15-494/694: Cognitive Robotics

Dave Touretzky

Lecture 13: Convolutional Neural Nets

Image from http://www.futuristgerd.com/2015/09/10

TensorFlow Playground

Google's interactive backprop simulator.

https://playground.tensorflow.org

MNIST Dataset

- 60,000 labeled handwritten digits
- 28 x 28 pixel grayscale images

```
0000000000000000
3 3 3 3 3 3 3 3 3 3 3 3 3 3
448444444444444
555555555555555
6666666666666666
   88888888888
```

Recognition With a Linear Network

PyTorch

- Python package for tensor manipulation and vectorized computations, including neural net learning.
 - Replacement for numpy
 - Optimized for GPUs
- Tensors are multi-dimensional arrays, similar to numpy's ndarray structure.
- Code can run on either CPU or GPU.

Defining the Model mnist1

```
class MultiLogisticModel(nn.Module):
    def __init__(self, in_dim, out_dim):
        super(MultiLogisticModel, self).__init__()
        self.linear = nn.Linear(in_dim, out_dim)

    def forward(self, x):
        out = self.linear(x)
        return out
```

model = MultiLogisticModel(28*28, 10)

Learned Weights to Output Units

Training set performance: 89% correct.

Batch Size

- An epoch is one pass through all the training data.
- With a large training set (60,000 images), we don't need to see all the training examples in order to estimate the error gradient.
- We set a batch size of 100 to indicate we want to do a weight update after every 100 training examples.
 - The examples need to be mixed together.
 - What if we trained on all the 2's first?

Adding A Hidden Layer

28 x 28 grayscale image: 784 pixels

784 x 20 weight matrix 20 x 10 weight matrix

8

3 4

5

6

Model has $(784+1)\times20 + (20+1)\times10 = 15,910$ weights

20 hidden units

output classes

10

Batch Normalization

- We want the activity patterns in each layer to have nice statistical properties (mean and variance) because this helps speed up learning.
- But each weight update changes the statistical distribution.

- Solution: "batch normalization", a trick for making the distributions more uniform.
- Built in to PyTorch.

Defining the Model mnist2

```
class OneHiddenLayer(nn.Module):
  def init (self, in dim, out dim, nhiddens):
    super(OneHiddenLayer, self). init ()
    self.network = nn.Sequential(
      nn.Linear(in dim, nhiddens),
      nn.BatchNorm1d(nhiddens),
      nn.ReLU(),
      nn.Linear(nhiddens, out dim)
  def forward(self, x):
    out = self.network(x)
    return out
```

Learned Weights to Hidden Units

Training set performance: 91% correct.

Learned Weights to Output Units

Training set performance: 91% correct.

Overfitting

How to Avoid Overfitting

- Increase the size of the training set.
- Reduce the number of parameters:
 - Fewer hidden units
 - Shared weights (convolutional network)
- Regularization: penalize large weights to encourage making more weights be zero.
- Dropout: randomly disable some fraction of the connections on every iteration.
- Early stopping:
 - Maintain a separate cross-validation set
 - Stop training when the CV error rises

Convolutional Neural Networks

 Learn small (3x3 or 5x5) feature detectors or kernels that can be applied anywhere in the image.

Feature Maps

32 feature maps 26 x 26

28 x 28 image

5x5 pixels stride 1 padding 1

weights = $32 \times (5 \times 5 + 1) = 832 \text{ (small!)}$ # connections = $32 \times (26 \times 26) \times (5 \times 5 + 1) = 562,432$

Stride 1

Stride 2

First Kernel: Padding 0

First Kernel: Padding 1

First Kernel: Padding 2

Max Pooling

- We might not care exactly where a feature appears in the image.
- Downsampling by max pooling reduces the number of units and connections.

Choice of Activation Function

Sigmoid and tanh were popular early on:

- Now it's more common to use ReLU:
 Rectified Linear Unit. g(x) = max(x,0)
 - Derivative doesn't go to zero for large x.

Choice of Loss Function

 Mean Squared Error is a general loss function but not always the best to use.

$$E = \frac{1}{2P} \sum_{p} (d^{p} - y^{p})^{2}$$

 If desired outputs are probabilities (values between 0 and 1), use cross-entropy instead. Heavily penalizes <u>really</u> wrong outputs.

$$E = \sum_{p} -d^{p} \log(y^{p}) - (1 - d^{p}) \log(1 - y^{p})$$

MNIST With A CNN

28 x 28 image

parameters = 63,626 How many connections?

Accuracy on training set: 98.7%

Defining the Model mnist3

```
class OneConvLayer(nn.Module):
 def init (self, in dim, out dim, nkernels):
    super(OneConvLayer, self). init ()
    self.network1 = nn.Sequential(
      nn.Conv2d(in channels=1,
                out channels=nkernels,
                kernel size=5,
                stride=1,
                padding=2),
      nn.BatchNorm2d(nkernels),
      nn.ReLU(),
      nn.MaxPool2d(kernel size=2)
    self.network2 = nn.Linear(nkernels*14*14,
                              out dim)
```

Defining mnist3 (cont.)

```
def forward(self, x):
   out = self.network1(x)
   out = out.view(out.size(0), -1)
   out = self.network2(out)
   return out
```

model = OneConvLayer(28*28, 10, 32)

Sample Learned Kernels (32 Total)

Deep Neural Networks

- For really hard problems (e.g., object recognition on color images) we may need many layers.
- Series of convolutional and max pooling layers, followed by some fully connected layers.
 - LeNet had 10 layers.
 - Inception V1 had 27 layers.
 - ResNet has 100 layers.
- GPUs required for training.

LeNet (Yann LuCun, 1990s)

Handwritten digit recognition

Object Recognition CNN

https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/

Visualizations of filters 32

TinyYOLOV2 Face Recognition

TinyYOLOV2 Architecture

Input Image R, G, B Channels 224×224×3

conv1: $[3,3,3]/1 \times 16$ $224 \times 224 \times 16$ max1: $[2,2,1]/2 \times 16$ $112 \times 112 \times 16$

 $112 \times 112 \times 16$ conv3: $[1,1,16]/1 \times 32$ $112 \times 112 \times 32$ max2: $[2,2,1]/2 \times 32$ $56 \times 56 \times 32$

conv4: $[3,3,1]/1 \times 32$

Conv & Pool Key: kernelType [kw,hw,inchan]/stride × outchan

Layer Dimension Key: width × height × channels

 $28 \times 28 \times 64$ conv7: $[1,1,64]/1 \times 128$ $28 \times 28 \times 128$ max4: $[2,2,1]/2 \times 128$ $14 \times 14 \times 128$

conv6: $[3,3,1]/1 \times 64$

conv8: $[3,3,1]/1 \times 128$ $14 \times 14 \times 128$ conv9: $[1,1,128]/1 \times 256$ $14 \times 14 \times 256$ max5: $[2,2,1]/2 \times 256$

 $7 \times 7 \times 256$

 $7 \times 7 \times 512$

Purple: Full Convolution

Dark Blue: Depthwise Convolution Light Blue: Pointwise Convolution Orange: Max Pooling

