
02/02/15 15-494 Cognitive Robotics 1

Navigating with the Pilot

15-494 Cognitive Robotics
David S. Touretzky &
Ethan Tira-Thompson

Carnegie Mellon
Spring 2015

02/02/15 15-494 Cognitive Robotics 2

How Does the Robot Move?
● Multiple walk engines are incorporated into Tekkotsu:

– “Wheeled walk” for the Create

– XWalk engine by Ethan Tira-Thompson for the Chiara

– CMPack '02 AIBO walk engine from Veloso et al. (CMU), with
modifications by Ethan Tira-Thompson

– UPennalizers AIBO walk engine from Lee et al. (U. Penn)

● Basic idea is the same for the legged walk engines:

– Cyclic pattern of leg motions

– Parameters control leg trajectory, body angle, etc.

– Many different gaits are possible by varying phases of the legs

– “Open loop” control: no force feedback

– Can't adapt to rough terrain

– Can move quickly, but not very accurately

02/02/15 15-494 Cognitive Robotics 3

WalkMC

● WalkMC is a motion command that uses the walk
engine to move the robot.

– For legged robots this means calculating leg trajectories.

– For wheeled robots, calculate motor speeds.

● Walking is controlled by three parameters:

– xvel: forward velocity

– yvel: lateral velocity (strafing)
requires legs or roller-wheels

– avel: angular velocity (rotation)

02/02/15 15-494 Cognitive Robotics 4

WalkNode

● Subclass of StateNode

● Activates a WalkMC on start()

● Deactivates the WalkMC on stop()

● User can specify (x,y,a) velocity or displacement

● WalkNode(xvel, yvel, avel, time, WalkNode::VEL)

– Velocities xvel, yvel in mm/sec; avel in rad/sec; time in sec

● WalkNode(xdisp, ydisp, adisp, time, WalkNode::DISP)

– Displacements in mm and radians; time in sec.

– Calculates velocity to reach destination in time

– Use a time of 0 to request maximum velocity.

02/02/15 15-494 Cognitive Robotics 5

Requirements for Navigation

There's more to navigation than just walking.

The robot should be able to:

● Move in a specified direction at a specified speed

● Keep track of its location and heading

● Avoid cliffs

● Avoid obstacles or report collisions

● Localize using landmarks

● Plan paths using a world map

● Execute planned paths with error correction

02/02/15 15-494 Cognitive Robotics 6

The Pilot

● Higher level approach to locomotion.

● Specify effect to achieve, rather than mechanism:

– Go to an object.

– Search for an object.

● Specify policies to use:

– Cliff detection (AIBO IR sensor)

– Obstacle avoidance (turn off to knock down soda cans)

– Localization procedure

● Experimental code; changing rapidly.

02/02/15 15-494 Cognitive Robotics 7

Pilot Request Types

● walk – essentially a WalkMC displacement request

● goToShape – plan path and travel to the location of a
shape on the world map

● localize – look for landmarks and invoke the particle
filter to update position estimate

● visualSearch – turn body to look for an object

● pushObject – plan path and push an object from its
present location to a target location (in progress)

● setVelocity – set speed and go forever

● waypointWalk – provides Waypoint walk functionality

● More functions are planned...

02/02/15 15-494 Cognitive Robotics 8

PilotNode

● The PilotNode class provides an interface to the Pilot:

– Creates a PilotRequest in the member variable pilotreq

– Transmits the request to the Pilot

– Listens for completion of the request

– Posts a completion event when the request is finished

● Users typically create their own subclasses of PilotNode
so they can fill in request parameters in the doStart()
method.

02/02/15 15-494 Cognitive Robotics 9

Trivial Pilot Example

$nodeclass MyPilotDemo {

 $nodeclass Goer : PilotNode(PilotTypes::walk) : doStart {
 pilotreq.dx = 500; // forward half a meter

 }

 $setupmachine{
 Goer =C=> SpeechNode(”I have arrived”)
 }

}

REGISTER_BEHAVIOR(MyPilotDemo);

02/02/15 15-494 Cognitive Robotics 10

Fields of a PilotRequest

● dx, dy, da Displacement distance in mm or rad

● forwardspeed Forward speed in mm/sec
strafespeed Sideways speed in mm/sec
turnspeed Turning speed in rad/sec

● collisionAction What to do if a collision is detected

● landmarks Landmarks to use for localization

Lots of other options; see the online documentation.

Not everything works for every robot.

02/02/15 15-494 Cognitive Robotics 11

Motion Nodes

● Shorthand for common Pilot calls.

● Defined in /usr/local/Tekkotsu/Crew/MotionNodes.h.fsm

● Common motions with convenient constructors:

– WalkForward(distance)

– WalkSideways(distance)

– Turn(angle)

● For legged robots:

– Rock(distance)

– Sway(distance)

– Twist(angle)

etc...

02/02/15 15-494 Cognitive Robotics 12

Odometry

● From Greek word meaning “measuring a journey”.

● The robot estimates its position and heading by
integrating position and heading changes over time.

● For most robot types, Tekkotsu assumes that position
and heading changes match the commanded velocity.

● But the Create measures the changes itself:

– Go to Root Control > Status Reports > Sensor Observer >
Sensors

– Click on Distance and Angle menu items

– Go to Realtime View

– Drive the robot around and watch the values change

02/02/15 15-494 Cognitive Robotics 13

Limitations of Odometry

Odometry can be inaccurate for several reasons:

● Acceleration/deceleration error: the robot may not
always be moving at the commanded velocity.

– Encoders on the wheels can measure actual distance
traveled.

● Wheel or foot slip: varies with speed & type of surface.

– An IMU (Inertial Measurement Unit) could be used to
estimate true body displacement.

– But IMU's also have accuracy limitations

● Integration error is cumulative: it increases over time.

02/02/15 15-494 Cognitive Robotics 14

Create Odometry Bug

● The Create reports angle values in integer degrees.

● Values are updated several times per second.

● Turning at low speeds gives an angle change of zero at
each update because the software does not correctly
accumulate fractional heading changes.

● This problem has been fixed in the Create 2, which
reports separate encoder values for each wheel, as
does the Kobuki from Yujin Robot (used in Turtlebot 2).

02/02/15 15-494 Cognitive Robotics 15

Solutions to the Odometry Bug

● Use a default angular velocity high enough for decent
odometry, but not high enough to cause other types of
problems (e.g., slipping due to high accelerations).

● Don't try to advance and turn at the same time.

– Curved arcs generally require small da relative to dx,
which triggers the odometry bug.

● New/experimental: try to use optic flow to supplement
hardware odometry.

02/02/15 15-494 Cognitive Robotics 16

PilotDemo
● PilotDemo is a built in demo framework for

demonstrating various features of the Pilot.

● It uses a simple, extensible command line interface.

● You can run it directly, or define your own behavior as a
subclass of PilotDemo to make use of its features.

● To run it, go to:
 Root Control > Framework Demos >
 Navigation Demos > PilotDemo

● Use “msg” to send commands to the robot, e.g.,
 msg fwd 2000

● To use the PilotDemo class, you must do:
 #include “Behaviors/Demos/Navigation/PilotDemo.h”
But note that the actual source file is PilotDemo.h.fsm

02/02/15 15-494 Cognitive Robotics 17

Robot Positioning

● Use PilotDemo commands to move the robot instead of
using the Walk Controller.

– F/B forward/backward 500 mm

– f/b forward/backward 100 mm

– fwd <distance>

– L/R left/right 90 degrees

– l/r left/right 10 degrees

– turn <angle>

● Reason to avoid the Walk Contoller: too low or too high
a velocity will mess up the robot's odometry.

● PilotDemo uses “good” velocity values so odometry
works reasonably well.

02/02/15 15-494 Cognitive Robotics 18

The =PILOT=> Transition

● If you only care about when a Pilot request has
completed, you can use a =C=> transition.

● But the Pilot reports additional information about what
happened as a result of the request. To access this
information you must use a =PILOT=> transition.

● Example: you may want to take special action if a
collision was detected. Use:
 =PILOT(collisionDetected)=>

● A plain =PILOT=> transition will act as a default case if
none of the other cases match.

● You should not use a =C=> transition if you have any
=PILOT(...)=> transitions exiting the node.

02/02/15 15-494 Cognitive Robotics 19

Collision Detection
$nodeclass PilotLab3 {

 $nodeclass Backup : PilotNode(PilotTypes::walk) : doStart {
 pilotreq.dx = -90; // negative displacement means back up
 pilotreq.forwardSpeed = 30; // speeds are always non-negative
 }

 $setupmachine {

 forward: WalkForward(500)

 forward =PILOT(collisionDetected)=>
 SpeechNode("Ouch! I hit something.") =C=> Backup

 forward =PILOT=> SpeechNode("done")
 }
}

02/02/15 15-494 Cognitive Robotics 20

Collision Policies

● Defined in /usr/local/Tekkotsu/Crew/PilotTypes.h

● Collisions are detected either from the bump switches
or from a motor stalling.

● Choices of collision action:

– collisionIgnore Do nothing

– collisionReport Post an event but continue

– collisionStop Stop (default action)

– collisionReplan Replan; not yet implemented

02/02/15 15-494 Cognitive Robotics 21

Push A Ball & Keep Going

#include “Behaviors/Demos/Navigation/PilotDemo.h”

$nodeclass SlamAndScram : PilotDemo {

 $nodeclass Slammer : PilotNode(PilotTypes::walk) : doStart {
 pilotreq.dx = 2000;
 pilotreq.collisionAction = collisionIgnore;
 }

 $setupmachine{
 rundemo: Slammer =PILOT=> SpeechNode(“Got it”)
 }

}

Special node named rundemo can be activated using the Pilot's
rundemo command after using other Pilot commands to position the
robot.

Use startdemo instead to make the demo start automatically.

02/02/15 15-494 Cognitive Robotics 22

Localization Particles
● A localization particle is an object that represents a

hypothesis about the robot's position and heading.

● The Pilot's particle filter maintains a collection of these
particles.

● The particles all start out at the robot's initial position
and orientation.

● As the robot moves, the particles are updated by
odometry, and noise from a motion model is added to
simulate the effect of integration error.

● The particle “cloud” disperses, reflecting the growing
uncertainty in the robot's pose.

Position

Heading

02/02/15 15-494 Cognitive Robotics 23

Particle Dispersion Over Time

The robot and particles are displayed on the world map.

Click on “W” in the Sketch row of the ControllerGUI to
bring up the map. Click on Refresh to update it.

02/02/15 15-494 Cognitive Robotics 24

Localization

● As the robot moves, the particle cloud disperses and
position uncertainty grows.

● How can we reduce our uncertainty?

● Use visual landmarks and the particle filter to
make a new estimate of position.

● Requirements:

– Landmarks such as AprilTags that the robot can recognize.

– A world map giving the landmarks' locations.

● What does the Pilot do?

– Look around for landmarks and build a local map.

– Use particle filter to match local against world map.

– Particles giving the best match get the highest score.

02/02/15 15-494 Cognitive Robotics 25

The VeeTags Demo
● Unique AprilTags serve as landmarks.

● Use PilotDemo's “loc” command to localize.

02/02/15 15-494 Cognitive Robotics 26

Camera Views:
Raw and Color Segmented

02/02/15 15-494 Cognitive Robotics 27

Camera Shape Space

02/02/15 15-494 Cognitive Robotics 28

World Map After Localization

AprilTags are marked as “lm” for “landmark”.

02/02/15 15-494 Cognitive Robotics 29

Retrieving the Robot's Pose

cout << “Robot is at x=“
 << theAgent->getCentroid().coordX()
 << “ y=”
 << theAgent->getCentroid().coordY() << endl;

cout << “Robot heading is “
 << theAgent->getOrientation() << endl;

02/02/15 15-494 Cognitive Robotics 30

Summary

● The Pilot is part of the Crew, and is responsible for:

– Moving the robot through the world.

– Tracking its position using odometry.

– Localization using landmarks and a particle filter.

– Path planning to avoid obstacles (to be covered later).

● Use a PilotNode to send a request to the Pilot.

● Use a =PILOT=> transition to check the results.

● Common cases:
=PILOT(collisionDetected)=>
=PILOT(noError)=>
=PILOT(someError)=>
=PILOT=>

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

