
01/16/09 15-494 Cognitive Robotics 1

Tekkotsu Behaviors & Events

15-494 Cognitive Robotics
David S. Touretzky &
Ethan Tira-Thompson

Carnegie Mellon
Spring 2009

01/16/09 15-494 Cognitive Robotics 2

Behaviors
● Behaviors are classes defined in .h files:

– Add them to the ControllergGUI
“Mode Switch” menu by calling
MENUITEM in
~/project/UserBehviors.h

– Double click on the “Mode Switch”
menu item to instantiate and run

– When you stop a behavior (double
click on the menu item again), the
instance is deleted

01/16/09 15-494 Cognitive Robotics 3

Five Behavior Components

#include “Behaviors/BehaviorBase.h”

class PoodleBehavior : public BehaviorBase {

Constructor

PoodleBehavior() : BehaviorBase(“PoodleBehavior”) {}

DoStart() is called when the behavior is activated

 virtual void DoStart() {
 cout << getName() << “ is starting up.” << endl;
}

01/16/09 15-494 Cognitive Robotics 4

Five Behavior Components

DoStop() is called when the behavior is deactivateed

 virtual void DoStop() {
 cout << getName() << “ is shutting down.” << endl;
}

processEvent processes requested event types

 virtual void processEvent(const EventBase &event) {
 cout << getName() << “ got event: “
 << event.getDescription() << endl;
}

01/16/09 15-494 Cognitive Robotics 5

Five Behavior Components

getClassDescription() returns a string displayed by
ControllerGUI pop-up help

virtual std::string getClassDescription() {
 return “Demonstration of a simple behavior”;
}

}; // end of PoodleBehavior class definition

01/16/09 15-494 Cognitive Robotics 6

Behaviors are Coroutines

● Behaviors are coroutines, not threads:

– Many can be “active” at once, but...

– Only one is actually running at a time.

– No worries about mutual exclusion.

– Must voluntarily relinquish control so that other active
behaviors can run.

● BehaviorBase is a subclass of:

– EventListener

– ReferenceCounter

● Behaviors will be deleted if they are deactivated and the
reference count goes to zero.

01/16/09 15-494 Cognitive Robotics 7

Tekkotsu Releases

● Tekkotsu.org holds the current stable release and
accompanying documentation.

● tekkotsu.no-ip.org holds the latest (bleeding edge)
version of Tekkotsu, and the latest version of the
documentation.

● This class will be using the latest
bleeding edge software.

● The “Reference” link on the course home page points to
the bleeding edge documentation at tekkotsu.no-ip.org.

01/16/09 15-494 Cognitive Robotics 8

Browsing the Documentation

● “Class List” in left nav bar

– Click on class name (BehaviorBase) to see documentation page

– Click on method name (processEvent) to jump to detailed
description

– Click on line number to go to source code

● “Directories” in left nav bar shows major components

– Look at the Behaviors and Events directories

01/16/09 15-494 Cognitive Robotics 9

Searching the Source

● Use the search box in the documentation pages to
search for any identifier.

– Examples: RMdLeg, or TiltOffset

● Use the “ss” shell script to grep the source code:

> cd /usr/local/Tekkotsu

> ss RMdLeg

> ss IRDist

01/16/09 15-494 Cognitive Robotics 10

Events

● Events are subclasses of EventBase

● Three essential components:

1. Generator ID: what kind of event is this?

buttonEGID, visionEGID, timerEGID, ...

2. Source ID: which sensor/actuator/behavior/thing generated it?

ChiaraInfo::GreenButOffset
ERS7Info::HeadButOffset

3. Type ID, which must be one of:

activateETID
statusETID
deactivateETID

01/16/09 15-494 Cognitive Robotics 11

Where are these Defined?

● EventGeneratorID_t defined in EventBase.h

● EventTypeID_t defined in EventBase.h

enum EventTypeID_t {
 activateETID,
 statusETID,
 deactivateETID,
 numETIDs
};

● Event source ids are specific to the event type:

– GreenButOffset defined in ChiaraInfo.h

– visPinkBallSID defined in ProjectInterface.h

01/16/09 15-494 Cognitive Robotics 12

Subscribing to Events

addListener(listener,generator,source,type)

#include “EventRouter.h”

virtual void DoStart() {
 erouter->addListener(this,
 EventBase::buttonEGID,
 RobotInfo::GreenButOffset,
 EventBase::activateETID);
}

01/16/09 15-494 Cognitive Robotics 13

Processing Events

virtual void processEvent(const EventBase &event) {
 switch (event.getGeneratorID()) {

 case EventBase::buttonEGID:
 cout << “Button press: “ << event.getDescription()
 << endl;
 break;

 default:
 cout << “Unexpected event: “
 << event.getDescription() << endl;
 }
}

01/16/09 15-494 Cognitive Robotics 14

Types of Events

● What are some subclasses of EventBase?

01/16/09 15-494 Cognitive Robotics 15

Vision Object Events

● VisionObjectEvent is a subclass of EventBase

● The vision pipeline includes an “object detector” that
looks for pink roundish blobs, like a pink ball.

● The center and area of the largest blob are reported by
posting a VisionObjectEvent (if anyone's listening.)

– visObjEGID

– visPinkBallSID

– activate, status, deactivate ETIDs

01/16/09 15-494 Cognitive Robotics 16

The Event Router

● Runs in the Main process.

● Distributes events to the Behaviors listening for them.

01/16/09 15-494 Cognitive Robotics 17

Subscribing to Vision Events

#include “Events/VisionObjectEvent.h”
#include “Shared/ProjectInterface.h”

virtual void DoStart() {
 erouter->addListener(this,

 EventBase::visObjEGID,
 ProjectInterface::visPinkBallSID);
}

01/16/09 15-494 Cognitive Robotics 18

Casting VisionObject Events

void processEvent(const EventBase &event) {
 switch (event.getGeneratorID()) {

 case EventBase::visObjEGID: {
 const VisionObjectEvent &visev =
 dynamic_cast<const VisionObjectEvent&>(event);
 if (visev.getTypeID() == EventBase::activateETID ||
 visev.getTypeID() == EventBase::statusETID)
 cout << “Saw pink ball at (“
 << visev.getCenterX() << “, “
 << visev.getCenterY() << “)” << endl;
 else // deactivate event
 cout << “Lost sight of the ball!” << endl;
 };
 break;

 case EventBase::buttonEGID:
 ...

01/16/09 15-494 Cognitive Robotics 19

Text Message Events

 You can send text messages to
the AIBO via the ControllerGUI's
“Send Input” window:

 !msg Hi there

 This causes the behavior
controller to post a textmsgEvent.

 You can also give the msg
command to Tekkotsu's command
line (with no exclamation point).

01/16/09 15-494 Cognitive Robotics 20

Subscribing to TextMsg Events

#include “Events/TextMsgEvent.h”

virtual void DoStart() {
 erouter->addListener(this, EventBase::textmsgEGID);
}

The source ID is meaningless (it's -1).

The type ID is always statusETID.

01/16/09 15-494 Cognitive Robotics 21

Casting TextMsg Events

void processEvent(const EventBase &event) {
 switch (event.getGeneratorID()) {

 case EventBase::textmsgEGID: {
 const TextMsgEvent &txtev =
 dynamic_cast<const TextMsgEvent&>(event);
 cout << “I heard: '” << txtev.getText() << “'” << endl;
 };
 break;

 case EventBase::buttonEGID:
 ...

01/16/09 15-494 Cognitive Robotics 22

The Event Logger

● Root Control
 > Status Reports
 > Event Logger

● Outputs to console

01/16/09 15-494 Cognitive Robotics 23

Timers

Timers are good for two kinds of things:

● Repetitive actions: “Bark every 30 seconds.”

– Whenever a timer expires and a timer expiration event is
posted, the timer should be automatically restarted.

● Timeouts: “If you haven't seen the ball for 5 seconds,
 bark and turn around.”

– One-shot timer. Will need to be cancelled if we see the ball
before the time expires.

01/16/09 15-494 Cognitive Robotics 24

addTimer

● addTimer(listener, source, duration, repeat)

– listener is normally this

– source is an arbitrary integer

– duration is in milliseconds

– repeat should be “true” if a sequence of timer events is desired

● Starts timer and automatically listens for the event.

● Timers are specific to a behavior instance; can use the
same source id in other behaviors without interference.

● Behaviors can receive another's timer events if they use
addListener to explicitly listen for them.

● removeTimer(listener, source)

01/16/09 15-494 Cognitive Robotics 25

Timer Example

#include “Behaviors/BehaviorBase.h”
#include “EventRouter.h”

virtual void DoStart() {

 erouter->addListener(this,
 EventBase::buttonEGID,
 RobotInfo::GreenButffset,
 EventBase::activateETID);

 erouter->addListener(this,
 EventBase::buttonEGID,
 RobotInfo::YellowButOffset,
 EventBase::activateETID);
}

01/16/09 15-494 Cognitive Robotics 26

Timer Example

virtual void processEvent(const EventBase &even) {
 switch (event.getGeneratorID()) {

 case EventBase::buttonEGID:
 if (event.getSourceID() == RobotInfo::GreenOffset)
 erouter->addTimer(this, 1234, 5000, false);
 else if (event.getSourceID() == RobotInfo::YellowButOffset)
 erouter->removeTimer(this, 1234);
 break;

 case EventBase::timerEGID:
 cout << “On no!!!! Timer expired!” << endl;
 }

}

What does this behavior do?

01/16/09 15-494 Cognitive Robotics 27

Simulating Your Robot

● For some robots, code is compiled right on the robot.

● If you want to simulate that robot on the PC, just install
Tekkotsu on the PC and compile it there.

● Then you can direct Tekkotsu to use camera images and
sensor values from a real robot that you previously
saved to disk.

● Alternative (coming soon): the Mirage simulator provides
a virtual environment in which you can run your
simulated robot.

01/16/09 15-494 Cognitive Robotics 28

AIBO Only:
Compiling the Simulator

● To compile Tekkotsu to run on your PC instead of on the
AIBO via a memory stick, do:

 > cd ~/project (or whatever your project name is)

 > make sim

 > ./tekkotsu-ERS7

● In another terminal tab:

 > ControllerGUI localhost

01/16/09 15-494 Cognitive Robotics 29

ControllerGUI Can Post Events
to the Simulator

Type this command in
the “Send Input” box:

 !post buttonEGID GreenBut A

● Monitor the result using the
Event Logger

● You can also use the post
command in the Tekkotsu
command line (no exclamation
point).

01/16/09 15-494 Cognitive Robotics 30

Tekkotsu Architecture: Main

01/16/09 15-494 Cognitive Robotics 31

World State

● Shared memory structure between Main and Motion

● Updated every 32 msec

● sensorEGID events announce each update

● Contents:

– joint positions, duty cycles, and PID settings

– button states: state->buttons[GreenButOffset]

– IR range readings: state->sensors[CenterIRDistOffset]

– accelerometer readings (if installed)

– battery state, thermal sensor

– commanded walking velocity (x,y,a)

01/16/09 15-494 Cognitive Robotics 32

Sensor Observer

● Root Control
 > Status Reports
 > Sensor Observer

● Try monitoring the
IR range sensors.

● Then move your hand
in front of the robot.

01/16/09 15-494 Cognitive Robotics 33

Control of Effectors

● How do we make the robot move?

● Must send commands to each device (head, legs, arm,
LED display, etc.) every 32 ms.

● This is real-time programming.

● Can't spend too long computing command values!

● Best to do all this in another process, independent of
user-written behaviors, so motion can be smooth.

01/16/09 15-494 Cognitive Robotics 34

Tekkotsu Architecture: Motion

