15-494/694: Cognitive Robotics

Dave Touretzky

Lecture 16:

Machine learning with scikit-learn

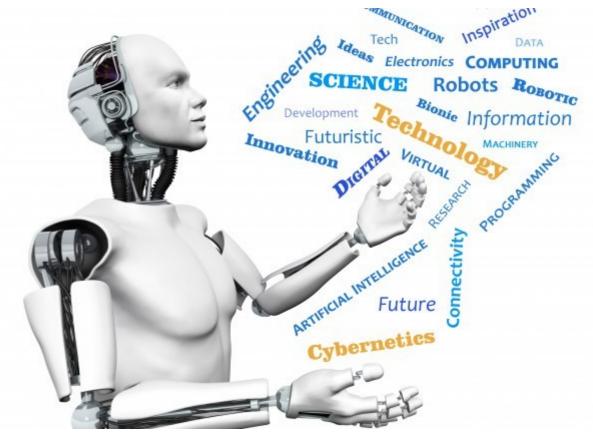


Image from http://www.futuristgerd.com/2015/09/10

Machine Learning

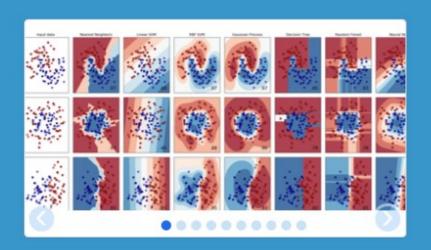
- ML is a branch of Artificial Intelligence.
- "Learning" does not mean human-like learning.
- It means extracting information from data. This has many uses in robotics.
- Types of learning algorithm:
 - Supervised (labeled data)
 - Unsupervised (unlabeled data)
 - Reinforcement

scikit-learn

 Open source collection of machine learning algorithms implemented in Python.

Documentation at scikit-learn.org

Installed on the lab machines:
 import sklearn



scikit-learn

Machine Learning in Python

- Simple and efficient tools for data mining and data analysis
- Accessible to everybody, and reusable in various contexts
- · Built on NumPy, SciPy, and matplotlib
- · Open source, commercially usable BSD license

Classification

Identifying to which category an object belongs to.

Applications: Spam detection, Image

recognition.

Algorithms: SVM, nearest neighbors,

random forest, ... Examples

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices. Algorithms: SVR, ridge regression, Lasso,

Examples

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes

Algorithms: k-Means, spectral clustering,

mean-shift, ... Examples

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased

efficiency

Algorithms: PCA, feature selection, nonnegative matrix factorization. Examples

Model selection

Comparing, validating and choosing parameters and models.

Goal: Improved accuracy via parameter tuning

Modules: grid search, cross validation,

metrics. Examples

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as text for use with machine learning algorithms. Modules: preprocessing, feature extraction.

Examples

Supervised Learning

- For each training point, there is a desired output value.
- Error measure: difference between actual output and desired output.
 - Example: sum-squared error

$$E = \sum (d_i - y_i)^2$$

 Learning adjusts the model parameters to reduce the error.

Unsupervised Learning

 Data points are unlabeled: there is no "correct" answer.

Learning discovers structure in the data.

Examples:

- Clustering: finding categories.
- Dimensionality reduction: finding key features and relationships between features. Useful for data compression.

Reinforcement Learning

- Used for sequential decision problems.
- Model is trained via a reinforcement signal that tells it how well it is doing.
- We don't tell it the right answer, just reward it when it does well.

- Example:
 - Learning to play a game by reinforcing wins. Program can learn by playing against itself.

Supervised Learning: Classification

- Desired outputs may be binary, or probabilities of class membership.
- Examples:
 - Tell "spam" from "not spam".
 - Distinguish images containing cats from those without cats.
 - Recognize handwritten digits 0-9.

Supervised Learning: Regression

Desired outputs are continuous, possibly vectors.

Examples:

- Interpolate values of a nonlinear function.
- Predict stock prices.
- Calculate inverse kinematics solutions for a non-linear robot.

Parametric vs. Non-Parametric Models

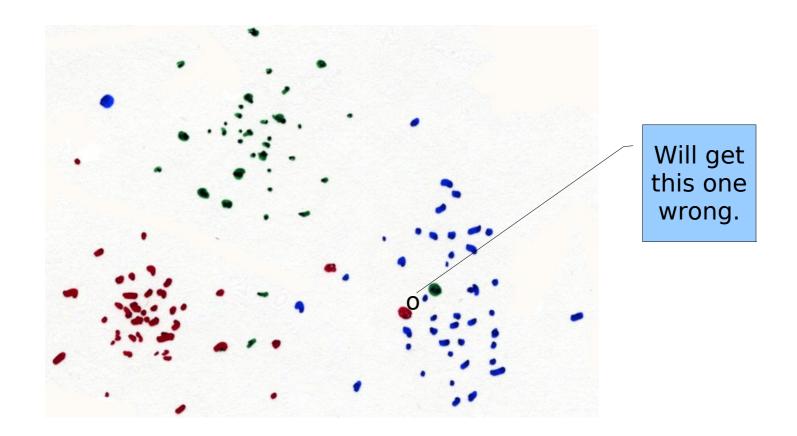
- Parametric models describe data using equations with a small number of parameters.
 - Example: Gaussian distribution.
 - Parameters are mean μ and variance σ
- Pros: compact representation; easy to test new data points.
- Cons: what if your data doesn't fit the equation?

Parametric vs. Non-Parametric Models

- Non-parametric models don't make any assumptions about the distribution of the data. The data represents itself.
 - Particle filters are non-parametric models.
- Pros: "training" is instantaneous. Can represent arbitrary distributions.
- Cons: can take a lot of memory to store all the data, and classifying new points can be slow.

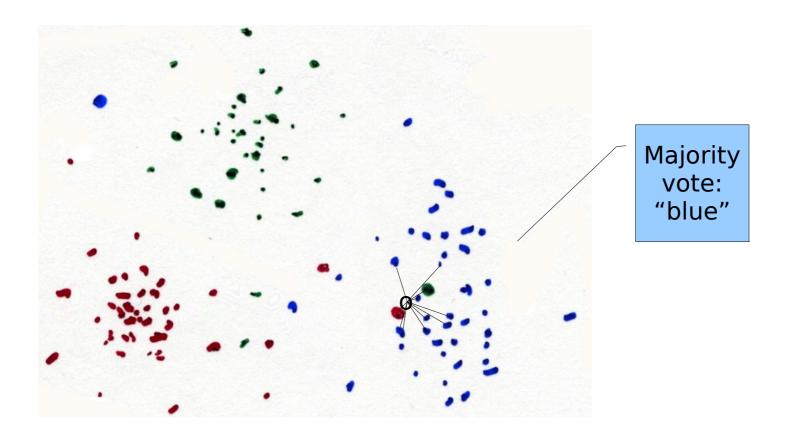
Nearest-Neighbor Classifier

- Simplest non-parametric classifier.
- Noisy data can be a problem.



k-Nearest-Neighbor

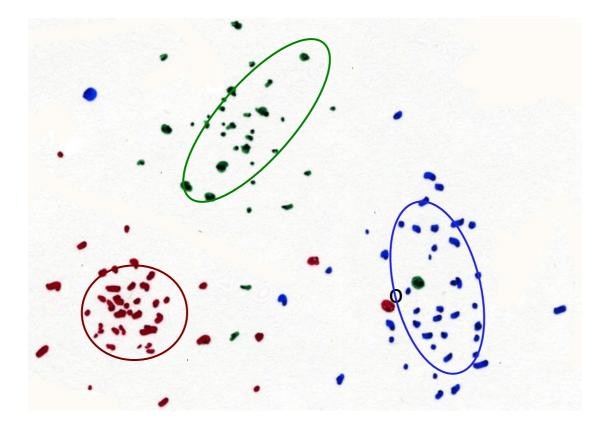
- Still a non-parametric classifier.
- Majority vote to find the correct class.



Gaussian Mixture Model

Parametric model: Gaussian distributions.

$$p(x \mid \mu, \sigma) = e^{\frac{-(x-\mu)^2}{\sigma^2}}$$



How do we find the correct values of the parameters?

Learning algorithm!

Sample Learning Problem: Color Classes

Assume objects come in a small number of colors.

- We want to know what the colors are.
 - This is a clustering problem.
- Given a new object, we want to determine its color class.
 - This is a classification problem.

Training Data: RGB Values

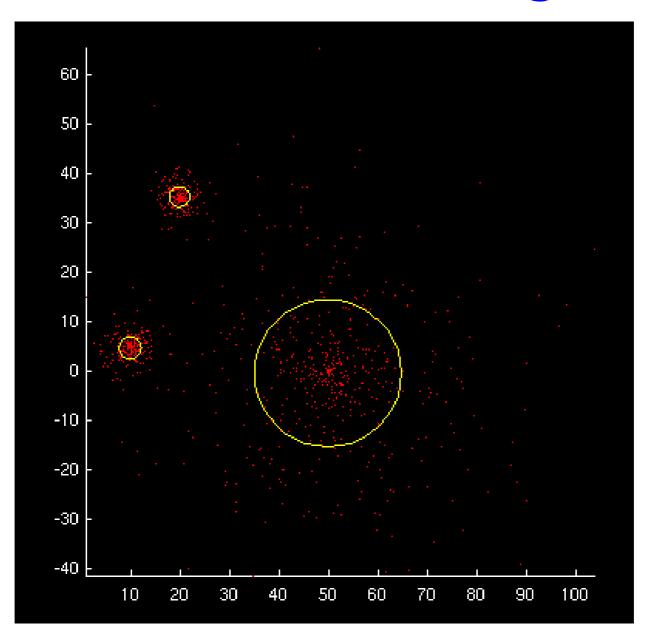
Feature Space

- Three-dimensional feature space: RGB.
- 320 x 240 = 76,800 data points per image.
- Let's assume that each color class can be modeled as a gaussian distribution:
 - Mean color μ
 - Covariance matrix Σ

Expectation-Maximization Algorithm

- Unsupervised learning algorithm for finding clusters in data.
- Learns the μ and Σ parameters for a set of gaussians.
- You must guess the number of classes.
- Runs quickly but can get stuck in local minima.

E-M Clustering



E-M Algorithm

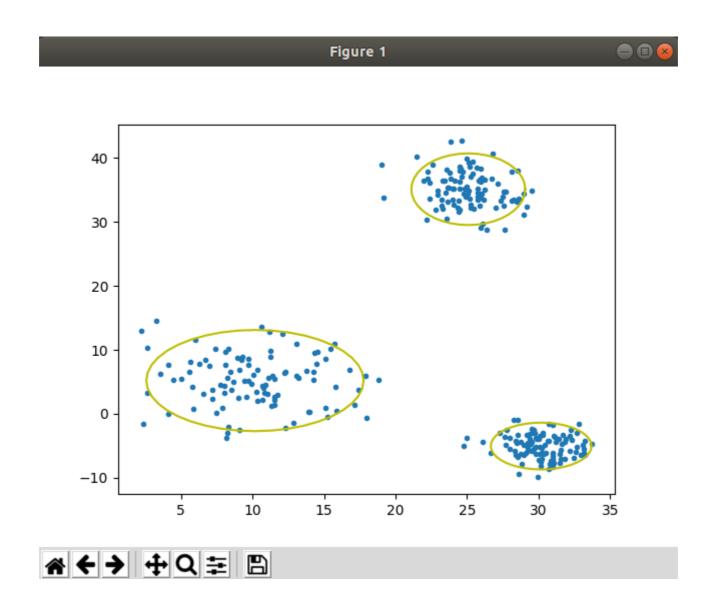
- Expectation step:
 - For each point \mathbf{x} , for each gaussian (μ_i, Σ_i) , calculate the likelihood of \mathbf{x} having been generated by the *i*-th gaussian: $P(\mathbf{x}|\mu_i, \Sigma_i)$.
- Maximization step:
 - For each gaussian, recalculate its mean and covariance μ_i , Σ_i based on the likelihood-weighted data points.
- Repeat for several iterations.

E-M in scikit-learn

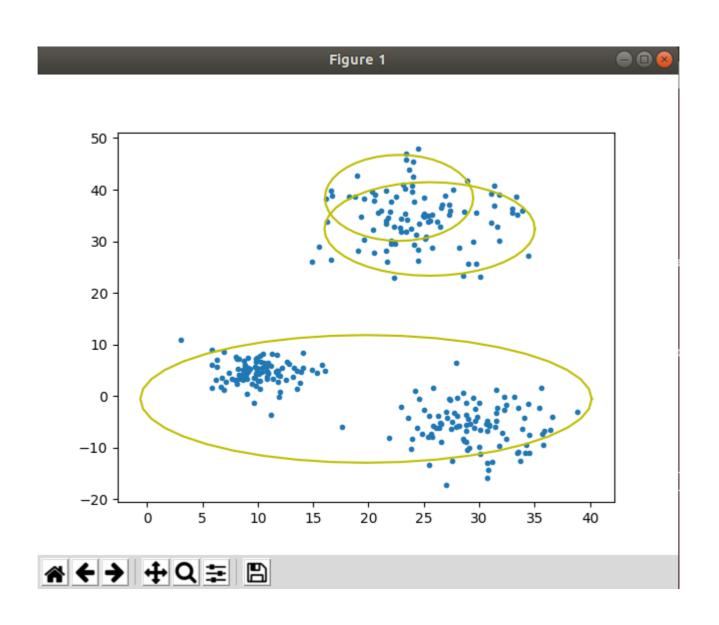
```
from sklearn.mixture import GaussianMixture
gmm = GaussianMixture(n_components=7)
gmm.fit(data)
means = gmm.means_
covariances = gmm.covariances_
```

```
classes = gmm.predict(new data)
```

emdemo.py



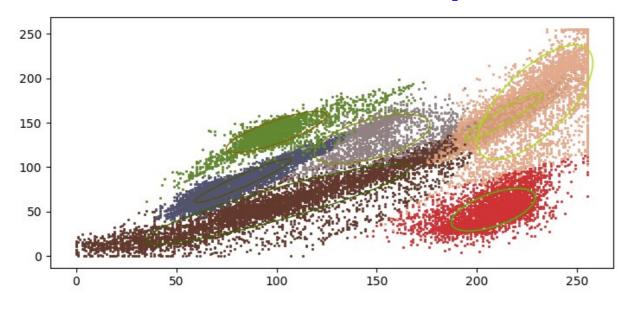
EM doesn't always succeed



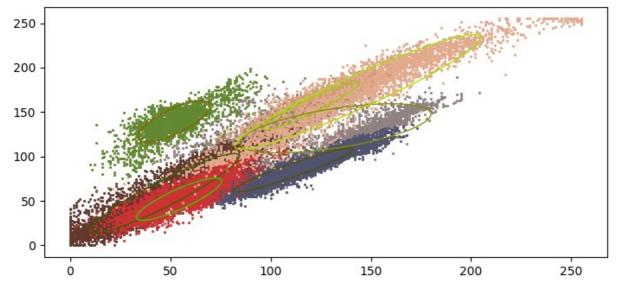
Color Classification: Visualizing the Result

- Each color class is modeled as an ellipsoid in 3D space (RGB space).
- Too hard to plot. So instead:
 - Generate R-vs-G and B-vs-G plots.
 - Draw the ellipses in feature space determined by the covariance values.

Scatter Plots With Gaussian Ellipses



Red vs. Green



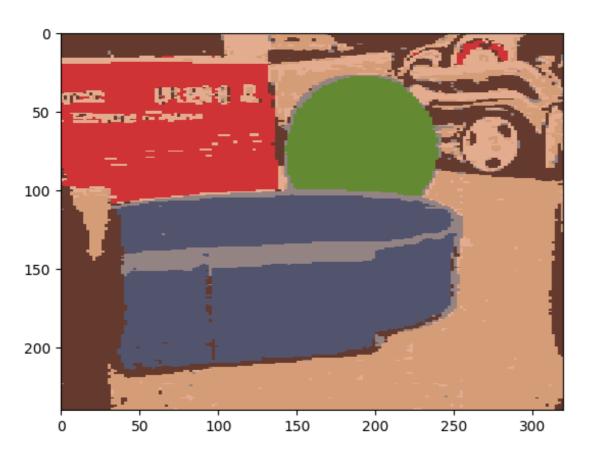
Blue vs. Green

Classification

- Once we've learned the color classes, we can assign a class to each pixel.
 - This gives us a color-quantized image.

 Can then use these color classes to classify new images the same way.

Classified Image



Refinements

 Can detect local minima by checking the density of points near the mean of the gaussian.

- Split/merge EM can reallocate gaussians if some are being wasted and others are spread between two clusters.
- BayesianGaussianMixture class in scikit-learn can infer the number of effective components.