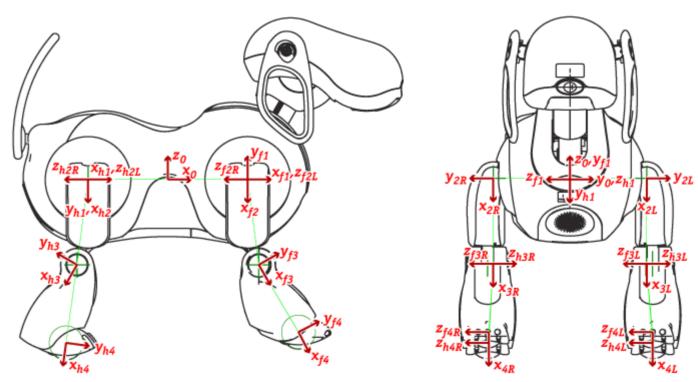

Navigating with the Pilot

15-494 Cognitive Robotics David S. Touretzky & Ethan Tira-Thompson

Carnegie Mellon Spring 2009

How Does the Robot Walk?


- Multiple walk engines incorporated into Tekkotsu:
 - CMPack '02 AIBO walk engine from Veloso et al. (CMU), with modifications by Ethan Tira-Thompson
 - UPennalizers AIBO walk engine from Lee et al. (U. Penn)
 - XWalk engine by Ethan Tira-Thompson for the Chiara
- Basic idea is the same:
 - Cyclic pattern of leg motions
 - Parameters control leg trajectory, body angle, etc.
 - Many different gaits are possible by varying phases of the legs
 - "Open loop" control: no force feedback
 - Can't adapt to rough terrain
 - Can move quickly, but not very accurately

ERS-7 Legs

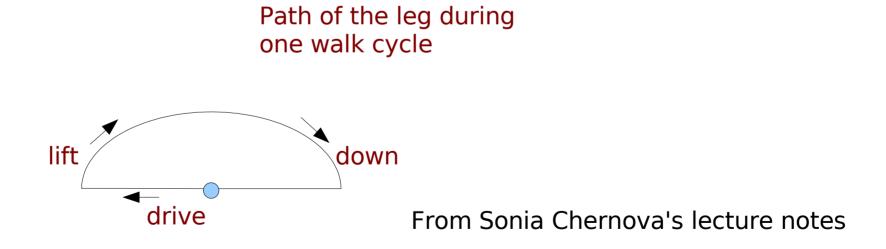
	Δx	Δy	Δz	
1 shoulder	65	0	0	
elevator	0	0	62.5	
3 knee	69.5	0	9	
f4 ball	69.987	-4.993	4.7	
h4 ball	67.681	-18.503	4.7	
Diameter of ball of foot is 23.433mm Each link offset is relative to previous link				

The shins shown in this diagram appear to be slightly distorted compared to a real robot. Corresponding measurements have been taken from actual models.

Modified CMPack Walk Engine

46 Leg Parameters:

- Neutral kinematic position (3x4)
- Lift velocity (3x4)
- Lift time (1x4)
- Down velocity (3x4)
- Down time (1x4)
- Sag distance (1)
- Differential drive (1)


5 Body Parameters:

- Height of body (1)
- Angle of body (1)
- Hop amplitude (1)
- Sway amplitude (1)
- Walk period (1)

Modified fom Sonia Chernova's lecture notes

Neutral Kinematic Position

- Position (x,y,z) of the leg on the ground at some fixed point during the walk cycle.
- Where the legs would hit the ground if the robot were pacing in place (traveling with zero velocity).

Leg Lift and Leg Plant

- Left velocity vector (mm/sec) determines how leg is lifted off the ground
- Down velocity vector (mm/sec) determines how leg is placed back on the ground.
- Lift time and down time (1 value each per leg) control the order of leg motions.
 - Expressed as a percentage of time through the walk cycle that the leg is raised and lowered.
 - Governs which legs move together and which move at opposite times: pace vs. trot vs. gallop.

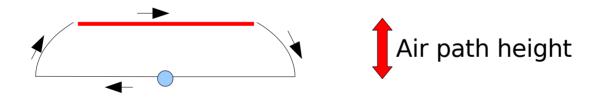
From Sonia Chernova's lecture notes

Body Angle/Height; Hop & Sway

- Body angle (radians) relative to the ground, measured at the origin of the motion coordinate frame.
 - Controls whether the robot is pitched up or down.
- Body height (mm) relative to the ground, measured at the origin of the motion coordinate frame.
- Hop and sway amplitudes (mm) constrain the body's vertical and horizontal oscillations during walking. (Usually set to 0.)

From Sonia Chernova's lecture notes

Walk Period


- The walk period (msec) specifies the time of one walk cycle.
- Note that this is independent of speed.
- To walk faster, the AIBO takes larger steps; it does not change the period of the walk cycle the way a person would do.

From Sonia Chernova's lecture notes

 Chiara walks are statically stable, and period does vary with speed.

New CMPack Parameter: Front & Back Leg Height Limits

- Height of the <u>air path</u> of the front and back legs.
- Upper bound: may not be reached, depending on other leg motion parameters.

From Sonia Chernova's lecture notes

Walk Parameter Optimization

- Many RoboCup groups use machine learning techniques to optimize walk parameters.
- CMPack uses a genetic algorithm.
- Candidates are evaluated by having the robot walk and measuring the results.
- CMPack got 20% speedup over previous hand-tuned gaits.

Tekkotsu Walk Editor

- Root Control > Mode Switch > XWalk Edit
- Values are stored in a walk parameter file
 - Default parameter file is walk.plist

TekkotsuMon: Controller (forklift)	TekkotsuMon: Controller (forklift)	
Walk Edit 0Walk GUI: test change: 1. Slow Motion (1) 2. Body 3. Neutral 4. lift_vel 5. down_vel 6. lift_time 7. down_time 8. calibration 9. Load Walk 10. Save Walk Save Walk Send Input: Send Input: Send Input: Raw Cam Seg. Cam Scripts: Take Snapshots [Auto-Advancing] Advance Frame	Neutral Send Input: 0. NeuLeg[xFL] (120) Send Input: 1. NeuLeg[xFR] (120) Raw Cam 2. NeuLeg[xBL] (-90) Raw Cam 3. NeuLeg[xBR] (-90) Raw Cam 4. NeuLeg[yFL] (80) Raw Cam 5. NeuLeg[yFR] (-80) Raw Cam 6. NeuLeg[yFR] (-70) Scripts: 7. NeuLeg[yBR] (-70) Scripts: 7. NeuLeg[zFL] (0) Take Snapshots 9. NeuLeg[zFR] (0) Advance Frame 10. NeuLeg[zBR] (0) Advance Frame	
≺ Back Refresh Add Edit	Add Edit	
>< Stopped Un-Stop	>< Stopped Un-Stop	0

Chiara Gaits

- One leg at a time (default).
 - Requires the least power.
 - Slow: 6 beats/cycle.
- Two legs at a time.
 - Intermediate speed and power.
 - 3 beats/cycle.
- Three legs at a time: tripod gait.
 - Fastest gait that is still statically stable.
 - Requires lots of power.
 - 2 beats/cycle.

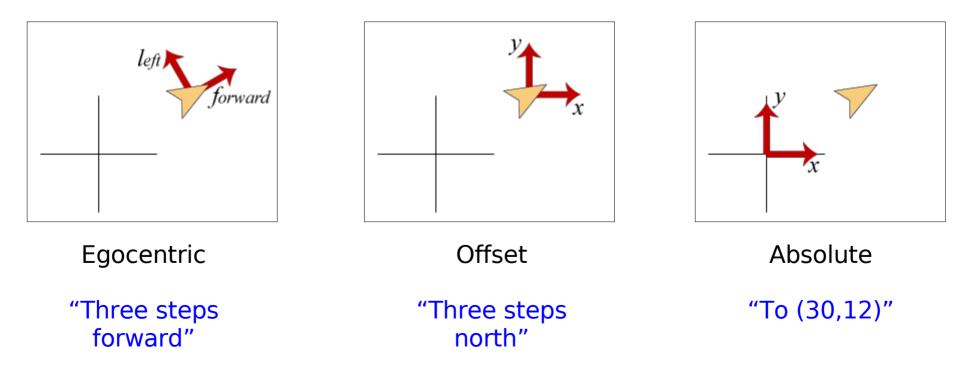
walk.plist

walk2.plist

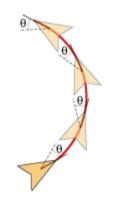
walk3.plist

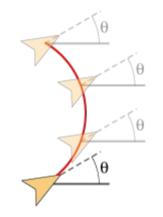
XWalkMC

- XWalkMC is a motion command that uses the Chiara walk engine to calculate leg trajectories.
- Walking is controlled by three parameters:
 - x velocity (forward motion)
 - y velocity (lateral motion: strafing)
 - angular velocity (rotation)



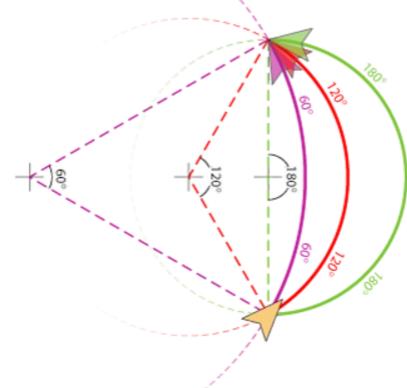
XWalkNode


- Subclass of StateNode
- Activates an XWalkMC on start()
- Deactivates it on stop()
- Provides functions to set (x,y,a) velocities


Waypoint Engine

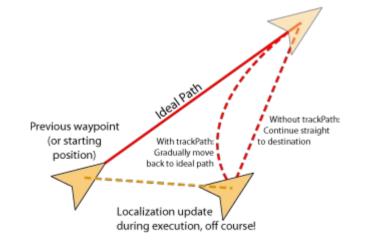
- Takes the robot through a path defined by a series of waypoints.
- Each waypoint specifies a position (x,y) and orientation.
- Three waypoint types:

Controlling Body Orientation


angleIsRelative == true

The angle is relative to the path, so an angle of 0 means the robot's body will **follow** the direction of travel. angleIsRelative == false

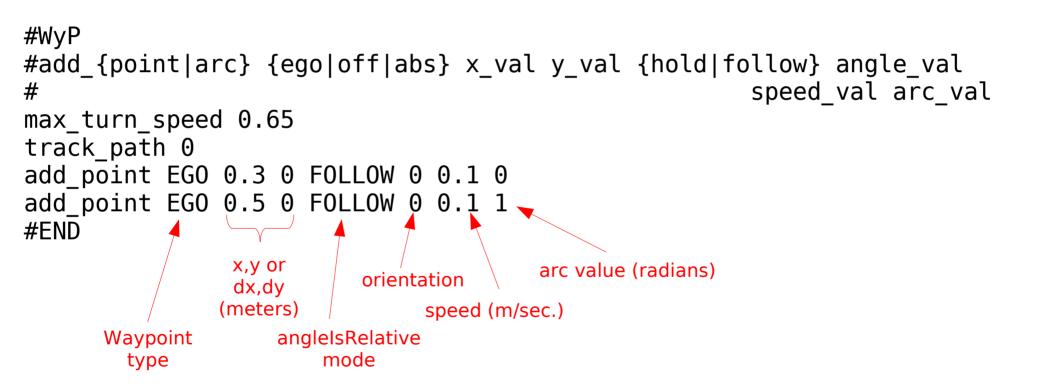
The angle is relative to the world coordinate system, so the body will **hold** a constant heading while walking.


Arcing Trajectories

- Paths can be either straight lines or arcs.
- Arc parameter (in radians, not degrees) corresponds to the angle of the circle which is swept.
- Don't use values $> 180^{\circ}$.

Track Path (Error Correction)

- setCurPos() function can be used to correct position if you have a localization module.
- When trackPath flag is true, the robot will attempt to return to its planned path after a perturbation.
- When false, it just goes straight to the destination.



Waypoint Walk Editor

- Root Control > File Access > WaypointWalk Control
- Allows interactive creation, execution of waypoint file.

♥ TekkotsuMon: Controller	(forklift) 🗕 🗖 🗙
WaypointWalkControl O. Execute 1. [] Loop Waypoints 2. Add Egocentric Waypoint 3. Add Offset Waypoint 4. Add Absolute Waypoint 5. Load Waypoints 5. Load Waypoints 7. Drift Error Correction 8	Send Input: Raw Cam Seg. Cam Scripts: Take Snapshots [Auto-Advancing] Advance Frame
✓ Back Refresh	Add Edit
>< Stopped	Un-Stop

Sample Waypoint File

WaypointWalk

- WaypointWalk is a motion command.
- Can load waypoints from a waypoint file, or construct them dynamically with function calls.
- Uses a XWalkMC to do the actual walking.
- XWalkMC will post status events indicating the progress of the walk.

The Pilot

- Higher level approach to locomotion.
- Specify effect to achieve, rather than mechanism:
 - Go to an object.
 - Maintain a bearing or distance relative to an object.
- Specify policies to use:
 - Cliff detection (IR sensor)
 - Obstacle avoidance (turn off to knock down soda cans)
 - Localization procedure
- Experimental code; changing rapidly.

Example: Walk to Object

- Use Lookout to track an object.
- Use Pilot to walk toward the object Lookout is tracking.

blob1->setColor("orange");

LookoutTrackRequest lreq(blob1);

lookout.executeRequest(lreq);

Lookout Request Types

- LookoutPointRequest
 - Point the head at a specific target
- LookoutScanRequest
 - Scan the head and look for colors of interest
- LookoutSearchRequest
 - Perform a visual search
- LookoutTrackRequest
 - Keep the head continuously pointed at an object

Pilot Request Types

- walk
 - Essentially a XWalkMC request
- waypointWalk
- visualSearch
 - Use Lookout to search for an object; may rotate the body
- gotoShape
 - Travel to the location of a shape on the world map
- gotoTarget

Manipulation by Walking

• Course project by Ethan Tira-Thompson

http://ethan.tira-thompson.com/stuff/16-741/project.html

• Inspired by Matt Mason's "mobipulator" project.

