
C++ For Java
Programmers

15-494 Cognitive Robotics
Ethan Tira-Thompson

Keyword Mapping

• Java ➙ C++

• Java API ➙ STL (& friends, e.g. Boost)

• Generics ➙ Templates

• Same syntax:

Vector<foo> ➙ vector<foo>

• interfaces ➙ multiple inheritance

• casting: instanceof ➙ dynamic_cast<T>

• final ➙ virtual
2

C++: Rope to Hang Yourself

• File Layout

• Globals

• Macros

• Memory Management

• Overriding operators

• Multiple Inheritance

3

• In Java, everything goes in the .java file,
cross-references “just work”

• In C++, the compiler isn’t so smart
• If one class depends on another, the dependent class

needs to #include the other’s file

• If multiple classes depend on the same file, it might
be included more than once

• Have to wrap headers with a little bit of macro
boilerplate: #ifndef INCLUDED_Foo_h_

#define INCLUDED_Foo_h_
/* rest of the file ... */

#endif

C++ File Layout

I recommend this form, assuming a
file named “Foo.h”. This is an arbitrary

choice, simply must be unique.

4

• Two types of C++ files:

• .h: Definitions, documentation, and small
implementations
//! the venerable "Hello World!"
void sayHello();

• .cc: Implementation, aka “Translation unit”
void sayHello() {
 std::cout << "Hello World!" << std::endl;
}

• Each translation unit is compiled independently

• After compilation, units are linked into executable

C++ File Layout

5

• In C++, classes can be completely defined
by the .h file:

C++ File Layout

you are going to hate this

Foo.h:

#include <iostream>

class Foo {
public:
 void sayHello() {
 std::cout << "Hello World!" << std::endl;
 }
};

6

• Do you want everything in the .h?

• Might want to improve readability, or avoid inline

• Split definition from implementation

#include "Foo.h"

void Foo::sayHello() {
 std::cout << "Hello World!" << std::endl;
}

C++ File Layout

#include <iostream>

class Foo {
public:
 void sayHello();
};

Fo
o.

h:
Fo

o.
cc

:

System Header

User Header

Scope Specification 7

Template Usage

• Allows a class to be re-used with a
variety of types

• Canonical example: vector

• Want to store a resizable array of data, but it doesn’t
really matter what the data is

• vector<T>, where T is any type: vector<int>,
vector<string>, vector<Foo>, etc.

• A class may make assumptions about type/capabilities
of its template argument — results in cryptic
compiler errors when the wrong type is passed.

8

#include <vector>
using namespace std;

int main (int argc, char * const argv[]) {

 vector<int> v;
 for(int i=0; i<10; ++i)
 v.push_back(i); //each call stores a copy of i

 //iterator usage
 for(vector<int>::iterator it=v.begin(); it!=v.end(); ++it)
 cout << *it << endl;

 //indexed usage
 for(int i=0; i<v.size(); ++i)
 cout << "The " << i << "th element is: " << v[i] << endl;

 return 0;
}

Template Usage

Code:
0
1
2
3
4
5
6
7
8
9
The 0th element is: 0
The 1th element is: 1
The 2th element is: 2
The 3th element is: 3
The 4th element is: 4
The 5th element is: 5
The 6th element is: 6
The 7th element is: 7
The 8th element is: 8
The 9th element is: 9

Output:
Now we don’t need

std
:: everywhere

Hooray
for operato

r

overloading!

9

C++ Memory Management

• For every new, there should be a delete

• Arrays have to use ‘delete []’
int * a=new int[10];
/* ... */
delete [] a;

• Don’t use malloc / free (the old C-style)

• These functions don’t respect constructors or
destructors, can cause all kinds of nasty problems.

10

Pointers vs. References

• When you have a pointer, prepend ‘*’ to
access the value pointed to, and use ‘->’
instead of ‘.’ to access members.

• References always return the referenced
value

• Can’t reassign a reference, must define at creation

• An “array” is just a pointer to the first
element (no real “array” type)

11

Pointers vs. References

int * pi;
char** ppc;
int* ap[15];
int* f(char*);

// pointer to int
// pointer to pointer to char
// array of 15 pointers to ints
// function taking a char* argument; returns a pointer to int

char c = 'a';
char * p = &c;
char c2 = *p;
*p = 'b';
p = &c2;

// p holds the memory address of c
// c2 == 'a'
// c == 'b' , c2 unaffected
// p now holds the address of c2: *p == c2 == 'a', c==’b’

Pointers

int & pi;
char&& ppc;
int& ap[15];
int& f(char&);

char c = 'a';
char & p = c;
char c2 = p;
p = 'b';
p = c2;

// p now references c
// c2 == 'a'
// c == 'b' , c2 unaffected
// c == 'a' , p still references c: p == c == c2 == 'a'

References
// illegal (uninitialized reference)
// illegal (no reference to reference)
// illegal (can't create array of references)
// legal! Function taking a char&, returns a reference to int

T
hanks: Stroustrup, The C+

+
 Program

m
ing Language

12

Pointers vs. References
class Foo {
public:
 int member;
 string getName() const { return "Foo"; }
};

Foo a;
Foo & r = a; //reference
Foo * p = &a; //pointer

cout << "Access via value: "
 << a.getName() << " is " << a.member << endl;

cout << "Access via reference: "
 << r.getName() << " is " << r.member << endl;

cout << "Access via pointer: "
 << p->getName() << " is " << p->member << endl;

13

Value vs. Pointer vs. Reference

• When creating functions, you have 3
choices for each argument

1. Pass by value (default)

• A copy is made of each argument, original untouchable

• Best for primitive values, but nothing else

// good
int f(int x);

// bad, unnecessary copying, slicing (will be explained)
void drawShape(Shape s, Transform t);

// bad, vector does a deep copy -- could be large
void setValues(vector<int> v);

14

Value vs. Pointer vs. Reference

• When creating functions, you have 3
choices for each argument

2. Pass by reference (pointer)

• Best when you want to allow NULL as a valid argument

• Sometimes implies passing control of the memory’s allocation

// only good if you intend to take an array
int f(int * x); //better to say 'f(int x[])' to be clear

// bad use for Shape, requires a value
// good use for Transform, NULL would be acceptable
void drawShape(Shape * s, Transform * t);

// bad, a “set” function requires a non-NULL value
void setValues(vector<int>* v);

15

Value vs. Pointer vs. Reference

• When creating functions, you have 3
choices for each argument

3. Pass by reference (reference)

• Best for everything else

// overkill, unless you intend to modify the value passed
// (e.g. if there are multiple values to return)
int f(int& x);

// good use for Shape, but now Transform is required
// (consider overloading the function)
void drawShape(Shape& s, Transform& t);

// good
void setValues(vector<int>& v);

16

• Don’t forget ‘const’!

• Get in the habit of using const by default, removing
it when necessary

• Say you are creating a function ‘muck’ which is not
supposed to modify the value it is passed
 void muck(Foo f); //bad, how big is 'Foo'?
 void muck(Foo& f); //bad, might accidentally modify original
 void muck(const Foo& f); //good - no copy, and still read-only

• On a related note, if muck is a member of a class, and
should not modify the class:
 void muck(const Foo& f) const;

Value vs. Pointer vs. Reference

17

• Thus, the ideal function definitions:

Value vs. Pointer vs. Reference

// we’ll assume f doesn’t intend to return a value in x
int f(int x);

// pass Shape by const reference and optional Transform by pointer
void drawShape(const Shape& s, const Transform * t=NULL);
// or use overloading:
void drawShape(const Shape& s);
void drawShape(const Shape& s, const Transform& t);

// last one...
void setValues(const vector<int>& v);

18

Value vs. Pointer vs. Reference

• Don’t return references to local variables
 Shape& unify(const Shape& s1, const Shape& s2) {
 Shape ans;
 ans = /* however union is done... */
 return ans; // BZZZT, error:
 // ans is disappearing, how can it be referenced?
 }

• Have to either return a member variable, or allocate
on the heap (caller is responsible for deletion)

Shape* unify(const Shape& s1, const Shape& s2) {
 Shape * ans = new Shape();
 ans = / however union is done */;
 return ans; // caller has to delete
}

19

Gotchas: Slicing

• Slicing

• Store pointers when inheritance may be possible

• can’t store references, no way to reassign them

• Say you have vector<Foo>. What happens when
you insert a subclass with additional fields?

class Foo {
public:
 int i;
};

int main (int argc, char * const argv[]) {
 vector<Foo> v; // vector of ‘Foo’s
 v.push_back(Bar()); // insert a ‘Bar’
}

class Bar : public Foo {
public:
 int x;
};

0 1 2 3 ...

i x

i

v

Foo
Bar

20

• Slicing

• Store pointers when inheritance may be possible

• can’t store references, no way to reassign them

• Say you have vector<Foo>. What happens when
you insert a subclass with additional fields?

0 1 2 3 ...

Gotchas: Slicing

class Foo {
public:
 int i;
};

class Bar : public Foo {
public:
 int x;
};

i x

i

v

Foo
Bar

i
int main (int argc, char * const argv[]) {
 vector<Foo> v; // vector of ‘Foo’s
 v.push_back(Bar()); // insert a ‘Bar’
}

x

aeee! 21

Gotchas: Slicing

• Slicing

• Store pointers when inheritance may be possible

• can’t store references, no way to reassign them

• Say you have vector<Foo>. What happens when
you insert a subclass with additional fields?

• Answer: Very bad things; the additional fields are cut off
-- only the ‘Foo’ portion is stored (at best!)

• This is called “slicing”

• Use vector<Foo*> instead, now elements can be
any subclass.

22

Gotchas: char* vs. string

• Remember an array is a pointer to the
first element.

• C used an array of chars, terminated by
‘0’ (aka ‘\0’) as its string representation.

• strcpy(), strcat(), strcmp(), …

• Sometimes elegant, but sometimes inefficient, and
error prone to boot

• Better than its contemporaries: Pascal-style strings
store the length in the first byte, limited to 256
characters.

23

Gotchas: char* vs. string

• C++ has a better idea: string class
• souped-up vector<char>

• Can automatically create a string from
a char*
 void print(const string& s);
 print("foo"); // works! (compiler implicitly calls string constructor)

• But have to explicitly request a char*
from a string
 void print(const char* s);
 string s="foo";
 print(s); //doesn't work
 print(s.c_str()); //the solution: call c_str()

24

Scratching the Surface

• Further reading:

• The C++ Programming Language, Bjarne Stroustrup
The definitive, practical, and insightful reference from the language’s creator.

• Effective C++ : 55 Specific Ways to Improve Your
Programs and Designs, Scott Meyers
Don’t learn the fine points the hard way, read this instead. (Others in his series
also recommended)

• An STL Reference (I don’t have any particular favorite)
Stroustrup’s book is a good introduction to the STL highlights, but there’s a lot
to be expanded on.

25

