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Outline

● Path planning as state space search

● RRTs: Rapidly-exploring Random Trees

● The RRT-Connect algorithm

● Collision detection

● Smoothing

● Path planning with constraints

● Path planning in Tekkotsu
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Path Planning in Robotics

1. Navigation path planning

– How to get from the robot's current location to a goal.

– Avoid obstacles.

– Provide for localization.

2. Manipulation path planning

– Move an arm to grasp and manipulate an object.

– Avoid obstacles.

– Obey constraints (e.g., don't spill the coffee).
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Navigation Planning

● 2D state space:  (x,y) coordinates of the robot

– Treat the robot as a point or a circle.

● 3D state space: (x,y,) pose of the robot

– Heading matters when the robot is asymmetric

– Heading matters when the robot's motion is constrained

Obstacle 
inflation
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Cspace Transform

● The area around an obstacle that would cause a 
collision with the robot.

Robot

Obstacle

Cspace

Figure 4.4 - Mason, Mechanics Of Robotic Manipulation
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Arm Path Planning

● Cspace transform blocks out regions of joint space

Figure 4.5 - Mason, Mechanics Of Robotic Manipulation
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State Space Search

The path planning problem:

Given an n-dimensional state space and

● a start state S=[s
1
,s

2
,...,s

n
]

● a goal state G=[g
1
,g

2
,...,g

n
]

● an admissibility predicate P (collision test + constraints)

find a path from S to G such that every state on the path 
satisfies P.
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Best First Search

● Can get trapped in a cul de sac for a long time.

● Random search might be faster.

SS GG
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Rapidly-exploring Random Trees

● Described in LaValle (1998), Kuffner & LaValle (2000)

● Create a tree with start state S as the root.

● Repeat up to K times:

– Pick a point q in configuration space:

● Sometimes q should be a random point
● Sometimes q should be the goal state G

– Find n, the closest tree node to q

– Add a new node n' some distance  toward q; make it a 
child of n

– If n' is close enough to the goal state G, return.
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RRT Algorithm

● Rapidly samples the  state space.

● Cannot get trapped in local 
minima.

● Works well in high-dimensional 
spaces.

● Does not generate smooth paths.

● Can't tell when no solution exists; 
only quits when it exceeds the 
iteration limit K.

http://msl.cs.uiuc.edu/rrt/treemovie.gif

http://msl.cs.uiuc.edu/rrt/treemovie.gif
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RRTs for Arm Path Planning

● Each node encodes an
arm configuration in
joint space.

● Only add nodes that
don't cause collisions
(with self or obstacles).

● Alternately (i) extend the
tree in random directions
and (ii) move toward the goal.

Slide courtesy of Glenn Nickens
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Implementation Notes
● Finding n, the nearest node in the tree to q, is the most 

expensive part of the algorithm.

– Use K-D trees to efficiently find n?

– In practice, K-D trees are slower unless you have a huge 
number of nodes (several thousand).

● Why only go a distance  toward the goal state G? Why 
not go as far as we can, in steps of ?

– With no obstacles, this reaches the goal very quickly, but 
random search will get there nearly as quickly as we 
keep extending the nearest node to the goal.

– But when obstacles are present, this can waste time filling 
out branches that will ultimately fail.

– Generating lots of extra nodes bloats the tree, which slows 
down the algorithm.
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RRT-Connect Algorithm
● Variant of RRT that grows two trees:

– one from the start state toward the goal

– one from the goal state toward the start

● When the two trees
connect, a solution
has been found.

● Not guaranteed to
be better than RRT,
but often helps.

Goal
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RRTs in the VeeTags World
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RRT-Connect For Arms

Slide courtesy of Glenn Nickens

● Use IK to calculate the
goal configuration.

● Use FK to calculate
arm configurations for
collision detection.
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Collision Detection

● Represent the robot and the obstacles as convex 
polygons.

● In 2D, use the Separating Axis Theorem to check for 
collisions.

– Easy to code

– Fast to compute

● In 3D, things get more complex.

– Tekkotsu uses the GJK (Gilbert-Johnson-Keerthi) algorithm, 
used in many physics engines for video games.
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Separating Axis Theorem

“If two convex polygons 
don't overlap, then there 
exists a line, parallel to 
one of their edges that 
separates them.”
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Separating Axis Theorem
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Algorithm to Apply the SAT

● For every edge of polygon A and of polygon B:

– Project all the vertices onto the line normal to that edge.

– Calculate the min and max coordinates for each polygon

– If minA < minB and maxA > minB OR
if minB < minA and maxB > minA
  then the polygons collide.

● If you find any edge projection in which the ranges 
don't overlap, the polygons do not collide.
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Arm Collision Detection

● Represent each link as a separate polygon.

● Check for:

– Self-collisions other than link n with link n+1

– Collisions of a link with an obstacle
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Path Smoothing

● The random component of RRT-Connect search often 
results in a jerky and meandering solution.

● Solution: apply a path smoothing algorithm.

● Repeat N times:

– Pick two points on the path at random

– See if we can linearly interpolate between those points 
without collisions.

– If so, then snip out that segment of the path.
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Smoothing An Arm Trajectory

Slide courtesy of Glenn Nickens

● Start state

● Intermed. states

● End state

Smoothed version

Original
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Path Planning With Constraints

● With no closeable fingers, arm motion is constrained to 
be within about 60o of finger direction or we'll lose the 
object.

(video)

http://www.youtube.com/watch?v=9oDQ754YVoc

a



02/22/16 24

Implementing Constraints

● Each time we generate a new state n':

– Check to see if n' obeys the constraint

– For finger motion constraint, check if the direction of 
motion from parent state n to new state n' is within 60o 
of the finger direction.

● What if n' doesn't obey the constraint?

– Reject it and generate a new random q.

– Or try to “fix” it by perturbing its value slightly so as to 
satisfy the constraint.
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RRTs in Tekkotsu

● Tekkotsu/Planners/RRT/GenericRRT.h

● Works for any state space

● class RRTNodeBase

– Subclass this to create a NodeValue_t to describe q

– Define a CollisionChecker class

● class GenericRRT<typename NODE, size_t N>

– Instantiate this template to create an RRT planner

– NODE must be a subclass of RRTNodeBase

– Define an AdmissibilityPredicate class

– Define the extend(...) method to extend the tree
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Planners in Tekkotsu

● Navigation/ShapeSpacePlannerXY

– 2D navigation planner

● Navigation/ShapeSpacePlannerXYTheta

– 2D + heading navigation planner

● Manipulation/ShapeSpacePlanner2DR

– 2D planner for N-joint planar arm with revolute joints

● Manipulation/ShapeSpacePlanner3DR

– 3D planner for N-joint planar arm with revolute joints
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Path Planning Failure:
Goal State Is In Collision
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The Grasper

● Does arm path planning

– Initially developed for planar arms

– Now does 3D arm path planning for Calliope5KP

● Does manipulation planning

– How to grasp an object

– How to move an object without losing it

– How to release an object

● Many other manipulation operations are possible.

● Use a GrasperNode to submit a GrasperRequest.
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