
02/15/09 15-494 Cognitive Robotics 1

World Maps and Localization

15-494 Cognitive Robotics
David S. Touretzky &
Ethan Tira-Thompson

Carnegie Mellon
Spring 2009

02/15/09 15-494 Cognitive Robotics 2

Frames of Reference

● Camera frame: what the robot sees.

● projectToGround() = kinematics + planar world
assumption.

● Local map assembled from camera frames each
projected to ground; robot moves head but not body.

● World map assembled from local maps built at different
spots in the environment.

camera

ground

world

local

02/15/09 15-494 Cognitive Robotics 3

Four Shape Spaces

● camShS = camera space

● groundShS = camera shapes projected to ground plane

● localShS = body-centered (egocentric space);
constructed by matching and importing shapes
from groundShS

● worldShS = world space (allocentric space);
constructed by matching and importing shapes
from localShS

● The robot is explicitly represented in worldShS

02/15/09 15-494 Cognitive Robotics 4

Deriving the Local Map

1) MapBuilder extracts shapes from the camera frame

– Use a request of type MapBuilderRequest::cameraMap if you
want to stop here and just get camera space shapes.

2) MapBuilder does projectToGround()

– Use MapBuilderRequest::groundMap if you want to stop here and
just get ground shapes from the current camera frame.

3) MapBuilder matches ground shapes against local shapes.

– Request type should be MapBuilderRequest::localMap

4) MapBuilder moves to the next gaze point and repeats.

– The world is assumed not to change during this process.

02/15/09 15-494 Cognitive Robotics 5

Deriving the World Map
● The local map covers only what the robot can see from a

single viewing position.

● The world map can cover much larger territory.

– Use MapBuilderRequest::worldMap

● The world map persists over a long time period.

– The world will change. Updates must be possible.

● We update the world map by:

– Constructing a local map.

– Aligning it with the world map (by translation and rotation)

– Importing shapes from the local map.

– Noting additions and deletions since the last local map match.

02/15/09 15-494 Cognitive Robotics 6

Localization

● How do we align the local map with the world map?

● This turns out to be equivalent to determining our
position and orientation on the world map.

● Tricky, because:

– The local map is noisy

– The environment can be ambiguous (multiple pink landmarks)

● Sensor model: describes the uncertainty in our sensor
measurements.

– Can mix sensor types (vision, IR), info types (bearing, distance)

02/15/09 15-494 Cognitive Robotics 7

SLAM

● Simultaneous Localization and Mapping

● When is this necessary?

– When we don't know the map in advance.

– When the world is changing (landmarks can appear or
disappear, or change location.)

– When we're moving through the world.

● How do we localize on a map that we are still in the
process of building?

● Motion model: estimates (by odometry) our motion
through the environment.

02/15/09 15-494 Cognitive Robotics 8

Particle Filtering

● A technique for searching large, complex spaces.

● What is the hypothesis space we need to search?

– Robot's position (x,y)

– Robot's orientation 

– Which world space shapes have disappeared since last update?

– What new shapes have appeared in local space?

● Each particle encodes a point in the hypothesis space.

● How can we evaluate hypotheses?

– Use sensor and motion models to update particle weights

02/15/09 15-494 Cognitive Robotics 9

Ranking a Particle: 1-D Case

Local map

World map

Hypothesis: dx = 18

Match hypothesis

Poor
match

02/15/09 15-494 Cognitive Robotics 10

Ranking a Particle: 1-D Case

Local map

World map

Hypothesis: dx = 56

Match hypothesis

Good
match

02/15/09 15-494 Cognitive Robotics 11

Matching a Landmark

Gaussian probability
distribution: a sensor
modelWorld

Local

02/15/09 15-494 Cognitive Robotics 12

Pick the Best Candidate

Local map

World map

Hypothesis: dx = 56

Local map

Good
match

Match each local landmark
against the closest world
landmark of the same type
and color. Score with a
gaussian.

02/15/09 15-494 Cognitive Robotics 13

Matching a Set of Landmarks

Gx ,x0 = exp[−x−x0
2


2]

P s∈L ,t∈W∣h = GL.sh,W.t 

P s∈L∣W ,h=max t∈W P s∈L ,t∈W∣h

P h = ∏
s∈L

P s∣W ,h

● Take the product of the match probabilities of the
individual landmarks:

● Allow penalty terms for addition, deletion.

L.s = coordinate of
shape s in Local map

W.t = coordinate of
shape t in World map

h = location hypothesis

02/15/09 15-494 Cognitive Robotics 14

Addition Penalty

● A shape in the local map that isn't in the world map must
be accounted for as an addition.

● Assess a penalty on P(h) for each addition, but remove
that shape from the product term for P(h) so the product
doesn't go to zero.

World map

Local map

02/15/09 15-494 Cognitive Robotics 15

Deletion Penalty

● A shape in the world map that should be visible in the
local map but isn't must be accounted for as a deletion.

● Assess a penalty on P(h) for each deletion, but remove
that shape from the product term for P(h) so the product
doesn't go to zero.

World map

Local map

02/15/09 15-494 Cognitive Robotics 16

What Shapes Should be Visible?

● Take bounding box of shapes in local space.

● All shapes within that box should be visible in world
space.

Local map

World map

02/15/09 15-494 Cognitive Robotics 17

When Objects Move

● If an object moves only a little bit, it will still match, and
the position will be updated.

● If an object moves by a larger amount, we'll get:

– An object deletion at the old location

– An object addition at the new location

● Could watch for this and combine both changes into a
single “move” penalty.

● If h is a poor hypothesis, then every object will appear to
have “moved”.

02/15/09 15-494 Cognitive Robotics 18

Importance Sampling

● For each particle h, calculate the probability P(h)

● Create a new generation of particles by resampling from
the previous population:

– Particles with high probability should be more likely to be
sampled, and will therefore multiply.

– Particles with low probability likely won't be sampled, and will
therefore probably die out.

● The new particle's parameters are “jiggled” a little bit.
This is how we search the space.

● Repeat this resampling process for several generations.

02/15/09 15-494 Cognitive Robotics 19

Jiggling a Particle

● Perturb the translation term (x, y)

● Perturb the orientation term 

● Flip the state of an “addition” bit: one bit for each local
shape

– A value of 1 means this is a new addition to the world.

● Flip the state of a “deletion” bit: one bit for each world
shape.

– A value of 1 means this world shape has been deleted.

02/15/09 15-494 Cognitive Robotics 20

So What's In A Particle?
float dx, dy;

AngTwoPi orientation;

vector<bool> additions(numLocalShapes, false);

vector<bool> deletions(numWorldShapes, false);

Parameters to adjust:

– Number of particles (2000)

– Number of generations (15)

– Amount of noise to add to dx, dy, 

– Probability of flipping an add or delete bit

02/15/09 15-494 Cognitive Robotics 21

Particle Filter Simulation:
2000 Particles

Zero Iterations

World Map

Rotated Local Map

02/15/09 15-494 Cognitive Robotics 22

Particle Filter Simulation

One Iteration

World Map

Rotated Local Map

+ means addition
x means deletion
 means match

02/15/09 15-494 Cognitive Robotics 23

Particle Filter Simulation

Five Iterations

World Map

Rotated Local Map

+ means addition
x means deletion
� means match

02/15/09 15-494 Cognitive Robotics 24

Particle Filter Simulation

Fifteen Iterations

World Map

Rotated Local Map

+ means addition
x means deletion
� means match

02/15/09 15-494 Cognitive Robotics 25

Local and
World Maps
on the Robot

Local
Map

World
Map

02/15/09 15-494 Cognitive Robotics 26

Localization
After
Movement

Local
Map

World
Map

02/15/09 15-494 Cognitive Robotics 27

Construct World Map

Three pieces on the board. Let's delete one.

02/15/09 15-494 Cognitive Robotics 28

Delete a Game Piece

Actual change: dx = 0 mm, dy = 0 mm,  = 0o, delete shape 30005
Particle filter: dx = 9 mm, dy = 13 mm,  = -0.2o, delete shape 30005

02/15/09 15-494 Cognitive Robotics 29

Construct World Map

Three pieces on the board. Let's add one.

02/15/09 15-494 Cognitive Robotics 30

Add a Game Piece

Actual change: dx = 0 mm, dy = 0 mm,  = 0o, add shape 20006
Particle filter: dx = 2 mm, dy = -.5 mm,  = -0.6o, add shape 20006

02/15/09 15-494 Cognitive Robotics 31

Construct World Map

Four pieces on the board. Let's move, add, and delete.

02/15/09 15-494 Cognitive Robotics 32

Change Position and Add/Delete

Actual change: dx = 670 mm, dy = -260 mm,  = 45o, add 20011, del. 30010
Particle filter: dx = 678 mm, dy = -306 mm,  = 42o, add 20011, del. 30010

02/15/09 15-494 Cognitive Robotics 33

Invoking the Particle Filter

#include “DualCoding/DualCoding.h”

ShapeLocalizationPF filter(localShS,worldShS,1000);

mapBuilder.executeRequest(...);

for (int i=0; i<10; i++)
filter.update()

filter.setAgent();

filter.displayParticles();

02/15/09 15-494 Cognitive Robotics 34

Particle Filter Demo

Set up a world with three landmarks (worldShS):

02/15/09 15-494 Cognitive Robotics 35

class ParticleDemo : public VisualRoutinesBehavior {
public:
 ParticleDemo() : VisualRoutinesBehavior("ParticleDemo") {}

 void DoStart() {

 const int orange_index = ProjectInterface::getColorIndex("orange");
 const int green_index = ProjectInterface::getColorIndex("green");

 // Build the world map

 NEW_SHAPE(orange1, EllipseData,
new EllipseData(worldShS,Point(35,-50,0,allocentric),27.5,27.5));

 orange1->setColor(orange_index);

 NEW_SHAPE(orange2, EllipseData,
new EllipseData(worldShS,Point(135,-50,0,allocentric),27.5,27.5));

 orange2->setColor(orange_index);

 NEW_SHAPE(green1, EllipseData
new EllipseData(worldShS,Point(135,-150,0,allocentric),27.5,27.5));

 green1->setColor(green_index);

02/15/09 15-494 Cognitive Robotics 36

Move to New Location and
Use MapBuilder to Look Around
Results are constructed in localShS:

02/15/09 15-494 Cognitive Robotics 37

// Build a local map from what we can see

 localShS.clear();
 NEW_SHAPE(gazePoly, PolygonData,

new PolygonData(localShS, Lookout::groundSearchPoints(),
 false));

 MapBuilderRequest mapreq(MapBuilderRequest::localMap);
 mapreq.searchArea = gazePoly;
 mapreq.doScan = true;
 mapreq.pursueShapes = true;
 mapreq.maxDist = 2000;
 mapreq.clearShapes = false; // to preserve gazePoly

 mapreq.objectColors[ellipseDataType].insert(orange_index);
 mapreq.objectColors[ellipseDataType].insert(green_index);

 mapBuilder.executeRequest(this,mapreq);

 }

02/15/09 15-494 Cognitive Robotics 38

Use Particle Filter to Localize
on the World Map

02/15/09 15-494 Cognitive Robotics 39

class ProcessMap : public VisualRoutinesStateNode {
public:
 ProcessMap() : VisualRoutinesStateNode(“ProcessMap”) {}

 virtual void DoStart() {

 particleFilter->setMinAcceptableWeight(-3);
 for (int i=0; i<5; i++)
 particleFilter->update();
 particleFilter->setAgent();
 particleFilter->displayParticles();

 cout << "Done!" << endl;
 }

};

