
02/07/09 15-494 Cognitive Robotics 1

The Map Builder

15-494 Cognitive Robotics
David S. Touretzky &
Ethan Tira-Thompson

Carnegie Mellon
Spring 2009

02/07/09 15-494 Cognitive Robotics 2

Horizontal Field of View

Rat: 300 deg. Human: 200 deg. Typical robot: 60 deg.

02/07/09 15-494 Cognitive Robotics 3

Seeing A Bigger Picture

● How can we assemble an accurate view of the robot's
surroundings from a series of narrow camera frames?

● First, convert each image to symbolic form: shapes.

● Then, match the shapes in one image against the shapes
in previous images.

● Construct a “local map” by matching up a series of
camera images.

Image Shapes Local Map

02/07/09 15-494 Cognitive Robotics 4

Can't Match in Camera Space

● We can't match up shapes from one image to the next if
the shapes are in camera coordinates. Every time the
head moves, the coordinates of the shapes in the
camera image change.

● Solution: switch to a body-centered reference frame.

● If we keep the body stationary and only move the head,
the coordinates of objects won't change (much) in the
body reference frame.

camera plane

02/07/09 15-494 Cognitive Robotics 5

Planar World Assumption

● How do we convert from camera-centered coordinates to
body-centered coordinates?

● Need to know the camera pose: can get that from the
kinematics system.

● Unfortunately, that's not enough.

● Add a planar world assumption: objects lie in the plane.
The robot is standing on that plane.

● Now we can get object coordinates in the body frame.

02/07/09 15-494 Cognitive Robotics 6

Shape Spaces

● camShS = camera space

● groundShS = camera shapes projected to ground plane

● localShS = body-centered (egocentric space);
constructed by matching and importing shapes
from groundShS across multiple images

● worldShS = world space (allocentric space);
constructed by matching and importing shapes
from localShS

● The robot is explicitly represented in worldShS

02/07/09 15-494 Cognitive Robotics 7

Invoking The Map Builder

● Let's map the tic-tac-toe board:

02/07/09 15-494 Cognitive Robotics 8

Frame 1

02/07/09 15-494 Cognitive Robotics 9

Frame 2

02/07/09 15-494 Cognitive Robotics 10

Frame 3

02/07/09 15-494 Cognitive Robotics 11

Frame 4

02/07/09 15-494 Cognitive Robotics 12

Frame 5

02/07/09 15-494 Cognitive Robotics 13

Final Local Map

02/07/09 15-494 Cognitive Robotics 14

Shape Matching Algorithm

● Shape type and color must match exactly.

● Coordinates must be a reasonably close match for
points, blobs, and ellipses.

● Lines are special, because endpoints may be invalid:

– If endpoints are valid, coordinates should match.

– If invalid in local map but valid in ground space, update the
local map to reflect the true endpoint location.

● Coordinates are updated by weighted averaging.

02/07/09 15-494 Cognitive Robotics 15

Noise Removal

● Noise in the image can cause spurious shapes. A long
line might appear as 2 short lines separated by a gap, or
a noisy region might appear as a short line.

● Assign a confidence value to each shape in local map.

● Each time a shape is seen: increase its confidence.

● If a shape should be seen but is not, decrease its
confidence.

● Delete shapes with negative confidence.

02/07/09 15-494 Cognitive Robotics 16

Where to Look?

● Start with the shapes visible in the camera frame.

● Move the camera to fixate each shape: get a better look.

● If a line runs off the edge of the camera frame, move the
camera to try to find the line's endpoints.

– If the head can't rotate any further, give up on that endpoint.

● If an object is partially cut off by the camera frame, don't
add it to the map because we don't know its true shape.

– Move the camera to bring the object into view.

02/07/09 15-494 Cognitive Robotics 17

Programming the MapBuilder

#include "DualCoding/DualCoding.h"

class LocalMapDemo : public VisualRoutinesStateNode {
public:
 LocalMapDemo() : VisualRoutinesStateNode() {}

 virtual void DoStart() {

 MapBuilderRequest req;

 ... program the mapbuilder instructions

mapbuilder.executeRequest(req);
 }

};

● A instance of MapBuilder called mapbuilder is included as
a member of VisualRoutinesBehavior, and
VisualRoutinesStateNode is a child of that class.

02/07/09 15-494 Cognitive Robotics 18

Two Ways To Get Results
From the MapBuilder

● If only the current camera image is to be processed, the
the results can be available immediately:

● If multiple camera images or any head motion is
required, you must wait for a MapBuilder event:

req.immediateRequest = true;
mapbuilder.executeRequest(req);
NEW_SHAPEVEC(... process the results from the MapBuilder...);

mapreq_id = mapbuilder.executeRequest(req);
erouter->addListener(this, EventBase::mapbuilderEGID, mapreq_id);
...

void processEvent (const EventBase &e) {
 if (e.getGeneratorID() == EventBase::mapbuilderEGID &&
 e.getSourceID() == mapreq_id) {
 postStateCompletion();
 }

02/07/09 15-494 Cognitive Robotics 19

MapBuilderRequest Parameters
● RequestType

– cameraMap

– groundMap

– localMap

– worldMap

● Shape parameters:

– objectColors

– occluderColors

– maxDist

– minBlobArea

– markerTypes

● Utility functions:

– clearShapes

– RawY

– immediateRequest

● Lookout control:

– motionSettleTime

– numSamples

– sampleInterval

– pursueShapes

– searchArea

– doScan, dTheta

– manualHeadMotion

02/07/09 15-494 Cognitive Robotics 20

Programming the MapBuilder
const int pink_index = ProjectInterface::getColorIndex("pink");
const int blue_index = ProjectInterface::getColorIndex("blue");
const int orange_index = ProjectInterface::getColorIndex("orange");

MapBuilderRequest req(MapBuilderRequest::localMap);

req.numSamples = 5; // take mode of 5 images to filter out noise
req.maxDist = 1200; // maximum shape distance 1200 mm
req.pursueShapes = true;

req.objectColors[lineDataType].insert(pink_index);
req.occluderColors[lineDataType].insert(blue_index);
req.occluderColors[lineDataType].insert(orange_index);

req.objectColors[ellipseDataType].insert(blue_index);
req.objectColors[ellipseDataType].insert(orange_index);

unsigned int mapreq_id = MapBuilder::executeRequest(req);
erouter->addListener(this, EventBase::mapBuilderEGID,
 mapreq_id, EventBase::statusETID);

02/07/09 15-494 Cognitive Robotics 21

Examine the Results with Another
VisualRoutinesStateNode

 class ExamineMap : public VisualRoutinesStateNode {
 public:

 ExamineMap(const std::string& name) :
VisualRoutinesStateNode(name) {}

 void DoStart() {
 cout << “MapBuilder found “ << localShS.allShapes().size()

<< “ shapes.” << endl;
 }
 };

02/07/09 15-494 Cognitive Robotics 22

Link the Nodes Together

class MyMapDemo : public VisualRoutinesStateNode {
public:

 MyMapDemo(const std::string &name) :
 VisualRoutinesStateNode(name) {}

 virtual void setup() {

#statemachine
 startnode: BuildMap =C=> ExamineMap
#endstatemachine

 }

};

Parent state machine
must be a
VisualRoutinesStateNode
if any of its children are.

02/07/09 15-494 Cognitive Robotics 23

Qualitative Spatial Reasoning
● Reading for today:

 How qualitative spatial reasoning can improve
 strategy game AIs
 Ken Forbus, James Mahoney, and Kevin Dill (2002)

● Uses visual routines
to “reason about” maps,
e.g., compute reachability,
calculate paths, etc.

● Possible research topic:
applying these ideas to
world maps in Tekkotsu.

