
04/06/09 15-494 Cognitive Robotics 1

Kinematics

15-494 Cognitive Robotics
David S. Touretzky &
Ethan Tira-Thompson

Carnegie Mellon
Spring 2009

04/06/09 15-494 Cognitive Robotics 2

Outline

Kinematics is the study of how things move.

● Homogeneous coordinates

● Kinematic chains

– Robots are described as collections of kinematic chains

● Reference frames

● Kinematics and PostureEngine classes

● Forward kinematics: calculating limb positions from joint
angles. (Straightforward matrix multiply.)

● Inverse kinematics: calculating joint angles to achieve
desired limb positions. (Hard.)

04/06/09 15-494 Cognitive Robotics 3

Homogeneous Coordinates
● Represent a point in N-space by an (N+1)-dimensional

vector. Extra component is an inverse scale factor.

– In “normal” form, last component is 1.

– Points at infinite distance: last component is 0.

● Allows us to perform a variety of transformations using
matrix multiplication:

 Rotation, Translation, Scaling

● Tekkotsu uses 3D coordinates (so 4-dimensional
vectors) for everything.

v = [
x
y
z
1

]

04/06/09 15-494 Cognitive Robotics 4

Transformation Matrices

● Let be rotation angle in the x-y plane.
Let dx, dy, dz be translation amounts.
Let 1/s be a scale factor.

T = [
cos sin 0 dx
−sin cos 0 dy

0 0 1 dz
0 0 0 s

]
T v = [

xcosysindx
−xsinycosdy

zdz
s

] = [
xcosysindx /s
−xsinycosdy /s

zdz/s
1

]

04/06/09 15-494 Cognitive Robotics 5

Transformations Are
Composable

● To rotate about point p, translate p to the origin, rotate,
then translate back.

Translatep = [
1 0 0 p.x
0 1 0 p.y
0 0 1 p.z
0 0 0 1

]
Rotate = [

cos sin 0 0
−sin cos 0 0

0 0 1 0
0 0 0 1

]
RotateAbout p, = Translate p ⋅ Rotate ⋅ Translate−p

04/06/09 15-494 Cognitive Robotics 6

Kinematic Chains

● Sequence of joints separated by links.

● We can use transformation matrices to calculate the
position of the tip of the chain (joint J

2
) from the joint

angles
0
,

1
 and the link lengths L

1
, L

2
.

● Each joint has a rotation transform; each link has a
translation transform.

L
1 L2

J
0

J
1

J 2

04/06/09 15-494 Cognitive Robotics 7

AIBO Kinematic Chains

● The AIBO has 9 kinematic chains instead of 6 because
branched chains were formerly not supported:

– 4 for the legs

– 1 for the head (ending in the camera), 1 for the mouth

– 3 for the IR range sensors

● All chains begin at the center of the body (base frame).

04/06/09 15-494 Cognitive Robotics 8

Chiara Kinematic Chains

● The Chiara has 8 kinematic chains:

– Head / camera / IR

– Arm

– Left front leg

– Right front leg (4-dof)

– Left middle leg

– Right middle leg

– Left back leg

– Right back leg

04/06/09 15-494 Cognitive Robotics 9

Reference Frames
● Every joint and every link has an associated reference

frame.

● Denavit-Hartenberg conventions: all joints move about
their reference frame's z-axis.

● The head chain:

– Base frame 0 z
0
 = “up”

– Tilt joint 1 y
1
 = “up”

– Pan joint 2

– Nod joint 3

– Camera 4

04/06/09 15-494 Cognitive Robotics 10

Joint vs. Link Reference Frames

● The joint reference frame does not rotate with the joint.
The link reference frame does.

● The x
1
, y

1
, z

1
 joint axes remain fixed with respect to the

base frame when the head tilts up or down.

● The x
2
, z

2
 joint axes rotate

with the tilt angle (but not
the pan angle.)

04/06/09 15-494 Cognitive Robotics 11

Leg Reference Frames

04/06/09 15-494 Cognitive Robotics 12

Leg Reference Frames

04/06/09 15-494 Cognitive Robotics 13

Reference Frame
 Naming Conventions

● Use a similar offset-based indexing scheme as for joint
names in motion commands and world state vectors:

– BaseFrameOffset

– HeadOffset + TiltOffset

– CameraFrameOffset

– LFrLegOffset + ElevatorOffset

● Note: the distinction between joint and link reference
frames is made in the function name, not the reference
frame name:

– jointToBase(HeadOffset+TiltOffset)

– linkToBase(HeadOffset+TiltOffset)

04/06/09 15-494 Cognitive Robotics 14

Kinematics Class

● Tekkotsu contains its own kinematics engine for
kinematics calculations, modeled after ROBOOP.

● The Kinematics class provides access to basic
functionality for forward kinematics.

● Global variable kine holds a
special Kinematics instance:

– Joint values reference WorldState.

● PostureEngine is a child of Kinematics
so it can do kinematics calculations
too. It adds inverse kinematics.

– Joint angle results are stored in the
PostureEngine instance.

04/06/09 15-494 Cognitive Robotics 15

fmat

● Tekkotsu uses the fmat package to represent
coordinates and transformation matrices.

● fmat is optimized for efficient representation of small,
fixed-size matrices and vectors.

fmat::Column<4> v, w;

v = fmat::pack(5.75, 30.0, 115, 1);

w = fmat::pack(17, -4.2f, 100, 1);

fmat::Matrix<4,4> T;

T = v * w.transpose();

04/06/09 15-494 Cognitive Robotics 16

fmat::Transform

● Transformation matrices using homogenous coordinates
are 4 4.

● But the last row is always [0 0 0 1].

● So fmat eliminates the last row and overloads the
arithmetic operators to make the math work correctly.

● fmat::Transform is really a Matrix<3,4>

04/06/09 15-494 Cognitive Robotics 17

Converting Between
Reference Frames

● Most common conversion is between the base frame
(body coordinates) and a limb frame, or vice versa.

● Conversion requires computing a transformation matrix:

 baseToJoint(), baseToLink(), jointToBase(), linkToBase()

 fmat::Transform jointToBase(unsigned int joint) {...}

● General conversion functions:

jointToJoint(), jointToLink(), linkToJoint(), linkToLink()

 fmat::Transform jointToJoint(unsigned int ijoint,
 unsigned int ojoint) {}

04/06/09 15-494 Cognitive Robotics 18

Reference Frame Conversion 1

● Transform Base to Base:

fmat::Transform T = kine->jointToBase(BaseFrameOffset);

cout << T.fmt(“%8.3f”) << endl;

● Result:

1.000 0.000 0.000 0.000

0.000 1.000 0.000 0.000

0.000 0.000 1.000 0.000

0.000 0.000 0.000 1.000

04/06/09 15-494 Cognitive Robotics 19

Reference Frame Conversion 2

Translate base frame to AIBO head tilt frame:

const float headtilt = state->outputs[HeadOffset+TiltOffset];
cout << "Head tilt is " << headtilt * 180/M_PI

 << " degrees." << endl;

fmat::Transform TtiltJ(kine->jointToBase(HeadOffset+TiltOffset));
fmat::Transform TtiltL(kine->linkToBase (HeadOffset+TiltOffset));

cout << "tilt jointToBase=\n" TtiltJ.fmt(“%8.3f”) << endl;
cout << "tilt linkToBase=\n" TtiltL.fmt(“%8.3g”) << endl;

04/06/09 15-494 Cognitive Robotics 20

At ~Zero Degree Tilt Angle

Head tilt is 1.25 degrees.

tilt jointToBase=
 1.000 0.000 0.000 67.500
 0.000 0.000 -1.000 0.000
 0.000 1.000 0.000 19.500

tilt linkToBase=
 1.000 -0.022 0.000 67.500
 0.000 0.000 -1.000 0.000
 0.022 1.000 0.000 19.500

04/06/09 15-494 Cognitive Robotics 21

At ~ -30 Degree Tilt Angle
Head tilt is -29.5 degrees.

tilt jointToBase=
 1.000 0.000 0.000 67.500
 0.000 0.000 -1.000 0.000
 0.000 1.000 0.000 19.500

tilt linkToBase=
 0.871 0.492 0.000 67.500
 0.000 0.000 -1.000 0.000
 -0.492 0.871 0.000 19.500

cos(-30o) = 0.866
sin(-30o) = 0.500

● The tilt joint reference frame doesn't rotate with tilt.

● The tilt link reference frame does rotate.

04/06/09 15-494 Cognitive Robotics 22

Interest Points

● Interest points on the head, legs, and body can be
predefined for use in kinematics calculations.

● Not yet supported in new kinematics engine.

04/06/09 15-494 Cognitive Robotics 23

Leg Interest Points

04/06/09 15-494 Cognitive Robotics 24

Retrieving Interest Points

● Each interest point is attached to a link:

 void getInterestPoint(const std::string &name,
unsigned int &link,
fmat::Column<4> &coords)

– Returns the link associated with the named interest point, and
its coordinates in the link's reference frame.

● Interest points can be expressed in any reference frame:

fmat::Column<4>
 getJointInterestPoint(unsigned int joint,

 const std::string &name)

04/06/09 15-494 Cognitive Robotics 25

Forward Kinematics: Measure
Distance From RFr Leg to Gripper

virtual void processEvent(const EventBase&) {

 fmat::Transform rfrFoot =
 kine->linkToBase(FootFrameOffset+RFrLegOrder);
 fmat::Column<3> rfrFootPos = rfroot.translation();

 fmat::Transform gripper =
 kine->linkToBase(GripperFrameOffset);
 fmat::Column<3> gripperPos = gripper.translation();

 float dist = (rfrFootPos-gripperPos).norm();

 cout << “Distance is “ << setw(5) < dist << “ mm.” << endl;

}

04/06/09 15-494 Cognitive Robotics 26

Inverse Kinematics: lookAtPoint

● Inverse kinematics finds the joint angles to put an
effector at a particular point in space.

● Hard problem:

– solution space can be discontinuous

– can be highly nonlinear

– multiple solutions may be possible

– maybe no solution (so find closest approximation)

● Example: lookAtPoint(x,y,z)

– point described in base frame coordinates

– calculates head joint angles

04/06/09 15-494 Cognitive Robotics 27

TrackGripper Behavior

class TrackGripper : public BehaviorBase {

private:
 MotionPtr<PIDMC> armRelaxer;
 MotionPtr<HeadPointerMC> headMover;

public:
 TrackGripper() : BehaviorBase("DstBehavior"),

 armRelaxer(), headMover() {}

 virtual void DoStart() {
 addMotion(armRelaxer);
 addMotion(headMover);
 erouter->addListener(this,EventBase::sensorEGID);
 }

04/06/09 15-494 Cognitive Robotics 28

TrackGripper Behavior 2

virtual void processEvent(const EventBase&) {

 fmat::Transform Tgripper =
kine->jointToBase(GripperFrameOffset);

 cout << “Transform:“ << Tgripper.fmt(“%8.3f”) << endl;

 headMover->lookAtPoint(Tgripper(0,3),
 Tgripper(1,3),
 Tgripper(2,3));

}

04/06/09 15-494 Cognitive Robotics 29

General Inverse Kinematics
● Inverse kinematics solver included in PostureEngine:

solveLinkPosition(const fmat::Column<3> &Ptgt,
unsigned int link,
const fmat::Column<3> &Peff)

– Ptgt is the target point to move to (in base frame coordinates)

– link is the index of some effector on the body, e.g.,
ArmOffset+GripperOffset

– Peff is a point on the effector that is to be moved to Ptgt, in the
reference fame of that effector.

● Returns true if a solution was found. False if no solution
exists (e.g., joint limits exceeded, distance too far, etc.)

● Solution is stored in the PostureEngine as joint values.

04/06/09 15-494 Cognitive Robotics 30

Customized Kinematics Solvers

● For some simple kinematic chains, such as a pan/tilt, we
can write analytical solutions to the IK problem.

● For the general case, must use gradient descent search.

04/06/09 15-494 Cognitive Robotics 31

Solving the 1-Link Arm

L 1

1

 Target (x,y)

Reachable if: L1 = x2
y2

Solution: 1 = atan2y , x

04/06/09 15-494 Cognitive Robotics 32

Solving the 2-Link Planar Arm

L 1

1

Target (x,y)

c2 =
x2y2−L1

2−L2
2

2L1L2

s2
+

= 1−c2
2

2
+

= atan2 s2
+ ,c2

K1 = L1c2L2

K2 = s2
+L2

1 = atan2 y ,x − atan2K2,K1

Reachable if: c2
2
≤ 1

L 2

2

04/06/09 15-494 Cognitive Robotics 33

Two Possible Solutions

L 1

1

Target (x,y)

s2
+

= 1−c2
2

2
+

= atan2 s2
+ ,c2

L 2

2

L 1

1

Target (x,y)

 L 2

2

s2
−

= −1−c2
2

2
−

= atan2 s2
− ,c2

04/06/09 15-494 Cognitive Robotics 34

L
3

Solving the 3-Link Planar Arm

L 1

1

Target (x,y)

L 2

2

● Choose tool angle

● Given target position x
t
, y

t
,

calculate wrist position:
 x

w
 and y

w

● Solve 2-link problem to put
wrist at x

w
, y

w
.

