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Robot Control Architectures

State machines are the simplest and most widely used
robot control architecture.

Easy to implement; easy to understand.

Not very powerful:

- Action sequences must be laid out in advance, as a series of
state nodes.

- No dynamic planning.

- Failure handling must be programmed explicitly.

 But a good place to start.
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Basic Idea

 Robot moves from state to state.
« Each state has an associated action: speak, move, etc.

 Transitions triggered by sensory events or timers.

Head button pressed:

play file “ping.wav"

15 second timer
expires

timer expires
P completed

Howl

play file
“howl. wav"
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Types of State Nodes

« State nodes encapsulate complex actions, such as
creating and launching a motion command.

I BehaviorBase I

T

StateNode
MCNode<T> I \
I SoundNode I
LedNode I
IHeadPointerNodeI I WalkToTargetNode I I >peechNode I
I ArmNode I I MotionSequenceNode I
I LogNode I
I TailWagNode I Al of these
| PostureNode I contain Motion

Commands . .
I WalkEngineNode I |V|sualRoutlnesStateNodeI
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Types of

Transitions

HeferenceCounter

EventListener
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BehaviorBase

CompletionTrans

CompareTrans< T = fall————

smoothCompareTrans<T =

ConnectionMadeTrans

EventTrans

GrasperTrans

MNullTrans el

RandomTrans

Transition

Pilot Trans

SignalTrans«<T >

TextMsgTrans

TimeQutTrans

VisualTargetCloseTrans

VisualTargetTrans
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Both State Nodes and
Transitions Are Behaviors

« StateNode and Transition are both subclasses of
BehaviorBase.

« Tekkotsu behaviors can contain arbitrary C+4 code
and can generate and/or receive events.

« Transitions:

- A transition's start() method is called whenever its source
state node becomes active.

- Transitions listen for sensor, timer, or other events, and
when their conditions are met, they fire.

- When a transition fires, it deactivates its source node(s)
and then activates its target node(s).

01/20/16 15-494 Cognitive Robotics



Transition firing activates state node Look.

/@ i

Look > >

-

T
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Look's start() calls StateNode::start().

/@ i

Look > >

7

T
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Outgoing transitions become active and
begin listening for events.

/@ ]

Look [ -

7

T
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Random things happen....

e o e

Look

7
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And then, something we've been looking for...

Look >

7
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Transition decides to fire.

ﬁ@ »

Look [ -

7 \’<
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Transition deactivates the source node, Look.

ﬁ@ »

Look > >

e \./
—
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Transition activates the target node, Reach.

/ Look
/ \‘/
\
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Transition deactivates.

Look

/

7

/@ ]

> >

T
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Reach activates its outgoing transition, which
starts listening for events as Reach performs
whatever action it's supposed to.

—
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State Machine Compiler

Tekkotsu programmers don't normally write C++ code
to build state machines one node or link at a time.

Why not?

- |t's tedious.

- It's error-prone.

Instead they use a shorthand notation.

The shorthand is turned into C++ by a state machine
compiler.
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Shorthand Notation

Head button pressed:

play file "ping.wav"

15 second timer
expires

5 second

bark: SoundNode(”"barkmed.wav”) timer expires

completed

Howl

play file
“howl. wav™

howl: SoundNode(”"howl.wav”)

wait: StateNode

bark =T(5000)=> howl

bark =B(RobotlInfo::PlayButOffset)[setSound(“ping.wav”)]=> wait
howl =C=> wait

wait =T(15000)=> bark
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Real Code: AnnoyingDog.cc.fsm

#include “Behaviors/StateMachine.h”
$nodeclass AnnoyingDog {
$setupmachine{

bark: SoundNode(”"barkmed.wav”)
bark =T(5000)=> howl
bark =B(RobotlInfo::PlayButOffset)[setSound(“ping.wav”)]=> wait

howl: SoundNode(”"howl.wav”)
howl =C=> wait

wait: StateNode
wait =T(15000)=> bark

}

}
REGISTER _BEHAVIOR(AnnoyingDog);
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Advanced Shorthand: Chaining

« “Kiddie code”:
say_hi: SpeechNode(“Hi")
say _bye: SpeechNode(“Bye”)
say_why: SpeechNode(“Why")
say_hi =T(3000)=> say bye

say bye =T(3000)=> say why

e Chained code:

SpeechNode(“hi”) =T(3000)=>
SpeechNode(“bye”) =T(3000)=>
SpeechNode(“why”)
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Good Coding Style

« If a node has multiple outgoing transitions, don't use

chaining.

- Define the node first, on a separate line, with a label.

- Then write each of the transitions below it.

« It's good to chain if a node has only one transition.

« Example:

01/20/16

o]0
o]0
o]0

<.

\

4

LookForToys
=S=> SpeechNode(“a toy!”) =C=> trygrab
=F=> askforhelp
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Extensions to the Basic Formalism

« Extension 1: multi-states (parallelism).

- Several states can be active at once.
- Provides for parallel processing (but coroutines, not threads).

« Extension 2: hierarchical structure.

- State machines can nest inside other state machines.

- Extension 3: message passing.

- When a state posts an event that triggers a transition, it can
include a message that will be passed to the destination state.

- This makes state transitions resemble procedure calls.
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Multi-State Machines

null transition Head button pressed:

play file “ping.wav”

15 second timer
expires

howl

o second completed

timer expires
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Blink Using LedEngine::cycle()

e Blink uses a motion command called LedMC, which is a
child of LedEngine.

« The LedEngine::cycle() method never completes.

« When the howl completes, we want to leave both the
howl state and the blink state.

« We can do this by telling CompletionTrans that only one
of its source nodes needs to signal a completion in
order for the transition to fire.

« When it does fire, it will deactivate both source nodes.
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file: BarkHowlBlinkBehavior.cc.fsm

$setupmachine{
// Annoying dog with blinking LEDs

launch: StateNode =N=> {noblink, bark}

noblink:

bark: SoundNode("barkmed.wav")

bark =B(PlayButOffset)[setSound("ping.wav")]=> wait

bark =T(5000)=> {howl, blink}

howl: SoundNode("howl.wav")

blink: LedNode[getMC()->cycle(RobotInfo::AlLlLLEDMask, 1500, 1.0)]
{howl, blink} =C(1l)=> wait

walt: StateNode =T(15000)=> bark

}

What if we instead wrote this?
{howl, blink} =C=> wait
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NoBlink in the Background

« When the robot isn't howling, we want all its LEDs to
stay dark.

 But we can terminate the Blink node at any time; the
LedNode might leave the LEDs in a partially-on state.

« Solution: have a second LEDNode called NoBlink
programmed to keep the LEDs dark, but assign it a low
priority.

« The Blink node will override NoBlink when it's active.

« When Blink is not active, NoBlink will keep the LEDs
dark.
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file: BarkHowlBlinkBehavior.cc.fsm

$setupmachine{
// Annoying dog with blinking LEDs

launch: StateNode =N=> {noblink, bark}

noblink: LedNode [setPriority(MotionManager::kBackgroundPriority);
getMC()->set(RobotInfo: :ALLLEDMask,0.0)]

bark: SoundNode("barkmed.wav")

bark =B(PlayButOffset)[setSound("ping.wav")]=> wait

bark =T(5000)=> {howl, blink}

howl: SoundNode("howl.wav")

blink: LedNode[getMC()->cycle(RobotInfo::AlLLLEDMask, 1500, 1.0)]
{howl, blink} =C(1)=> wait

walt: StateNode =T(15000)=> bark

}
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Summary of Shorthand Notation

Instantiating a node:
label: NodeClass(constructor _args)linitializers]

Labels must begin with a lowercase letter.
Class names must begin with an uppercase letter.

Transition, short form examples:
source =C=> target
source =T(n)=> target
source =E(qg,s,t)=> target

Transition, long form:

source >== transname:
TransitionClass(constructor_args)linitializers] ==> targetnode

Multiple sources/targets:

{srcl, src2, ...} =Transition=> {targl, targ2, ...}
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Short and Long Forms

>==NullTrans==> =N=>
>==CompletionTrans==> =C=>
>==CompletionTrans(n)==> =C(n)=>
>==TimeoutTrans(t)==> =T(t)=>
>==FEventTrans(g,s,t)==> =E(g,s,t)=>
>== Eventlrans(EventBase::buttonEGID,

S) ==> =B(s)=>
>== TextMsgTrans(str)==> =TM(str)=>
>==RandomTrans==> =RND=>
>==SignalTrans<T>==> =S<T>=>
>==SjignalTrans<T>(v)==> =S<T>(v)=>

success or failure transitions =S=> or =F=>
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Defining the Start Node

 If there is a node labeled startnode, it will be taken as
the start node of the state machine.

e |f there is no startnode, then the first node instance
defined in the file is taken as the start node.

« Example:
apple =C=> pear =C=> apple
pear: SpeechNode(“pear”)
apple: SpeechNode(“apple”)

The start node will be pear, since it is the first node
Instance defined.
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Defining New Node Classes

#include “Behaviors/StateMachine.h”
$nodeclass MyMachine {

$nodeclass Greet : StateNode : doStart {
cout << “Hello there!” << endl;

}

$nodeclass Sendoff : SpeechNode : doStart {
textstream << “So long!” << endl;

}
$setupmachine{

startnode: Greet =T(5000)=> Sendoff
}

}
REGISTER BEHAVIOR(MyMachine);
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Compiling Your FSM

 The Makefile looks for files with names of form *.fsm
and automatically runs them through the state machine
compiler, called “stateparser”.

 BarkHowlIBlinkBehavior.cc.fsm generates a pure C++
file called BarkHowlIBlinkBehavior-fsm.cc.

e The .cc file is stored In:
~/project/build/PLATFORM_ LOCAL/TARGET xxx/

* You can run the stateparser directly:

stateparser BarkHowlIBlinkBehavior.cc.fsm -
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Storyboard Tool: Storyboard Display
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Storyboard Tool: Snapshots
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