01/20/16

State Machines

15-494/694 Cognitive Robotics
David S. Touretzky &
Ethan Tira-Thompson

Carnegie Mellon
January 2016

Robot Control Architectures

State machines are the simplest and most widely used
robot control architecture.

Easy to implement; easy to understand.

Not very powerful:

- Action sequences must be laid out in advance, as a series of
state nodes.

- No dynamic planning.

- Failure handling must be programmed explicitly.

 But a good place to start.

01/20/16 15-494 Cognitive Robotics

Basic Idea

 Robot moves from state to state.
« Each state has an associated action: speak, move, etc.

 Transitions triggered by sensory events or timers.

Head button pressed:

play file “ping.wav"

15 second timer
expires

timer expires
P completed

Howl

play file
“howl. wav"

01/20/16 15-494 Cognitive Robotics

Types of State Nodes

« State nodes encapsulate complex actions, such as
creating and launching a motion command.

I BehaviorBase I

T

StateNode
MCNode<T> I \
I SoundNode I
LedNode I
IHeadPointerNodeI I WalkToTargetNode I I >peechNode I
I ArmNode I I MotionSequenceNode I
I LogNode I
I TailWagNode I Al of these
| PostureNode I contain Motion

Commands . .
I WalkEngineNode I |V|sualRoutlnesStateNodeI

01/20/16 -494 Cognitive Robotics 4

Types of

Transitions

HeferenceCounter

EventListener

01/20/16

BehaviorBase

CompletionTrans

CompareTrans< T = fall————

smoothCompareTrans<T =

ConnectionMadeTrans

EventTrans

GrasperTrans

MNullTrans el

RandomTrans

Transition

Pilot Trans

SignalTrans«<T >

TextMsgTrans

TimeQutTrans

VisualTargetCloseTrans

VisualTargetTrans

15-494 Cognitive Robotics

LostTargetTrans

Both State Nodes and
Transitions Are Behaviors

« StateNode and Transition are both subclasses of
BehaviorBase.

« Tekkotsu behaviors can contain arbitrary C+4 code
and can generate and/or receive events.

« Transitions:

- A transition's start() method is called whenever its source
state node becomes active.

- Transitions listen for sensor, timer, or other events, and
when their conditions are met, they fire.

- When a transition fires, it deactivates its source node(s)
and then activates its target node(s).

01/20/16 15-494 Cognitive Robotics

Transition firing activates state node Look.

/@ i

Look > >

-

T

01/20/16 15-494 Cognitive Robotics

Look's start() calls StateNode::start().

/@ i

Look > >

7

T

01/20/16 15-494 Cognitive Robotics

Outgoing transitions become active and
begin listening for events.

/@]

Look [-

7

T

01/20/16 15-494 Cognitive Robotics

Random things happen....

e o e

Look

7

01/20/16 15-494 Cognitive Robotics

Reach

10

And then, something we've been looking for...

Look >

7

01/20/16 15-494 Cognitive Robotics

11

01/20/16

Transition decides to fire.

ﬁ@ »

Look [-

7 \’<

15-494 Cognitive Robotics

12

01/20/16

Transition deactivates the source node, Look.

ﬁ@ »

Look > >

e \./
—

15-494 Cognitive Robotics

13

01/20/16

Transition activates the target node, Reach.

/ Look
/ \‘/
\

15-494 Cognitive Robotics

14

01/20/16

Transition deactivates.

Look

/

7

/@]

> >

T

15-494 Cognitive Robotics

15

01/20/16

Reach activates its outgoing transition, which
starts listening for events as Reach performs
whatever action it's supposed to.

—

15-494 Cognitive Robotics

16

State Machine Compiler

Tekkotsu programmers don't normally write C++ code
to build state machines one node or link at a time.

Why not?

- |t's tedious.

- It's error-prone.

Instead they use a shorthand notation.

The shorthand is turned into C++ by a state machine
compiler.

01/20/16 15-494 Cognitive Robotics

17

Shorthand Notation

Head button pressed:

play file "ping.wav"

15 second timer
expires

5 second

bark: SoundNode(”"barkmed.wav”) timer expires

completed

Howl

play file
“howl. wav™

howl: SoundNode(”"howl.wav”)

wait: StateNode

bark =T(5000)=> howl

bark =B(RobotlInfo::PlayButOffset)[setSound(“ping.wav”)]=> wait
howl =C=> wait

wait =T(15000)=> bark

01/20/16 15-494 Cognitive Robotics 18

Real Code: AnnoyingDog.cc.fsm

#include “Behaviors/StateMachine.h”
$nodeclass AnnoyingDog {
$setupmachine{

bark: SoundNode(”"barkmed.wav”)
bark =T(5000)=> howl
bark =B(RobotlInfo::PlayButOffset)[setSound(“ping.wav”)]=> wait

howl: SoundNode(”"howl.wav”)
howl =C=> wait

wait: StateNode
wait =T(15000)=> bark

}

}
REGISTER _BEHAVIOR(AnnoyingDog);

01/20/16 15-494 Cognitive Robotics 19

Advanced Shorthand: Chaining

« “Kiddie code”:
say_hi: SpeechNode(“Hi")
say _bye: SpeechNode(“Bye”)
say_why: SpeechNode(“Why")
say_hi =T(3000)=> say bye

say bye =T(3000)=> say why

e Chained code:

SpeechNode(“hi”) =T(3000)=>
SpeechNode(“bye”) =T(3000)=>
SpeechNode(“why”)

01/20/16 15-494 Cognitive Robotics

20

Good Coding Style

« If a node has multiple outgoing transitions, don't use

chaining.

- Define the node first, on a separate line, with a label.

- Then write each of the transitions below it.

« It's good to chain if a node has only one transition.

« Example:

01/20/16

o]0
o]0
o]0

<.

\

4

LookForToys
=S=> SpeechNode(“a toy!”) =C=> trygrab
=F=> askforhelp

15-494 Cognitive Robotics

21

Extensions to the Basic Formalism

« Extension 1: multi-states (parallelism).

- Several states can be active at once.
- Provides for parallel processing (but coroutines, not threads).

« Extension 2: hierarchical structure.

- State machines can nest inside other state machines.

- Extension 3: message passing.

- When a state posts an event that triggers a transition, it can
include a message that will be passed to the destination state.

- This makes state transitions resemble procedure calls.

01/20/16 15-494 Cognitive Robotics 22

01/20/16

Multi-State Machines

null transition Head button pressed:

play file “ping.wav”

15 second timer
expires

howl

o second completed

timer expires

15-494 Cognitive Robotics

23

Blink Using LedEngine::cycle()

e Blink uses a motion command called LedMC, which is a
child of LedEngine.

« The LedEngine::cycle() method never completes.

« When the howl completes, we want to leave both the
howl state and the blink state.

« We can do this by telling CompletionTrans that only one
of its source nodes needs to signal a completion in
order for the transition to fire.

« When it does fire, it will deactivate both source nodes.

01/20/16 15-494 Cognitive Robotics 24

file: BarkHowlBlinkBehavior.cc.fsm

$setupmachine{
// Annoying dog with blinking LEDs

launch: StateNode =N=> {noblink, bark}

noblink:

bark: SoundNode("barkmed.wav")

bark =B(PlayButOffset)[setSound("ping.wav")]=> wait

bark =T(5000)=> {howl, blink}

howl: SoundNode("howl.wav")

blink: LedNode[getMC()->cycle(RobotInfo::AlLlLLEDMask, 1500, 1.0)]
{howl, blink} =C(1l)=> wait

walt: StateNode =T(15000)=> bark

}

What if we instead wrote this?
{howl, blink} =C=> wait

01/20/16 15-494 Cognitive Robotics 25

NoBlink in the Background

« When the robot isn't howling, we want all its LEDs to
stay dark.

 But we can terminate the Blink node at any time; the
LedNode might leave the LEDs in a partially-on state.

« Solution: have a second LEDNode called NoBlink
programmed to keep the LEDs dark, but assign it a low
priority.

« The Blink node will override NoBlink when it's active.

« When Blink is not active, NoBlink will keep the LEDs
dark.

01/20/16 15-494 Cognitive Robotics 26

file: BarkHowlBlinkBehavior.cc.fsm

$setupmachine{
// Annoying dog with blinking LEDs

launch: StateNode =N=> {noblink, bark}

noblink: LedNode [setPriority(MotionManager::kBackgroundPriority);
getMC()->set(RobotInfo: :ALLLEDMask,0.0)]

bark: SoundNode("barkmed.wav")

bark =B(PlayButOffset)[setSound("ping.wav")]=> wait

bark =T(5000)=> {howl, blink}

howl: SoundNode("howl.wav")

blink: LedNode[getMC()->cycle(RobotInfo::AlLLLEDMask, 1500, 1.0)]
{howl, blink} =C(1)=> wait

walt: StateNode =T(15000)=> bark

}

01/20/16 15-494 Cognitive Robotics 27

Summary of Shorthand Notation

Instantiating a node:
label: NodeClass(constructor _args)linitializers]

Labels must begin with a lowercase letter.
Class names must begin with an uppercase letter.

Transition, short form examples:
source =C=> target
source =T(n)=> target
source =E(qg,s,t)=> target

Transition, long form:

source >== transname:
TransitionClass(constructor_args)linitializers] ==> targetnode

Multiple sources/targets:

{srcl, src2, ...} =Transition=> {targl, targ2, ...}

01/20/16 15-494 Cognitive Robotics 28

Short and Long Forms

>==NullTrans==> =N=>
>==CompletionTrans==> =C=>
>==CompletionTrans(n)==> =C(n)=>
>==TimeoutTrans(t)==> =T(t)=>
>==FEventTrans(g,s,t)==> =E(g,s,t)=>
>== Eventlrans(EventBase::buttonEGID,

S) ==> =B(s)=>
>== TextMsgTrans(str)==> =TM(str)=>
>==RandomTrans==> =RND=>
>==SignalTrans<T>==> =S<T>=>
>==SjignalTrans<T>(v)==> =S<T>(v)=>

success or failure transitions =S=> or =F=>

01/20/16 15-494 Cognitive Robotics 29

Defining the Start Node

 If there is a node labeled startnode, it will be taken as
the start node of the state machine.

e |f there is no startnode, then the first node instance
defined in the file is taken as the start node.

« Example:
apple =C=> pear =C=> apple
pear: SpeechNode(“pear”)
apple: SpeechNode(“apple”)

The start node will be pear, since it is the first node
Instance defined.

01/20/16 15-494 Cognitive Robotics 30

Defining New Node Classes

#include “Behaviors/StateMachine.h”
$nodeclass MyMachine {

$nodeclass Greet : StateNode : doStart {
cout << “Hello there!” << endl;

}

$nodeclass Sendoff : SpeechNode : doStart {
textstream << “So long!” << endl;

}
$setupmachine{

startnode: Greet =T(5000)=> Sendoff
}

}
REGISTER BEHAVIOR(MyMachine);

01/20/16 15-494 Cognitive Robotics

Compiling Your FSM

 The Makefile looks for files with names of form *.fsm
and automatically runs them through the state machine
compiler, called “stateparser”.

 BarkHowlIBlinkBehavior.cc.fsm generates a pure C++
file called BarkHowlIBlinkBehavior-fsm.cc.

e The .cc file is stored In:
~/project/build/PLATFORM_ LOCAL/TARGET xxx/

* You can run the stateparser directly:

stateparser BarkHowlIBlinkBehavior.cc.fsm -

01/20/16 15-494 Cognitive Robotics 32

b Tekkotsu Viewer
FEile Edit Window

=R -

“ *ftmp/bark.ts] &2

Storyboard Tool:

| DstBehavior |

blink

State Machine
Layout

Monitor | Layout | Model Source | Layout Source

0

35

||||||||||||||||||||'2|{]||||'2|5||||3|{]|||||||||q-|ﬂ||||q-|5||||5|{]||||5|5||||6|{]||||6|5||||?:{]||||?:5||||S|{]||

| DstBehavior

bark : | bark

[bd

| wait : | wait : | wait :
[how] [how! how
blink blink blink
=
e | [+

01/20/16

15-494 Cognitive Robotics

33

Storyboard Tool: Storyboard Display

L d Tekkotsu Viewer
File Edit Window
=K -2
L. */afs/cs.cmu.edufuser/dst/Sony/Tekkotsu/tools/storyboard/samples/complex/complex.ts| 22 = O | Properties] Runtime View 32| = O
N []
o [r— Port 10080 = Current selection :14.2565 had
=~ Timer
Name | Explore State Machine
P activate at: 8.885s
Download Model || New Trace || [l "D deactivate at; 27.0s
] type: state
= Timer--5it 2
a
fire at: 27.001s
o
= type: transition
= Sit
E activate at: 27.002s
K| ke] deactivate at; 27.55
Monitor La\rﬂut| Model Source | Layout Source type: state ™
0....3. .8 8.5 8.8 A0, 15,20, 25 27530 35 40 45 50 55 60 =
ﬂ_ N T
P W)
@ Pink % Follow
el oy
— { sit > ;
e
S N
Sound
L ek .
. Up. b
. Pung
8y T
¢ Sniff - £ L
. Look B
L& B 1]
I7ZU710 O Bl v A 3 \JUQUJLIVU INUDOULUITS

Storyboard Tool: Snapshots

b4 Tekkotsu Viewer

File Edit Window

EH| ™ &

|| % ¥jafsfcs.cmu.edyjuserfdst/S... | fafs/cs.cmu.edyjuseridst/So... | *fafs/cs.cmu.edufuser/dsyS... 52| = O Properties| I Runtime View 52| = O
e —|'v cument selection:9.491s [*] |

Host |localhost Port 10080

=~ |Image:Image
Logging Test Name | Explore State Machine
record at: 8.457s

Download Model || New Trace || 00 || *= type: image
: = Waiting

activate at: 8.4950000000000(
deactivate at: 18.201s

i,

i

type: state
= Logging Test

E activate at: 0.0s -

|¢| — — ./// |1:|_“ deactivate at: 57.206s]|

£ B |

Monitor| Layout| Model Source | Layout Source|
\;il-'j'@vzﬁé?flimageﬁwiewﬁi@i {):ﬁ

B Storyboard X

0 15182 20,2837 2518 30 3599 3599 40 4585 4541 &Y

S,

Logging Test

m Webcam ESSE{QE ESSE{QE

Waiting F Waiting Waiting I Waiting I:
e [»]

| O AN 1115155555 s s s b O

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

