World Maps and Localization

15-494 Cognitive Robotics
David S. Touretzky &
Ethan Tira-Thompson

Carnegie Mellon
Spring 2009

02/15/09 15-494 Cognitive Robotics

Frames of Reference

camera

®[
AP

N &

e Camera frame: what the robot sees.

world

local

» projectToGround() = kinematics + planar world
assumption.

« Local map assembled from camera frames each
projected to ground; robot moves head but not body.

« World map assembled from local maps built at different
spots in the environment.

02/15/09 15-494 Cognitive Robotics

Four Shape Spaces

camShS = camera space

groundShS = camera shapes projected to ground plane

localShS = body-centered (egocentric space);
constructed by matching and importing shapes
from groundShS

worldShS = world space (allocentric space);
constructed by matching and importing shapes
from localShS

 The robot is explicitly represented in worldShS

02/15/09 15-494 Cognitive Robotics

Deriving the Local Map

1) MapBuilder extracts shapes from the camera frame

- Use a request of type MapBuilderRequest::cameraMap if you
want to stop here and just get camera space shapes.

2) MapBuilder does projectToGround()

- Use MapBuilderRequest::groundMap if you want to stop here and
just get ground shapes from the current camera frame.

3) MapBuilder matches ground shapes against local shapes.
- Request type should be MapBuilderRequest::localMap

4) MapBuilder moves to the next gaze point and repeats.

- The world is assumed not to change during this process.

02/15/09 15-494 Cognitive Robotics 4

Deriving the World Map

 The local map covers only what the robot can see from a
single viewing position.

 The world map can cover much larger territory.
- Use MapBuilderRequest::worldMap

 The world map persists over a long time period.

- The world will change. Updates must be possible.

« We update the world map by:

- Constructing a local map.

- Aligning it with the world map (by translation and rotation)

- Importing shapes from the local map.

- Noting additions and deletions since the last local map match.

02/15/09 15-494 Cognitive Robotics

Localization

How do we align the local map with the world map?

« This turns out to be equivalent to determining our
position and orientation on the world map.

« Tricky, because:

- The local map is noisy

- The environment can be ambiguous (multiple pink landmarks)

 Sensor model: describes the uncertainty in our sensor
measurements.

- Can mix sensor types (vision, IR), info types (bearing, distance)

02/15/09 15-494 Cognitive Robotics

SLAM

« Simultaneous Localization and Mapping

 When is this necessary?

- When we don't know the map in advance.

- When the world is changing (landmarks can appear or
disappear, or change location.)

- When we're moving through the world.

« How do we localize on a map that we are still in the
process of building?

« Motion model: estimates (by odometry) our motion
through the environment.

02/15/09 15-494 Cognitive Robotics

Particle Filtering

A technique for searching large, complex spaces.

What is the hypothesis space we need to search?

Robot's position (x,y)
Robot's orientation 6

Which world space shapes have disappeared since last update?
What new shapes have appeared in local space?

02/15/09

Each particle encodes a point in the hypothesis space.

How can we evaluate hypotheses?

Use sensor and motion models to update particle weights

15-494 Cognitive Robotics

Ranking a Particle: 1-D Case

Local map ﬂ \
\

\
\

\
\ :
\ Hypothesis: dx = 18

\ \
\ \
Match hypothesis

@

A AG O

World map

Poor
match

02/15/09 15-494 Cognitive Robotics

Ranking a Particle: 1-D Case

Local map d—r\
. ~
~ ~

~ ~
~ ~
~ ~

Hypothesis: dx = 56 — —

Match hypothesis #
World map O A A m

Good
match

02/15/09 15-494 Cognitive Robotics

10

02/15/09

Local

Matching a Landmark

A

Gaussian probability
distribution: a sensor

World / A model

15-494 Cognitive Robotics

11

Pick the Best Candidate

Local map d—r\
. ~
\

g Match each local landmark
o o against the closest world
~ ~ landmark of the same type
Hypothesis: dx = 56 o o and color. Score with a
I I gaussian.

~ ~
Local map #

R

Good
match

O
>

World map

02/15/09 15-494 Cognitive Robotics 12

Matching a Set of Landmarks

« Take the product of the match probabilities of the

iIndividual landmarks:

G(x,x,) = exp

P(seL,te W\h) = G(L.s+h, W.t)
P(seL|W, h)=max,_,, P(seL,te W|h)

P(h) = || P(siW, h)

sel

-—(X—XO) -

O

2

AN

L.s = coordinate of
shape s in Local map

W.t = coordinate of
shape t in World map

h = location hypothesis

« Allow penalty terms for addition, deletion.

02/15/09

15-494 Cognitive Robotics

13

Addition Penalty

A shape in the local map that isn't in the world map must
be accounted for as an addition.

« Assess a penalty on P(h) for each addition, but remove
that shape from the product term for P(h) so the product
doesn't go to zero.

Localmap W & A

World map O A A m

02/15/09 15-494 Cognitive Robotics 14

Deletion Penalty

« A shape in the world map that should be visible in the
local map but isn't must be accounted for as a deletion.

« Assess a penalty on P(h) for each deletion, but remove
that shape from the product term for P(h) so the product
doesn't go to zero.

Local map %—k
World map —0—4A A AO O

02/15/09 15-494 Cognitive Robotics 15

What Shapes Should be Visible?

« Take bounding box of shapes in local space.

« All shapes within that box should be visible in world

space.
Local map %—k

~
e ~
~ e
e ~

World map A ['Q A] A m

02/15/09 15-494 Cognitive Robotics 16

When Objects Move

« |f an object moves only a little bit, it will still match, and
the position will be updated.

« If an object moves by a larger amount, we'll get:

- An object deletion at the old location
- An object addition at the new location

e Could watch for this and combine both changes into a
single “move” penalty.

« If his a poor hypothesis, then every object will appear to
have “moved”.

02/15/09 15-494 Cognitive Robotics 17

Importance Sampling

« For each particle h, calculate the probability P(h)

 Create a new generation of particles by resampling from
the previous population:

- Particles with high probability should be more likely to be
sampled, and will therefore multiply.

- Particles with low probability likely won't be sampled, and will
therefore probably die out.

The new particle's parameters are “jiggled” a little bit.
This iIs how we search the space.

Repeat this resampling process for several generations.

02/15/09 15-494 Cognitive Robotics

18

Jiggling a Particle
« Perturb the translation term (x, y)

« Perturb the orientation term 6

* Flip the state of an “addition” bit: one bit for each local
shape

- A value of 1 means this is a new addition to the world.

* Flip the state of a “deletion” bit: one bit for each world
shape.

- A value of 1 means this world shape has been deleted.

02/15/09 15-494 Cognitive Robotics 19

So What's In A Particle?

float dx, dy;
AngTwoP1 orientation;
vector<bool> additions(numLocalShapes, false);

vector<bool> deletions(numWorldShapes, false);

Parameters to adjust:
- Number of particles (2000)

- Number of generations (15)
- Amount of noise to add to dx, dy, 6

- Probability of flipping an add or delete bit

02/15/09 15-494 Cognitive Robotics

20

02/15/09

Particle Filter Simulation:

2000 Particles

Zero lterations

Local Map

* % ¥ ¥

epoch 0, 300 particles

Farticle Map Superimposed on World Map

10
g
B
4 *o*o*
*#O %0 %0
2 O %
o
0
-2
£} .
] 4 B 10
Best Particle Map
10
8
B
4 o G
(]
o 0
: (o]
0
-2
-4 .
] 4 B 10

15-494 Cognitive Robotics

World Map

* ¥ ¥
* % *
* *

Rotated Local Map

* ¥ ¥ ¥
* ¥
#*

21

02/15/09

Particle Filter Simulation

One lteration

Local Map Farticle Map Superimposed on World Map
10 10
g g
6 5]
+
41 = 4 * 0¥ % ©
+ Ok 0¥ *
21 * * * 2 * O
*
0 0
-2 -2
-4 . : -4 g
0 2 4 5 8 10 o 2 4 6 10
Particle Distribution Best Particle Map
10 10
8 8
<] » & &
al TR 4 xO O O
a.d x
2 "3‘;‘? ¢ 2 x 0
0 ¢ ‘we 0
-2 -2
-4 . : . : -4 . x .
0 2 4 B 8 10 0 2 4 6 10
epoch 1, 300 particles

15-494 Cognitive Robotics

World Map

* ¥ ¥
* % *
* *

Rotated Local Map
* ¥ **

#* %
+

+ means addition
X means deletion
[means match

22

Particle Filter Simulation

Five Iterations

o Local Map IoPartit:le Map Superimposed on World Map
. . World Map
4 E 4 - * ¥ ¥
)| T : * 2 % * * * ¥
0 0 + %
-2 -2
Y 2 4 5 8 10 Y2 4 6 8 10
Rotated Local Map

" Particle Distribution in Best Particle Map E X XX
8 >4 8 * *
6 i "’%‘.ﬁ : 6

. n - !
4 :%". 4 g DD E)I(+ _*_
2| %4 2 X O
0 . ” 0
2 2
Y 2 4 s 8 0 v 2 4 & & 10 + means addition

epoch S, 300 particles X means deletion

means match

02/15/09 15-494 Cognitive Robotics 23

02/15/09

Particle Filter Simulation

Fifteen lterations

Local Map
10
g
B
+
41 *
+
21 * * *
*
0
-2
) L
0 2 4 5 8 10
Particle Distribution
10
8
6 .
ﬁ? .
M
2
0
-2
-4 " . ¢ f
] 2 4 B 8 10
epoch 15, 300 particles

A MO M B O ® O

A M O N B O @

Farticle Map Superimposed on World Map

* & » O O
*® & *
* %
] 2 4 B 8 10
Best Particle Map
x OO + +
o 0O x
* 0O
] 2 4 B 8 10

15-494 Cognitive Robotics

World Map

* ¥ ¥
* % *
* ¥

Rotated Local Map

L b
* ¥
#*

+ means addition
X means deletion
means match

24

Local and
World Maps
on the Robot

Clone Save lmage 11D Clone Save lmage L]ID
(F11,261) (176, 1266)

Local World
Map Map
(0, -1a7) (—110% 03

02/15/09 15-494 Cognitive Robotics

Localization
After
Movement

Clone Save lmage 11D Clone Save Image L] ID

(B32,255) 44,502)
-
-

Local

Map
(0, -344)

02/15/09 15-494 Cognitive Robotics

Construct World Map

Three pieces on the board. Let's delete one.

02/15/09 15-494 Cognitive Robotics

27

Delete a Game Piece

Actual change: dx =0 mm, dy = 0 mm, 6 = 0° delete shape 30005
Particle filter: dx =9 mm, dy = 13 mm, 6 = -0.2°, delete shape 30005

02/15/09 15-494 Cognitive Robotics 28

Construct World Map

Three pieces on the board. Let's add one.

02/15/09 15-494 Cognitive Robotics

29

Add a Game Piece

%6004 /2)3006 S o
. _

Actual change: dx =0 mm, dy = 0 mm, 6 = 0° add shape 20006
Particle filter: dx =2 mm, dy = -.5 mm, 6 = -0.6°, add shape 20006

02/15/09 15-494 Cognitive Robotics 30

Construct World Map

Four pieces on the board. Let's move, add, and delete.

02/15/09 15-494 Cognitive Robotics

31

Change Position and Add/Delete

Actual change: dx = 670 mm, dy = -260 mm, 6 = 45°, add 20011, del. 30010
Particle filter: dx = 678 mm, dy = -306 mm, 6 = 42°, add 20011, del. 30010

02/15/09 15-494 Cognitive Robotics 32

Invoking the Particle Filter

#include “DualCoding/DualCoding.h”

ShapelLocalizationPF filter(localShS,worldShS,1000);

mapBuilder.executeRequest(...);

for (1nt 1=0; 1<10; 1++)
filter.update()

filter.setAgent();
filter.displayParticles();

02/15/09 15-494 Cognitive Robotics

33

Particle Filter Demo

Set up a world with three landmarks (worldShS):

_|BE)EY

[

i-114,-158)

02/15/09 15-494 Cognitive Robotics

class ParticleDemo : public VisualRoutinesBehavior {
public:
ParticleDemo() : VisualRoutinesBehavior("ParticleDemo") {}

volid DoStart() {

const int orange index = ProjectInterface::getColorIndex("gange");
const int green index = ProjectInterface::getColorIndex("green");

// Build the world map

NEW SHAPE(orangel, EllipseData,
new EllipseData(worldShS,Point(35,-50,0,allocentric),27.5,27.5));
orangel->setColor(orange index);

NEW SHAPE(orange2, EllipseData,
new EllipseData(worldShS,Point(135,-50,0,allocentric),27.5,27.5));
orange2->setColor(orange index);

NEW SHAPE(greenl, EllipseData

new EllipseData(worldShS,Point(135,-150,0,allocentric),27.5,27.5));
greenl->setColor(green index);

02/15/09 15-494 Cognitive Robotics 35

Move to New Location and
Use MapBuilder to Look Around

Results are constructed in localShS:

OC 3 dog E]@E] ._ local GUI: dog4 E]@E]

Clone Save Image []ID
(1440, 12007 Rescale the Image Refresh Listing

Select All Shapes [| Invert All Shapes

] localspace
'5 gazePoly 20005 (200.0,-250 01-> (800

@ EllipseData 20006 center=(222.549 19
> EllipseData 20007 center={422 449 15
D| EllipseData 20008 center=451.47 201

.
¥

.l-Cl

(0,-12 00Y)

(155, -436)

02/15/09 15-494 Cognitive Robotics

02/15/09

// Build a local map from what we can see

localShS.clear();
NEW SHAPE(gazePoly, PolygonData,

new PolygonData(localShS, Lookout::groundSearchPoints(),

false));

MapBuilderRequest mapreq(MapBuilderRequest::localMap);

mapreq.
mapreq.
.pursueShapes = true;

mapreq

mapreq.
mapreq.

mapreq.
.0bjectColors[ellipseDataType].insert(green index);

mapreq

searchArea = gazePoly;
doScan = true;

maxDist = 2000;
clearShapes = false; // to preserve gazePoly

objectColors[ellipseDataType].insert(orange index);

mapBuilder.executeRequest(this,mapreq);

15-494 Cognitive Robotics

37

Use Particle Filter to Localize
on the World Map

.' world GUI: dog4 E]@@

SRR e

Clone Save Image []ID

Rescale the Image Refresh Listing

e]

Select All Shapes [| Invert All Shapes

[worldspace —
& AnentData 20001 (x=168.135, y=-4
orangel 20002 center=(25.0 -50.0 |
arange? 20003 center=(125%.0 -50.0—
greenl 20004 center={125%.0 -15%0.
best 30005 wi=-1 84723 (168 125,
pt 20006 wi=-29 732132 (121 781, -
Pt Z0007 wi=-2 40102 (232085, -4
pt 20008 wi=-3 98245 (276551, -
pr 20009 wi=-11 8286 (150 805, -
pt 20010 wi=-2 20818 (217.173, -
pr2001] wi=-9.22222 (184 683, -
Pt 20012 wi=-4 85059 (109 871, -
prtEO0LE wi=-2 22176 (182 694, -
Pt Z00ld wi=-2 64214 (257 185, -
pt 20015 wi=-4 FE0S (1858.276, -5
pr 20016 wi=-3 8532 (203 238, -5

P A= - a AT iTiT -

Il | []

-
L

2,-213)

IR RS R R A I R N N |

[4]

FY

(-256,-442)

02/15/09 15-494 Cognitive Robotics

02/15/09

class ProcessMap : public VisualRoutinesStateNode {
public:
ProcessMap() : VisualRoutinesStateNode(“ProcessMap”) {}

virtual void DoStart() {
particleFilter->setMinAcceptableWeight(-3);
for (int 1=0; 1<5; 1i++)
particleFilter->update();
particleFilter->setAgent();
particleFilter->displayParticles();

cout << "Done!" << endl;

15-494 Cognitive Robotics

39

