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Frames of Reference

● Camera frame:  what the robot sees.

● projectToGround() = kinematics + planar world 
assumption.

● Local map assembled from camera frames each 
projected to ground; robot moves head but not body.

● World map assembled from local maps built at different 
spots in the environment.

camera

ground

world

local
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Four Shape Spaces

● camShS = camera space

● groundShS = camera shapes projected to ground plane

● localShS = body-centered (egocentric space);
constructed by matching and importing shapes
from groundShS

● worldShS = world space (allocentric space);
constructed by matching and importing shapes
from localShS

● The robot is explicitly represented in worldShS
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Deriving the Local Map

1) MapBuilder extracts shapes from the camera frame

– Use a request of type MapBuilderRequest::cameraMap if you 
want to stop here and just get camera space shapes.

2) MapBuilder does projectToGround()

– Use MapBuilderRequest::groundMap if you want to stop here and 
just get ground shapes from the current camera frame.

3) MapBuilder matches ground shapes against local shapes.

– Request type should be MapBuilderRequest::localMap

4) MapBuilder moves to the next gaze point and repeats.

– The world is assumed not to change during this process.
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Deriving the World Map
● The local map covers only what the robot can see from a 

single viewing position.

● The world map can cover much larger territory.

– Use MapBuilderRequest::worldMap

● The world map persists over a long time period.

– The world will change.  Updates must be possible.

● We update the world map by:

– Constructing a local map.

– Aligning it with the world map (by translation and rotation)

– Importing shapes from the local map.

– Noting additions and deletions since the last local map match.
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Localization

● How do we align the local map with the world map?

● This turns out to be equivalent to determining our 
position and orientation on the world map.

● Tricky, because:

– The local map is noisy

– The environment can be ambiguous (multiple pink landmarks)

● Sensor model: describes the uncertainty in our sensor 
measurements.

– Can mix sensor types (vision, IR), info types (bearing, distance)
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SLAM

● Simultaneous Localization and Mapping

● When is this necessary?

– When we don't know the map in advance.

– When the world is changing (landmarks can appear or 
disappear, or change location.)

– When we're moving through the world.

● How do we localize on a map that we are still in the 
process of building?

● Motion model: estimates (by odometry) our motion 
through the environment.
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Particle Filtering

● A technique for searching large, complex spaces.

● What is the hypothesis space we need to search?

– Robot's position (x,y)

– Robot's orientation 

– Which world space shapes have disappeared since last update?

– What new shapes have appeared in local space?

● Each particle encodes a point in the hypothesis space.

● How can we evaluate hypotheses? 

– Use sensor and motion models to update particle weights
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Ranking a Particle: 1-D Case

Local map

World map

Hypothesis:   dx = 18

Match hypothesis

Poor
match
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Ranking a Particle: 1-D Case

Local map

World map

Hypothesis:   dx = 56

Match hypothesis

Good
match
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Matching a Landmark

Gaussian probability 
distribution: a sensor 
modelWorld

Local
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Pick the Best Candidate

Local map

World map

Hypothesis:   dx = 56

Local map

Good
match

Match each local landmark 
against the closest world 
landmark of the same type 
and color.  Score with a 
gaussian.
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Matching a Set of Landmarks

Gx ,x0 = exp[−x−x0
2


2 ]

P s∈L ,t∈W∣h = GL.sh,W.t 

P s∈L∣W ,h=max t∈W P s∈L ,t∈W∣h

P h = ∏
s∈L

P s∣W ,h

● Take the product of the match probabilities of the 
individual landmarks:

● Allow penalty terms for addition, deletion.

L.s = coordinate of 
shape s in Local map

W.t = coordinate of 
shape t in World map

h = location hypothesis
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Addition Penalty

● A shape in the local map that isn't in the world map must 
be accounted for as an addition.

● Assess a penalty on P(h) for each addition, but remove 
that shape from the product term for P(h) so the product 
doesn't go to zero.

World map

Local map
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Deletion Penalty

● A shape in the world map that should be visible in the 
local map but isn't must be accounted for as a deletion.

● Assess a penalty on P(h) for each deletion, but remove 
that shape from the product term for P(h) so the product 
doesn't go to zero.

World map

Local map
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What Shapes Should be Visible?

● Take bounding box of shapes in local space.

● All shapes within that box should be visible in world 
space.

Local map

World map
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When Objects Move

● If an object moves only a little bit, it will still match, and 
the position will be updated.

● If an object moves by a larger amount, we'll get:

– An object deletion at the old location

– An object addition at the new location

● Could watch for this and combine both changes into a 
single “move” penalty.

● If h is a poor hypothesis, then every object will appear to 
have “moved”.
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Importance Sampling

● For each particle h, calculate the probability P(h)

● Create a new generation of particles by resampling from 
the previous population:

– Particles with high probability should be more likely to be 
sampled, and will therefore multiply.

– Particles with low probability likely won't be sampled, and will 
therefore probably die out.

● The new particle's parameters are “jiggled” a little bit.  
This is how we search the space.

● Repeat this resampling process for several generations.
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Jiggling a Particle

● Perturb the translation term (x, y)

● Perturb the orientation term 

● Flip the state of an “addition” bit: one bit for each local 
shape

– A value of 1 means this is a new addition to the world.

● Flip the state of a “deletion” bit: one bit for each world 
shape. 

– A value of 1 means this world shape has been deleted.
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So What's In A Particle?
float dx, dy;

AngTwoPi orientation;

vector<bool> additions(numLocalShapes, false);

vector<bool> deletions(numWorldShapes, false);

Parameters to adjust:

– Number of particles (2000)

– Number of generations (15)

– Amount of noise to add to dx, dy, 

– Probability of flipping an add or delete bit
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Particle Filter Simulation:
2000 Particles

Zero Iterations

World Map

Rotated Local Map
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Particle Filter Simulation

One Iteration

World Map

Rotated Local Map

+ means addition
x means deletion
 means match
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Particle Filter Simulation

Five Iterations

World Map

Rotated Local Map

+ means addition
x means deletion
� means match
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Particle Filter Simulation

Fifteen Iterations

World Map

Rotated Local Map

+ means addition
x means deletion
� means match
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Local and
World Maps
on the Robot

Local
Map

World
Map
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Localization
After 
Movement

Local
Map

World
Map
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Construct World Map

Three pieces on the board.  Let's delete one.
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Delete a Game Piece

Actual change: dx = 0 mm, dy =   0 mm,  = 0o, delete shape 30005
Particle filter:   dx = 9 mm, dy = 13 mm,  = -0.2o, delete shape 30005
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Construct World Map

Three pieces on the board.  Let's add one.
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Add a Game Piece

Actual change: dx = 0 mm, dy =   0 mm,  = 0o, add shape 20006
Particle filter:   dx = 2 mm, dy = -.5 mm,  = -0.6o, add shape 20006
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Construct World Map

Four pieces on the board.  Let's move, add, and delete.
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Change Position and Add/Delete

Actual change: dx = 670 mm, dy = -260 mm,  = 45o, add 20011, del. 30010
Particle filter:   dx = 678 mm, dy = -306 mm,  = 42o, add 20011, del. 30010
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Invoking the Particle Filter

#include “DualCoding/DualCoding.h”

ShapeLocalizationPF filter(localShS,worldShS,1000);

mapBuilder.executeRequest(...);

for (int i=0; i<10; i++)
filter.update()

filter.setAgent();

filter.displayParticles();
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Particle Filter Demo

Set up a world with three landmarks (worldShS):
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class ParticleDemo : public VisualRoutinesBehavior {
public:
  ParticleDemo() : VisualRoutinesBehavior("ParticleDemo") {}

  void DoStart() {

    const int orange_index = ProjectInterface::getColorIndex("orange");
    const int green_index = ProjectInterface::getColorIndex("green");

    // Build the world map

    NEW_SHAPE(orange1, EllipseData,
new EllipseData(worldShS,Point(35,-50,0,allocentric),27.5,27.5));

    orange1->setColor(orange_index);

    NEW_SHAPE(orange2, EllipseData,
new EllipseData(worldShS,Point(135,-50,0,allocentric),27.5,27.5));

    orange2->setColor(orange_index);

    NEW_SHAPE(green1, EllipseData
new EllipseData(worldShS,Point(135,-150,0,allocentric),27.5,27.5));

    green1->setColor(green_index);
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Move to New Location and 
Use MapBuilder to Look Around
Results are constructed in localShS:
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// Build a local map from what we can see

    localShS.clear();
    NEW_SHAPE(gazePoly, PolygonData, 

new PolygonData(localShS, Lookout::groundSearchPoints(),
 false));

    MapBuilderRequest mapreq(MapBuilderRequest::localMap);
    mapreq.searchArea = gazePoly;
    mapreq.doScan = true;
    mapreq.pursueShapes = true;
    mapreq.maxDist = 2000;
    mapreq.clearShapes = false;  // to preserve gazePoly

    mapreq.objectColors[ellipseDataType].insert(orange_index);
    mapreq.objectColors[ellipseDataType].insert(green_index);

    mapBuilder.executeRequest(this,mapreq);

  }
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Use Particle Filter to Localize
on the World Map
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class ProcessMap : public VisualRoutinesStateNode {
public:
  ProcessMap() : VisualRoutinesStateNode(“ProcessMap”) {}

  virtual void DoStart() {

    particleFilter->setMinAcceptableWeight(-3);
    for (int i=0; i<5; i++)
      particleFilter->update();
    particleFilter->setAgent();
    particleFilter->displayParticles();

    cout << "Done!" << endl;
  }

};


