
02/22/16 1

Path Planning

15-494 Cognitive Robotics
David S. Touretzky &
Ethan Tira-Thompson

Carnegie Mellon
Spring 2016

02/22/16 2

Outline

● Path planning as state space search

● RRTs: Rapidly-exploring Random Trees

● The RRT-Connect algorithm

● Collision detection

● Smoothing

● Path planning with constraints

● Path planning in Tekkotsu

02/22/16 3

Path Planning in Robotics

1. Navigation path planning

– How to get from the robot's current location to a goal.

– Avoid obstacles.

– Provide for localization.

2. Manipulation path planning

– Move an arm to grasp and manipulate an object.

– Avoid obstacles.

– Obey constraints (e.g., don't spill the coffee).

02/22/16 4

Navigation Planning

● 2D state space: (x,y) coordinates of the robot

– Treat the robot as a point or a circle.

● 3D state space: (x,y,) pose of the robot

– Heading matters when the robot is asymmetric

– Heading matters when the robot's motion is constrained

Obstacle
inflation

02/22/16 5

Cspace Transform

● The area around an obstacle that would cause a
collision with the robot.

Robot

Obstacle

Cspace

Figure 4.4 - Mason, Mechanics Of Robotic Manipulation

02/22/16 6

Arm Path Planning

● Cspace transform blocks out regions of joint space

Figure 4.5 - Mason, Mechanics Of Robotic Manipulation

2 3
1

4

02/22/16 7

State Space Search

The path planning problem:

Given an n-dimensional state space and

● a start state S=[s
1
,s

2
,...,s

n
]

● a goal state G=[g
1
,g

2
,...,g

n
]

● an admissibility predicate P (collision test + constraints)

find a path from S to G such that every state on the path
satisfies P.

02/22/16 8

Best First Search

● Can get trapped in a cul de sac for a long time.

● Random search might be faster.

SS GG

02/22/16 9

Rapidly-exploring Random Trees

● Described in LaValle (1998), Kuffner & LaValle (2000)

● Create a tree with start state S as the root.

● Repeat up to K times:

– Pick a point q in configuration space:

● Sometimes q should be a random point
● Sometimes q should be the goal state G

– Find n, the closest tree node to q

– Add a new node n' some distance toward q; make it a
child of n

– If n' is close enough to the goal state G, return.

02/22/16 10

RRT Algorithm

● Rapidly samples the state space.

● Cannot get trapped in local
minima.

● Works well in high-dimensional
spaces.

● Does not generate smooth paths.

● Can't tell when no solution exists;
only quits when it exceeds the
iteration limit K.

http://msl.cs.uiuc.edu/rrt/treemovie.gif

http://msl.cs.uiuc.edu/rrt/treemovie.gif

02/22/16 11

RRTs for Arm Path Planning

● Each node encodes an
arm configuration in
joint space.

● Only add nodes that
don't cause collisions
(with self or obstacles).

● Alternately (i) extend the
tree in random directions
and (ii) move toward the goal.

Slide courtesy of Glenn Nickens

02/22/16 12

Implementation Notes
● Finding n, the nearest node in the tree to q, is the most

expensive part of the algorithm.

– Use K-D trees to efficiently find n?

– In practice, K-D trees are slower unless you have a huge
number of nodes (several thousand).

● Why only go a distance toward the goal state G? Why
not go as far as we can, in steps of ?

– With no obstacles, this reaches the goal very quickly, but
random search will get there nearly as quickly as we
keep extending the nearest node to the goal.

– But when obstacles are present, this can waste time filling
out branches that will ultimately fail.

– Generating lots of extra nodes bloats the tree, which slows
down the algorithm.

02/22/16 13

RRT-Connect Algorithm
● Variant of RRT that grows two trees:

– one from the start state toward the goal

– one from the goal state toward the start

● When the two trees
connect, a solution
has been found.

● Not guaranteed to
be better than RRT,
but often helps.

Goal

02/22/16 14

RRTs in the VeeTags World

02/22/16 15

RRT-Connect For Arms

Slide courtesy of Glenn Nickens

● Use IK to calculate the
goal configuration.

● Use FK to calculate
arm configurations for
collision detection.

02/22/16 16

Collision Detection

● Represent the robot and the obstacles as convex
polygons.

● In 2D, use the Separating Axis Theorem to check for
collisions.

– Easy to code

– Fast to compute

● In 3D, things get more complex.

– Tekkotsu uses the GJK (Gilbert-Johnson-Keerthi) algorithm,
used in many physics engines for video games.

02/22/16 17

Separating Axis Theorem

“If two convex polygons
don't overlap, then there
exists a line, parallel to
one of their edges that
separates them.”

02/22/16 18

Separating Axis Theorem

02/22/16 19

Algorithm to Apply the SAT

● For every edge of polygon A and of polygon B:

– Project all the vertices onto the line normal to that edge.

– Calculate the min and max coordinates for each polygon

– If minA < minB and maxA > minB OR
if minB < minA and maxB > minA
 then the polygons collide.

● If you find any edge projection in which the ranges
don't overlap, the polygons do not collide.

02/22/16 20

Arm Collision Detection

● Represent each link as a separate polygon.

● Check for:

– Self-collisions other than link n with link n+1

– Collisions of a link with an obstacle

02/22/16 21

Path Smoothing

● The random component of RRT-Connect search often
results in a jerky and meandering solution.

● Solution: apply a path smoothing algorithm.

● Repeat N times:

– Pick two points on the path at random

– See if we can linearly interpolate between those points
without collisions.

– If so, then snip out that segment of the path.

02/22/16 22

Smoothing An Arm Trajectory

Slide courtesy of Glenn Nickens

● Start state

● Intermed. states

● End state

Smoothed version

Original

02/22/16 23

Path Planning With Constraints

● With no closeable fingers, arm motion is constrained to
be within about 60o of finger direction or we'll lose the
object.

(video)

http://www.youtube.com/watch?v=9oDQ754YVoc

a

02/22/16 24

Implementing Constraints

● Each time we generate a new state n':

– Check to see if n' obeys the constraint

– For finger motion constraint, check if the direction of
motion from parent state n to new state n' is within 60o
of the finger direction.

● What if n' doesn't obey the constraint?

– Reject it and generate a new random q.

– Or try to “fix” it by perturbing its value slightly so as to
satisfy the constraint.

02/22/16 25

RRTs in Tekkotsu

● Tekkotsu/Planners/RRT/GenericRRT.h

● Works for any state space

● class RRTNodeBase

– Subclass this to create a NodeValue_t to describe q

– Define a CollisionChecker class

● class GenericRRT<typename NODE, size_t N>

– Instantiate this template to create an RRT planner

– NODE must be a subclass of RRTNodeBase

– Define an AdmissibilityPredicate class

– Define the extend(...) method to extend the tree

02/22/16 26

Planners in Tekkotsu

● Navigation/ShapeSpacePlannerXY

– 2D navigation planner

● Navigation/ShapeSpacePlannerXYTheta

– 2D + heading navigation planner

● Manipulation/ShapeSpacePlanner2DR

– 2D planner for N-joint planar arm with revolute joints

● Manipulation/ShapeSpacePlanner3DR

– 3D planner for N-joint planar arm with revolute joints

02/22/16 27

Path Planning Failure:
Goal State Is In Collision

02/22/16 28

The Grasper

● Does arm path planning

– Initially developed for planar arms

– Now does 3D arm path planning for Calliope5KP

● Does manipulation planning

– How to grasp an object

– How to move an object without losing it

– How to release an object

● Many other manipulation operations are possible.

● Use a GrasperNode to submit a GrasperRequest.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

