemented; will get there some day.

● Updating the world map when objects move?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

