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Chapter 1

Introduction

c©2010 SPRINGER SCIENCE+BUSINESS MEDIA, LLC. All rights reserved. No
part of this work may be reproduced in any form without the written permission of
SPRINGER SCIENCE+BUSINESS MEDIA, LLC.

1.1 Data Analysis in the Brain Sciences

The brain sciences seek to discover mechanisms by which neural activity is gener-
ated, thoughts are created, and behavior is produced. What makes us see, hear, and
understand the world around us? How can we learn intricate movements, which re-
quire continual corrections for minor variations in path? What is the basis of memory,
and how is consciousness created? Answering such questions is the grand ambition of
this broad enterprise and, while the workings of the nervous system are immensely
complicated, several lines of now-classical research have made enormous progress:
essential features of the nature of the action potential, of synaptic transmission, of
sensory processing, of the biochemical basis of memory, and of motor control have
been discovered. These advances have formed conceptual underpinnings for modern
neurophysiology, and have had a substantial impact on clinical practice. The method
that produced this knowledge, the scientific method, involves both observation and
experiment, but always a careful consideration of the data. Sometimes results from
an investigation have been largely qualitative, as in Brenda Milner’s documenta-
tion of implicit memory retention, together with explicit memory loss, as a result

1
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of hippocampal lesioning in patient H.M. In other cases quantitative analysis has
been essential, as in Hodgkin and Huxley’s modeling of ion channels to describe the
production of action potentials. Today’s brain research builds on earlier results us-
ing a wide variety of modern techniques, including molecular methods, patch clamp
recording, calcium imaging, two-photon imaging, single and multiple electrode stud-
ies, optical imaging, EEGs, and functional imaging (PET, fMRI, MEG), as well as
psychophysical and behavioral studies. All of these rely, in varying ways, on vast im-
provements in data storage, manipulation, and display technologies. As a result, data
sets from current investigations are often much larger, and more complicated, than
those of earlier days. For a modern student of neural science, a working knowledge
of basic methods of data analysis seems indispensible.

The variety of experimental paradigms across widely ranging investigative levels
in the brain sciences may seem intimidating. It would take a multi-volume encyclo-
pedia to document the details of the myriad analytical methods out there. Yet, for
all the diversity of measurement and purpose, there are commonalities that make
analysis of neural data a single, circumscribed and integrated subject. A relatively
small number of principles, together with a handful of ubiquitous techniques—some
quite old, some much newer—lay a solid foundation. One of our chief aims in writing
this book has been to provide a coherent framework to serve as a starting point in
understanding all types of neural data.

In addition to providing a unified treatment of analytical methods that are cru-
cial to progress in the brain sciences, we have a secondary goal. Over many years
of collaboration with neuroscientists we have observed in them a desire to learn all
the data have to offer. Data collection is demanding, and time-consuming, so it is
natural to want to use the most efficient and effective methods of data analysis. But
we have also observed something else. Many neuroscientists take great pleasure in
displaying their results not only because of the science involved but also because of
the manner in which particular data summaries and displays are able to shed light
on, and explain, neuroscientific phenomenon; in other words, they have developed
a refined appreciation for the data-analytic process itself. The often-ingenious ways
investigators present their data have been instructive to us, and have reinforced our
own aesthetic sensibilities for this endeavor. There is deep satisfaction in compre-
hending a method that is at once elegant and powerful, that uses mathematics to
describe the world of observation and experimentation, and that tames uncertainty
by capturing it and using it to advantage. We hope to pass on to readers some of
these feelings about the role of analytical techniques in illuminating and articulating
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fundamental concepts.

A third goal for this book comes from our exposure to numerous articles that re-
port data analyzed largely by people who lack training in statistics. Many researchers
have excellent quantitative skills and intuitions, and in most published work statisti-
cal procedures appear to be used correctly. Yet, in examining these papers we have
been struck repeatedly by the absence of what we might call statistical thinking, or
application of the statistical paradigm, and a resulting loss of opportunity to make
full and effective use of the data. These cases typically do not involve an incorrect
application of a statistical method (though that sometimes does happen). Rather,
the lost opportunity is a failure to follow the general approach to the analysis of
the data, which is what we mean by the label “the statistical paradigm.” Our final
pedagogical goal, therefore, is to lay out the key features of this paradigm, and to
illustrate its application in diverse contexts, so that readers may absorb its main
tenets.

To begin, we will review several essential points that will permeate the book.
Some of these concern the nature of neural data, others the process of statistical
reasoning. As we go over the basic issues, we will introduce some data that will be
used repeatedly.

1.1.1 Appropriate analytical strategies depend crucially on

the purpose of the study and the way the data are
collected.

The answer to the question, “How should I analyze my data?” always depends
on what you want to know. Convenient summaries of the data are used to convey
apparent tendencies. Particular summaries highlight particular aspects of the data—
but they ignore other aspects. At first, the purpose of an investigation may be stated
rather vaguely, as in “I would like to know how the responses differ under these
two experimental conditions.” This by itself, however, is rarely enough to proceed.
Usually there are choices to be made, and figuring out what analysis should be
performed requires a sharpening of purpose. Let us consider an example.

Example 1.1 SEF neural activity under two conditions Olson et al. (2000)
examined the behavior of neurons in the Supplementary Eye Field (SEF), which is
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a frontal lobe region anterior to, and projecting to, the eye area in motor cortex.
The general issue was whether the SEF merely relays the message to move the
eyes, or whether it is involved in some higher-level processing. To address this
issue, an experiment was devised in which monkeys moved their eyes in response
to either an explicit external cue (the point to which the eyes were to move was
illuminated) or an internally-generated translation of a complex cue (a particular
pattern at fixation point determined the location to which the monkey was to move
his eyes). If the SEF simply transmits the movement message to motor cortex and
other downstream areas, one would expect SEF neurons to behave very similarly
under the two experimental conditions. On the other hand, distinctions between the
neural responses in the two conditions would indicate effects of the distinct cognitive
processing tasks. While an individual neuron’s activity was recorded from the SEF
of an alert macaque monkey, one of the two conditions was chosen at random and
applied. This was repeated many times, and the results for one neuron are given
in Figure 1.1. The figure displays a pair of raster plots and peri-stimulus time
histograms (PSTHs).

Visual comparison of the two raster plots and two PSTHs indicates that this
neuron tends to respond somewhat more strongly under the pattern condition than
under the spatial condition, at least toward the end of the trial. But such qualitative
impressions are often insufficiently convincing even for a single neuron; furthermore,
results for many dozens of neurons need to be reported. How should they be sum-
marized? Should the firing rates be averaged over a suitable time interval, and then
compared? If so, which interval should be used? Might it be useful to display the
firing-rate histograms on top of each other somehow, for better comparison, and
might the distinctions between them be quantified and then summarized across all
neurons? Might it be useful to compare the peak firing rates for the two neurons, or
the time at which the peaks occurred? All of these variations involve different ways
to look at the data, and each effectively defines somewhat differently the purpose of
the study.

The several possible ways of examining firing rate, just mentioned, have in com-
mon the aggregation of data across trials. A quite different idea would be to examine
the relationship of neural spiking activity and reaction time, on a trial-by-trial ba-
sis, and then to see how that changes across conditions. This intriguing possibility,
however, would require a different experiment: in the experiment of Olson et al. the
eye movement occurred long after the cue,1 so there was no observed behavior corre-

1They used a random delay followed by a separate cue to move; this helped ensure that movement
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Figure 1.1: Raster plot (TOP) and PSTH (BOTTOM) for an SEF neuron under both
the external-cue or “spatial” condition (LEFT) and the complex cue or “pattern”
condition (RIGHT). Each line in each raster plot contains data from a single trial,
that is, a single instance in which the condition was applied. (There are 15 trials
for each condition.) The tick marks represent spike times, i.e., times at which the
neuron fired. The PSTH contains normalized spike counts within 10 millisecond time
bins: for each time bin the number of spikes occurring in that bin is counted across
all trials; this count is then divided by the number of trials, and the width of the
time bin in seconds, which results in firing rate in units of spikes per second. Time
is measured relative to presentation of a visual cue, which is considered time t = 0.
This neuron is somewhat more active under the pattern condition, several hundred
milliseconds post cue. The increase in activity may be seen from the raster plots,
but is more apparent from comparison of the PSTHs.

sponding to reaction time. This is an extreme case of the way analytical alternatives
depend on the purpose of the experiment. 2

Example 1.1 illustrates the way a particular purpose shaped the design of the
experiment, and thus the data that were collected, which constrained the possible
analytic strategies. In thinking about the way the data are collected, one particular
distinction is especially important: that of steady-state versus systematically evolving

and anticipatory effects would not contaminate the processing effects of interest.
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conditions. In many studies, an experimental manipulation leads to a measured
response that evolves in a somewhat predictable way over time. In Example 1.1 the
neuronal firing rate, as represented by the PSTH, evolves over time, with the firing
rate increasing roughly 200 milliseconds after the cue. This may be contrasted with
observation of a phenomenon that has no predictable time trend, experimentally-
induced or otherwise. Typically, such situations arise when one is making baseline
measurements, in which some neural signal is observed while the organism or isolated
tissue is at rest. Sometimes a key piece of laboratory apparatus must be observed in
steady state to establish background conditions. Here is an important example.

Figure 1.2: MEG imaging. Panel C displays a MEG signal at a single SQUID
detector.
TO BE RE-DONE
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Example 1.2 MEG background noise Magnetoencephalography (MEG) is an
imaging technique used to measure the magnetic fields produced by electrical activity
in the brain. MEG recordings are used clinically to localize a brain tumor, for
example, or characterize an epileptic focus; they are used by neuroscientists to study
such things as language production, memory formation, and the neurological basis
of diseases such as schizophrenia.

The MEG signals are generated from the net effect of ionic currents flowing in the
dendrites of cortical neurons during synaptic transmission. From Maxwell’s equa-
tions, any electrical current produces a magnetic field oriented orthogonally (perpen-
dicularly) to the current flow, according to the right-hand rule. MEG measures this
magnetic field. Magnetic fields are relatively unaffected by the tissue through which
the signal passes on the way to a detector, but the signals are very weak. Two things
make detection possible. One is that MEG uses highly sensitive detectors called su-
perconducting quantum interference devices (SQUIDs). The second is that currents
from many neighboring neuronal dendrites have similar orientations, so that their
magnetic fields reinforce each other. The layer of pyramidal cells in the cortex are
generally perpendicular to its surface, and their generated fields tend to be oriented
outward, toward the detectors sitting outside the head. A detectable MEG signal is
produced by the net effects of currents from approximately 50,000 active neurons.
See Figure 1.2.

Because the signals are weak, and the detectors extremely sensitive, it is impor-
tant to assess MEG activity prior to imaging patients. Great pains are taken to
remove sources of magnetic fields from the room in which the detector is located.
Nonetheless, there remains a background signal that must be identified under steady-
state conditions. 2

Many analytical methods assume a steady state exists. The mathematical for-
mulation of “steady state,” based on stationarity, will be discussed in Chapter 18.

1.1.2 Many investigations involve a response to a stimulus
or behavior.

In contrast to the steady state conditions in Example 1.2, many experiments involve
perturbation or stimulation of a sytem, producing a temporally evolving response.
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This does not correspond to a steady state. The SEF experiment was a stimulus-
response study. Functional imaging also furnishes good examples.

Example 1.3 fMRI in a visuomotor experiment Functional magnetic reso-
nance imaging (fMRI) uses change in magnetic resonance (MR) to infer change in
neural activity, within small patches (voxels) of brain tissue. When neurons are ac-
tive they consume oxygen from the blood, which produces a local increase in blood
flow after a delay of several seconds. Oxygen in the blood is bound to hemoglobin,
and the magnetic resonance of hemoglobin changes when it is oxygenated. By using
an appropriate MR pulse sequence, the change in oxygenation can be detected as
the blood-oxygen-level dependent (BOLD) signal, which follows a few seconds after
the increase in neural activity. The relationship between neural activity and BOLD
is not known in detail, but since the 1990s fMRI has been used to track changes in
BOLD in relation to the execution of a task, giving at least a rough guide to the
location of sustained functional neural activity.

Figure 1.3 displays images from one subject in a combined visual and motor fMRI
experiment. The subject was presented with a full-field flickering checkerboard, in
a repeating pattern of 12.8 seconds OFF followed by 12.8 seconds ON. This was
repeated 8 times. Alternating out of phase with the flickering checkerboard pattern
the subject also executed a finger tapping task (12.8 seconds ON followed by 12.8
seconds OFF). The brain was imaged once every 800 milliseconds for the duration of
the experiment. The slice shown was chosen to transect both the visual and motor
cortices. Three regions of interest have been selected, corresponding to (1) motor (2)
visual cortex, and (3) white matter. Parts B through D of the figure illustrate the
raw time series taken from each of these regions, along with timing diagrams of the
input stimuli. As expected, the motor region is more active during finger tapping
(but the BOLD signal responds several seconds after the neural activity) while the
visual region is more active during the flickering visual image (again with several
seconds lag). The response within white matter serves as a control. 2

The focus of stimulus-response experiments is usually the relationship between
stimulus and response. This may suggest strategies for analysis of the data. If we
let X denote the stimulus and Y the response, we might write the relationship as
follows:

Y ←− X (1.1)
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Figure 1.3: An fMRI image with several traces of the signal across time. Panel A
displays an image indicating three locations from which voxel signals were examined.
Panels B-D display the signals themselves, averaged across the voxels. They corre-
spond, respectively, to motor cortex, primary visual cortex, and white matter. TO
BE RE-DONE

where the arrow indicates that X leads to Y . Chapters 12, 14, and 15 are devoted
to regression methods, which are designed for situations in which X might lead to
Y .

In Example 1.1, Y could be the average firing rate in a specified window of
time, such as 200 to 600 milliseconds following the cue, and X could represent the
experimental condition. In other words, the particular experimental condition leads
to a corresponding average firing rate. In Example 1.3, Y could be the value of the
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BOLD response, and X could represent whether the checkerboard was on or off 5
seconds prior to the response Y .

The tools of Chapters 12, 13, 14, and 15 are somewhat broader than the relation
(1.1) may imply. While the arrow suggests a mechanistic relationship (the stimulus
occurred, and that made Y occur), it is often preferable to step back and remain
agnostic about a causal connection. A more general notion is that the variables X
and Y are associated, meaning that they tend to vary together. A wide variety of
neuroscientific studies seek to establish associations among variables. Such studies
might relate a pair of behavioral measures, for example, or they might involve spike
trains from a pair of neurons recorded simultaneously, EEGs from a pair of electrodes
on the scalp, or MEG signals from a pair of SQUID detectors. Measures of association
are discussed in Chapters 10 and 12. Chapter 13 also contains a brief discussion of
the distinction between association and causation, and some issues to consider when
one wishes to infer causation from an observed association.

1.2 The Contribution of Statistics

Many people think of statistics as a collection of particular data-analytic techniques,
such as analysis of variance, chi-squared goodness-of-fit, linear regression, etc. And
so it is. But the field of statistics, as an academically specialized discipline, strives
for something much deeper, namely, the development and characterization of data
collection and analysis methods according to well-defined principles, as a means of
quantifying knowledge about underlying phenomena and rationalizing the learning
and decision-making process. As we said above, one of the main pedagogical goals
of this book is to impart to the reader some sense of the way data analytic issues are
framed within the discipline of statistics. In trying to achieve this goal, we find it
helpful to articulate the nature of the statistical paradigm as concisely as possible.
After numerous conversations with colleagues, we have arrived at the conclusion that
among many components of the statistical paradigm, summarized below, two are the
most fundamental.
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Two Fundamental Tenets of the Statistical Paradigm:

1. Statistical models are used to express knowledge and un-
certainty about a signal in the presence of noise, via inductive
reasoning.

2. Statistical methods may be analyzed to determine how well
they are likely to perform.

In the remainder of this section we will elaborate, adding a variety of comments
and clarifications.

1.2.1 Statistical models describe regularity and variability
of data in terms of probability distributions.

When data are collected, repeatedly, under conditions that are as nearly identical as
an investigator can make them, the measured responses nevertheless exhibit varia-
tion. The spike trains generated by the SEF neuron in Example 1.1 were collected
under experimental conditions that were essentially identical; yet, the spike times,
and the number of spikes, varied from trial to trial. The most fundamental principle
of the statistical paradigm, its starting point, is that this variation may be described
by probability. Chapters 3 and 5 are devoted to spelling out the details, so that it
will become clear what we mean when we say that probability describes variation.
But the idea is simple enough: probability describes familiar games of chance, such
as rolling dice, so when we use probability also to describe variation, we are making
an analogy; we do not know all the reasons why one measurement is different than
another, so it is as if the variation in the data were generated by a gambling device.
Let us consider a simple but interesting example.

Example 1.4 Blindsight in patient P.S. Marshall and Halligan (1988, Nature,
336: 766–767) reported an interesting neuropsychological finding from a particular
patient, identified as P.S. This patient was a 49 year-old woman who had suffered
damage to her right parietal cortex that reduced her capacity to process visual in-
formation coming from the left side of her visual space. For example, she would fre-
quently read words incorrectly by omitting left-most letters (“smile” became “mile”)
and when asked to copy simple line drawings, she accurately drew the right-hand
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side of the figures but omitted the left-hand side without any conscious awareness
of her error. To show that she could actually see what was on the left but was sim-
ply neglecting it—a phenomenon known as blindsight—the examiners presented P.S.
with a pair of cards showing identical green line drawings of a house, except that
on one of the cards bright red flames were depicted on the left side of the house.
They presented to P.S. both cards, one above the other (the one placed above being
selected at random), and asked her to choose which house she would prefer to live
in. She thought this was silly “because they’re the same” but when forced to make
a response chose the non-burning house on 14 out of 17 trials. This would seem to
indicate that she did, in fact, see the left side of the drawings but was unable to fully
process the information. But how convincing is it that she chose the non-burning
house on 14 out of 17 trials? Might she have been guessing?

If, instead, P.S. had chosen 17 out of 17 trials there would have been very strong
evidence that her processing of the visual information affected her decision-making,
while, on the other hand, a choice of 9 out of 17 clearly would have been consistent
with guessing. The intermediate outcome 14 out of 17 is of interest as a problem
in data analysis precisely because it feels fairly convincing, but leaves us unsure: a
thorough, quantitative analysis of the uncertainty would be very helpful.

The standard way to begin is to recognize the variability in the data, namely, that
P.S. did not make the same choice on every trial; we then say that the choice made by
P.S. on each trial was a random event, that the probability of her choosing the non-
burning house on each trial was a value p, and that the responses on the different trials
were independent of each other. These three assumptions use probability to describe
the variability in the data. Once these three assumptions are made it becomes
possible to quantify the uncertainty about p and the extent to which the data are
inconsistent with the value p = .5, which would correspond to guessing. In other
words, it becomes possible to make statistical inferences. 2

The key step Example 1.4 is the introduction of probability to describe vari-
ation. Once that first step is taken, the second step of making inferences about
the phenomenon becomes possible. Because the inferences are statistical in nature,
and they require the introduction of probability, we usually refer to the probability
framework—with its accompanying assumptions—as a statistical model. Statistical
models provide a simple formalism for describing the way the repeatable, regular
features of the data are combined with the variable features. In Example 1.4 we may
think of p as the propensity for P.S. to choose the non-burning house. According
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to this statistical model, p is a kind of regularity in the data in the sense that it is
unchanging across trials. The variation in the data comes from the probabilistic na-
ture of the choice: what P.S. will choose is somewhat unpredictable, so we attribute
a degree of uncertainty to unknown causes and describe it as if predicting her choice
were a game of chance.

Probability is also often introduced to describe small fluctuations around a spec-
ified formula or “law.” We typically consider such fluctuations “noise,” in contrast
to the systematic part of the variation in some data, which we call the “signal.” For
instance, as we explain in Chapter 12, when the underlying, systematic mathematical
specification (the signal) has the form

y = f(x)

we will replace it with a statistical model having the form

Y = f(x) + ǫ (1.2)

where ǫ represents noise and the variable Y is capitalized to indicate its now-random
nature: it becomes “signal plus noise.” The simplest case occurs when f(x) is a line,
having the form f(x) = β0 + β1x, where we use coefficients β0 and β1 (instead of
writing f(x) = a + bx) to conform to statistical convention. Here is an example.

Example 1.5 Neural conduction velocity Hursh (1939, Amer. J. Physiology)
presented data on the relationship between a neuron’s conduction velocity and its
axonal diameter, in adult cats. (Data from kittens were consistent with the adult cat
data.) Hursh measured maximal velocity among fibers in several nerve bundles, and
then also measured the diameter of the largest fiber in the bundle. The resulting
data, together with a fitted line, are shown in Figure 1.4. In this case the line
y = β0+β1x represents the approximate linear relationship between maximal velocity
y and diameter x. The data follow the line pretty closely, with the intercept β0 being
nearly equal to zero. This implies, for example, that if fiber A has twice the diameter
of fiber B, A will be able to propagate an action potential roughly twice as fast as
B. 2

The method used to fit the line to the data in Figure 1.4 is called least squares
regression. It is very simple. Suppose we have a line y = β∗

0 + β∗
1x that is fitted by

some method, possibly least-squares or possibly another method. Suppose there are
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Figure 1.4: Conduction velocity of action potentials, as a function of diameter. The
x-axis is diameter in microns; the y-axis is velocity in meters per second. Based on
Hursh (1939, Figure 2). Also shown is the least-squares regression line.

n data pairs of the form (x, y) and let us label them with a subscript so that they
take the form (xi, yi) with i = 1, 2, . . . , n. That is, (x1, y1) would be the first data
pair, (x2, y2) the second, and so forth. The y-coordinate on the line y = β∗

0 + β∗
1x

corresponding to xi is
ŷ∗i = β∗

0 + β∗
1xi.

The number ŷ∗i is called the fitted value at xi and we may think of it as predicting
yi. We then define the i-th residual as

ei = yi − ŷ∗i .

The value ei is the error at xi in fitting, or the error of prediction, i.e., it is the vertical
distance between the observation (xi, yi) and the line at xi. See Figure 1.5. To judge
the quality of the fit of the line, we examine the ei’s. An overall assessment of the fit
must somehow combine the magnitudes of the ei’s, making them as small as possible
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Figure 1.5: Plot of the Hursh data set, with data points in gray except for a particular
point (xi, yi) which is shown in black to identify the corresponding fitted value ŷi.
The ith residual is the difference yi − ŷi.

in aggregate. It is reasonable to have positive and negative values of the residuals
be equally important, which is another way of saying that we should look at their
magnitudes (the absolute values |ei|, ignoring sign). We could find the sum of all
the magnitudes, which we write as

∑ |ei|, and choose the line that makes this sum
as small as possible. That is sometimes done, but the solution can not be obtained
in closed form, and it is harder to analyze mathematically. Instead, the method of
least squares uses a more tractable criterion: for each possible choice of β∗

0 and β∗
1 ,

we compute the sum of squares of the residuals
∑
e2i then choose the values of β∗

0

and β∗
1 that minimizes this sum of squares. A relatively easy way to minimize the
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sum of squares is to apply calculus; we differentiate
∑
e2i with respect to each of β∗

0

and β∗
1 , set the derivatives equal to 0, and solve the resulting pair of equations. We

omit the details but the result is sufficiently important to highlight.

The least-squares estimates β̂0 and β̂1 are the values of β∗
0 and β∗

1 that
minimize

∑
e2i . The least-squares line is then

y = β̂0 + β̂1x.

Equation 1.2 is not yet a statistical model. If we write

Yi = f(xi) + ǫi, (1.3)

take
f(x) = β0 + β1x

and let the noise term ǫi be a random variable we obtain a linear regression model.
Random variables are introduced in Chapter 3. The key point here is that linear
regression describes the regularity of the data by a straight line and the variability
(the deviations from the line) by a probability distribution (the distribution of the
noise random variable ǫi). Regression methods are discussed in detail in Chapter 12.

1.2.2 Statistical models are used to express knowledge and
uncertainty about a signal in the presence of noise, via

inductive reasoning.

The introduction of a statistical model not only provides guidance in determining
fits to data, as in Example 1.5, but also assessments of uncertainty.

Example 1.4 (continued from page 11) et us return to the question of
whether the responses of P.S. were consistent with guessing. In this framework,
guessing would correspond to p = .5 and the problem then becomes one of assessing
what these data tell us about the value of p. As we will see in Chapter 7, standard
statistical methods give an approximate 95% confidence interval for p of (.64, 1.0).
This is usually interpreted by saying we are 95% confident the value of p lies in the
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interval (.64, 1.0), which is a satisfying result: while this interval contains a range of
values, indicating considerable uncertainty, we are nonetheless highly confident that
the value of p is inconsistent with guessing. 2

This confidence illustrates the expression of “knowledge and uncertainty.” It
is an example of “inductive reasoning” in the sense that we reason from the data
back to the quantity p assumed in the model. As described in Chapter 7, statistical
theory uses mathematical, deductive reasoning to provide the formalism; but the
interpretation as a statement about the unknown quantity p based on experience
(the data) is usually called “inductive.”

In fact, as a conceptual advance, this expression of knowledge and uncertainty via
probability is highly nontrivial: despite quite a bit of earlier mathematical attention
to games of chance, it was not until the late 1700s that there emerged any clear
notion of inductive, or what we would now call statistical reasoning; it was not until
the first half of the twentieth century that modern methods began to be developed
systematically; and it was only in the second half of the twentieth century that their
properties were fully understood. From a contemporary perspective the key point is
that the confidence interval is achieved by uniting two distinct uses of probability.
The first is descriptive (which philosophers sometimes call “phenomological”): say-
ing P.S. will choose the non-burning house with probability p is analogous to saying
the probability of rolling a 3 with an apparently fair die is 1/6. The second use
of probability is often called “epistemic,” and involves a statement of knowledge:
saying we have 95% confidence that p is in the interval (.64,1.0) is analogous to
someone saying they are 90% sure that the capital of Louisiana is Baton Rouge. The
fundamental insight, gained gradually over many years, is that the descriptive prob-
ability in statistical models may used to produce epistemic statements for scientific
inference. Technically, there are alternative frameworks for bringing phenomenolog-
ical and epistemic probability together, the two principal ones being Bayesian and
frequentist. We will discuss the distinction briefly in Chapter 8 and at somewhat
greater length in Chapter 16.

While we wish to stress the importance of statistical models in data analysis,
we also want to issue several qualifications and caveats: first, the notion of “model”
we intend here is quite general, the only restriction being that it must involve a
probabilistic description of the data; second, modeling is done in conjunction with
summaries and displays that do not introduce probability explicitly; third, it is very
important to assess the fit of a model to a given set of data; and, finally, statistical
models are mathematical abstractions, imposing structure on the data by introducing
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external assumptions. The next three subsections explain these points further.

1.2.3 Statistical models may be either parametric or non-

parametric

In emphasizing statistical models, our only restriction is that probability must be
used to express the way regularity and variability in the data are to be understood.
One very important distinction is that of parametric versus nonparametric models.

Example 1.1 (continued from page 3) Let us compare the neural activity
under the two experimental conditions of the SEF experiment introduced on page 3,
focusing on the end of the displayed recording period. From the appearance of
the two PSTHs, it seems that several hundred milliseconds after the cue the neural
activity was greater in the pattern condition than in the spatial condition. However,
there were a limited number of trials in the experiment, and perhaps this increase
might possibly have been merely a coincidental fluctuation. The spike counts from
200 to 400 milliseconds post cue, across the 15 trials, gave firing rates of 48 spikes
per second for the spatial condition versus 70 spikes per second for the pattern
condition. As in the case of P.S. responding 14 out of 17, this looks like a substantial
effect. But looking carefully, there is a fair bit of variability in spike counts across
trials. It is therefore helpful to include uncertainty in the comparison. Using the
standard parametric approach discussed in Chapter 3 we obtain 95% confidence
intervals (40,56) spikes per second for the spatial condition versus (58,82) spikes per
second for the pattern condition. Thus, based on this analysis, after taking account
of the variability we continue to find a substantially elevated firing rate in the pattern
condition.

The standard parametric approach, discussed in Chapter 7, assumes the data
are normally distributed. An alternative, nonparametric method is presented in
Chapter 9. It produces confidence intervals (42,56) spikes per second for the spa-
tial condition versus (59,81) for the pattern condition. Here the parametric and
nonparametric confidence intervals are slightly different but they lead to the same
conclusions. 2

The terminology comes from the representation of a probability distribution in
terms of an unknown parameter. A parameter is a number, or vector of numbers,
that is used in the definition of the distribution; the probability distribution is char-
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acterized by the parameter in the sense that once the value of the parameter is
known, the probability distribution is completely determined. In Example 1.4, page
11, the parameter is p. In Example 1.5, page 13, the parameter includes the pair
(β0, β1), together with a noise variation parameter σ, explained in Chapter 12. In
both of these cases the values of the unknown parameters determine the probability
distribution of the random variables representing the data observations.

A related distinction arises in the context of y vs. x models of the type consid-
ered in Example 1.5. That example involved a linear relationship. As we note in
Chapters 14 and 15, the methods used to fit linear models can be generalized for
nonlinear relationships. The methods in Chapter 15 are also called nonparametric
because the fitted relationship is not required to follow a pre-specified form.
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Figure 1.6: Excitatory post-synaptic current. Current recorded from a rat hippoca-
mal neuron, together with smoothed version (shown as the thin line within the noisy
current trace) obtained by fitting a suitable function of time, given in the text.
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Example 1.6 Excitatory post-synaptic current As part of a study on spike-
timing-dependent plasticity (Dr. David Nauen, personal communication), rat hip-
pocampal neurons were held in voltage clamp and post-synaptic currents were recorded
following an action potential evoked in a presynaptic cell. Figure 1.6 displays a plot
of membrane current as a function of time. One measurement of size of the current
is the area under the curve, which represents the total charge transmitted. Other
quantities of interest include the onset delay, the rate at which the curve “rises”
(here, a negative rise) from onset to peak current, and the rate at which the curve
decays from peak current back toward steady state. The current trace is clearly sub-
ject to measurement noise, which would contaminate the calculations. A standard
way to reduce the noise is to fit a suitable function of time. The fit is also shown in
the figure. It may be used to produce values for the various constants needed in the
analysis.

In this case, a function y = f(t), with y being post-synaptic current and t being
time, where

f(t) = A1(1− exp((t− t0)/τ1)) (A2 exp((t− t0)/τ2)− (1− A2) exp((t− t0)/τ3))

was fitted, based on a suggestion by Nielsen et al. (2004) (Nielsen TA, DiGrego-
rio DA, Silver RA (2004) Modulation of glutamate mobility reveals the mechanism
underlying slow-rising AMPAR EPSCs and the diffusion coefficient in the synaptic
cleft. Neuron 42: 757-771.) The fit is good, though it distorts slightly the current
trace in the dip and at the end. The advantage of using this function is that its
coefficients may be interpreted and compared across experimental conditions. 2

The simple linear fit in Example 1.5, page 13, and the fit based on a somewhat
complicated combination of exponential functions in Example 1.6 are both examples
of parametric regression because both use specified functions based on formulas that
involve a few parameters. In Example 1.5 the parameters were β0 and β1 while in
Example 1.6 they were A1, A2, τ1, τ2, τ3, t0. Nonparametric regression is used when
the formula for the function is not needed. Nonparametric regression is a central
topic of Chapter 15. Here is an example.

Example 1.7 Electrooculogram smoothing for EEG artifact removal EEG
recordings suffer from a variety of artifacts, one of which is their response to eye
blinks. A good way to correct for eye-blink artifacts is to record potentials from
additional leads in the vicinity of the eyes; such electrooculograms (EOGs) may be
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Figure 1.7: Electrooculogram together with a smoothed, or “filtered” version that
removes the noise. The method used for smoothing is an example of nonparametric
regression.

used to identify eye blinks, and remove their effects from the EEGs. Wallstrom et
al. (2002, 2004) (Wallstrom, G.L., Kass, R.E., Miller, A., Cohn, J.F., and Fox, N.A.
(2002) Correction of ocular artifacts in the EEG using Bayesian adaptive regression
splines, in Case Studies in Bayesian Statistics, Vol. VI, edited by C. Gatsonis, A.
Carriquiry, D. Higdon, R.E. Kass, D. Pauler, and I. Verdinelli. pp. 91–136, Springer-
Verlag. Wallstrom, G.A., Kass, R.E., Miller, A., Cohn, J.F., and Fox, N.A. (2004)
Automatic correction of ocular artifacts in the EEG: A comparison of regression-
based and component-based methods, Internat. J. of Psychophys., 53: 105–119.)
investigated methods for removing ocular artifacts from EEGs using the EOG signals.
In Chapter 15 it will become clear how to use a general smoothing method to remove
high-frequency noise. This does not require the use of a function having a specified
form. Figure 1.7 displays an EOG recording together with a smoothed version of
it, obtained using a nonparametric regression method known as BARS (DiMatteo,
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Genovese, and Kass, 2001). (DiMatteo, I., Genovese, C.R., and Kass, R.E. (2001)
Bayesian curve-fitting with free-knot splines, Biometrika, 88:1051-1077.) 2

1.2.4 Statistical model building is an iterative process that
incorporates assessment of fit and is preceded by ex-

ploratory methods.

Another general point about the statistical paradigm is illustrated in Figure 1.8.
This figure shows where the statistical work fits in. Real investigations are far less
sequential than as depicted here, but it does provide a way of emphasizing two com-
ponents of the process that go hand-in-hand with statistical modeling: exploratory
analysis and assessment of fit. Exploratory analysis involves informal investigation
of the data based on numerical or graphical summaries of the data, such as a his-
togram. Exploratory results, together with judgment based on experience, help guide
construction of an initial probability model to represent variability in observed data.
Every such model, and every statistical method, makes some assumptions, leading,
as we have already seen, to a reduction of the data in terms of some small number
of interpretable quantities. As shown in Figure 1.8, the data may be used, again,
to check the probabilistic assumptions, and to consider ramifications of departures
from them. Should serious departures from the assumptions be found, a new model
may be formed. Thus, probability modeling and model assessment are iterative, and
are followed by statistical inference. This process is imbedded into the production
of scientific conclusions from experimental results (Box et al., 1978).

1.2.5 All models are wrong, but some are useful.

The simple representation in Figure 1.8 is incomplete and may be somewhat mislead-
ing. Most importantly, while it is true that there are standard procedures for model
assessment, some of which we will discuss in Chapter 10, there is no uniformly-
applicable rule for what constitutes a good fit. Statistical models, like scientific
models, are abstractions and should not be considered perfect representations of the
data. As examples of scientific models in neuroscience we might pick, at one ex-
treme, the Hodgkin-Huxley model for action potential generation, and at the other
extreme, being much more vague, the theory that vision is created via separate ven-
tral and dorsal streams corresponding loosely to “what” and “where.” Neither model
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Figure 1.8: Formal statistical inference within the process of drawing scientific con-
clusions. Statistical model building is a prerequisite to formal inference procedures.
Model building is iterative in the sense that tentative models must be assessed and,
if necessary, improved or abandoned. The figure is something of a caricature be-
cause the process is not as neat as depicted here. Furthermore, there are typically
many aspects of the data, which bear on several different issues, leading to multiple
inferences and conclusions, all of which are synthesized in a single scientific paper.

is perfectly accurate—in fact, every scientific model fails2 under certain conditions.

2For a discussion of some ways that great equations of physics remain fundamental while only
approximating the real world, see Weinberg (2002). (Weinberg, S. (2002) How great equations sur-
vive, in Fermelo, G., ed., It Must Be Beautiful: Great Equations of Modern Science, Granta Press,
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Models are helpful because they capture important intuitions and can lead to spe-
cific predictions and inferences. The same is true of statistical models. On the other
hand, statistical models are very often driven primarily by raw empiricism—they are
produced to fit data and may have little or no other justification. Thus, experienced
data analysts carry with them a strong sense of both the inaccuracies in statisti-
cal models and their lingering utility. This sentiment is captured well by the famous
quote, “All models are wrong, but some are useful” (Box, 1979). (Box, G.E.P. (1979)
Robustness in the strategy of scientific model building. In Robustness in Statistics,
ed. by R.L. Launer and G.N. Wilkinson, NY: Academic Press.)

Data

Scientific Models

Statistical Models

Conclusions

Real World Theoretical World

Figure 1.9: The role of statistical models and methods in scientific inference. Sta-
tistical procedures are abstractly defined in terms of mathematics, but are used, in
conjunction with scientific models and methods, to explain observable phenomena.

The schematic diagram in Figure 1.9 may help clarify the way we tend to think

pp. 253–257.) An entry into the philosophical literature on statistical inference and modeling
is Mayo and Spanos (2010). (Mayo, D.G. and Spanos, A., eds. (2010) Error and inference: re-

cent exchanges on experimental reasoning, reliability, and the objectivity and rationality of science.

Cambridge University Press.
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about statistical models. Pictured in the left column is the “real world” of data,
i.e., the observables, obtained by recording in some form, often by measurement.
In the right column is the “theoretical world” where both scientific and statistical
models live. Scientific models help us organize facts with explanations. They can be
high-level or detailed, but they should not, at least in principle, be confused with
the observations themselves. The theoretical world seeks to make statements and
predictions, often using a precise but abstract mathematical framework, which may
be applied to things in the real world that may be observed. In a domain where
theory works well, the theoretical world would be judged to be very close to the real
world and, therefore, its predictions would be highly trustworthy. Statistical mod-
els are used to describe the imperfect predictability of phenomena, the regularity
and variability of data, in terms of probability distributions. In Equation (1.3), for
example, the regularity is represented by f(xi) = β0 + β1xi while the variability is
represented by the noise random variable ǫi, as illustrated in Example 1.5, page 13.
Such statistical models are abstract in the sense that the noise in the data is not
actually generated by some random mechanism that follows a probability distribu-
tion; instead, probability is used to describe the variation that arises from both the
natural process (the neural propagation of the action potential) and the measure-
ment process. Because a random variable is thus a mathematical abstraction, we say
that statistical models live in the theoretical world. But, like scientific models, when
they are successful they do a very good job of describing the data. As illustrated in
the diagram, the conclusions that are drawn, based on both the data and the scien-
tific and statistical modeling, effectively straddle these worlds—specific predictions
may speak concretely about future measurements, but often what is learned remains
more general and may modify theories in important ways. In drawing conclusions
from a scientific model one effectively assumes the phenomenon being described to
be just like the model. Similarly, when applying statistical inferences to draw scien-
tific conclusions one assumes that the phenomena being described behave just like
mathematical variables that have probability distributions posited by the statistical
model.

In the case of Example 1.4, page 11, the statistical model contained the quantity
p that could be estimated by a formal statistical procedure, and a confidence interval
could be constructed. The confidence interval actually lives in the abstract math-
ematical world of statistical models and methods. Under our assumptions about
the experiment we are able to conclude that the probability of P.S. choosing the
non-burning house is clearly above .5. If these assumptions match reality reasonably
closely, then the data do indeed provide a good indication that P.S. was not merely
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“guessing” and was, instead, exhibiting the phenomenon of blindsight.

A second aspect of the flow diagram in Figure 1.8 may be misleading. The
diagram fails to highlight the way the judgment of adequate fit depends on context.
When we say “All models are wrong, but some are useful,” part of the point is that
a model can be useful for a specified inferential purpose. Thus, in judging adequacy
of a model, one must ask, “How might the reasonably likely departures from this
model affect scientific conclusions?”

In Example 1.1, page 3, when we analyzed the SEF spike counts, we pointed
out that the standard parametric approach to confidence intervals assumes the data
follow a normal distribution. An examination of the counts indicates this statistical
model is probably somewhat inaccurate. However, as we point out in Chapter 7,
the confidence intervals produced by the standard procedure are likely to provide
reliable inferences when the departures from normality are not large and the sample
sizes are not very small. For the SEF spike count data, the apparent departures
from normality do not strongly affect the pertinent scientific conclusions. Indeed,
the parametric and nonparametrical confidence intervals we obtained were not very
different, which is an additional indication that the parametric model remains useful
for this particular purpose.

1.2.6 Statistical theory is used to understand the behavior
of statistical procedures under various probabilistic as-

sumptions.

The second of the two major components of the statistical paradigm is that methods
may be analyzed to determine how well they are likely to perform. As described
especially in Chapter 8, and in Chapter 11, a series of general principles and criteria
are widely used for this purpose. Statistical theory has been able to establish good
performance of particular methods under certain probabilistic assumptions. We pro-
vide the necessary background for Chapter 8 in Chapters 3–6. When we wish to add
arguments that are not essential to the flow of material we indent them, as follows.

Details: We indent, like this, the paragraphs containing mathematical
details we feel may be safely skipped. 2
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One easy and useful method of checking the effectiveness of a procedure, which
is applicable in certain predictive settings, is cross-validation. The simplest form of
cross-validation involves splitting the data set into two subsets, applying and refining
a method using one of the subsets, and then judging its predictive performance
(predicting the value of some response) on the second subset. Sometimes the second
subset involves entirely new data. For example, in a behavioral study, a new set
of subjects may be recruited and examined. Methods that perform well with this
kind of cross-validation are often quite compelling. In addition to being intuitive,
cross-validation has a theoretical justification discussed briefly in Chapters 11 and
12. Data splitting is also sometimes advocated as a way to guard against certain
kinds of misleading results from significance tests. We discuss this in Chapter 13.

1.2.7 Measuring devices often pre-process the data.

Measurements of neural signals are often degraded by noise. A variety of techniques
are used to reduce the noise and increase the relative strength of the signal, some of
which will be discussed in Chapter 7. In many cases, methods such as these are ap-
plied by the measurement software to produce the data the investigator will analyze.
Functional MRI software, for example, collects data in terms of frequency and recon-
structs a signal in time; MEG sensors must be adjusted each day to ensure detection
above background noise; an accurate characterization of background noise is essen-
tial for localization methods; and extracellular electrode signals are thresholded and
filtered to isolate action potentials, which then must be “sorted” to identify those
from particular neurons. In each of these cases the data that are to be analyzed
are not in the rawest form possible. Such pre-processing is often extremely useful,
but its effects are not necessarily benign. Inaccurate spike sorting, for example, is a
notorious source of problems in some contexts. (See Bar-Gad I, Ritov Y, Vaadia E,
Bergman H. (2001) J Neurosci Methods. 107:1–13, and Wood F, Black MJ, Vargas-
Irwin C, Fellows M, Donoghue JP. (2004), IEEE Trans Biomed Eng. 51: 912–8.)
The wise analyst will be aware of possible distortions that might arise before the
data have been examined.
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1.2.8 Data analytic techniques are rarely able to compensate
for deficiencies in data collection.

A common misconception is that flaws in experimental design, or data collection,
can be fixed by statistical methods after the fact. It is true that an alternative data
analytic technique may be able to be help avoid some presumed difficulty an analyst
may face in trying to apply a particular method—especially when associated with
a particular piece of software. But when a measured variable does not properly
capture the phenomenon it is supposed to be measuring, post hoc manipulation
will be almost never be able to rectify the situation; in the rare cases that it can,
much effort and very strong assumptions will typically be required. For example, we
already mentioned that inaccurate spike sorting can create severe problems. When
these problems arise, no post-hoc statistical manipulation is likely to fix them.

1.2.9 Simple methods are essential.

Another basic point concerning analytical methods is that simple, easily-understood
data summaries, particularly visual summaries such as the PSTH, are essential com-
ponents of analysis. These fit into the diagram of Figure 1.8 mainly under the
heading of exploratory data analysis, though sometimes inferential analyses from
simple models are also used in conjunction with those from much more elaborate
models. When using a complicated procedure, it is important to understand the way
results agree, or disagree, with those from simpler methods.

1.2.10 It is convenient to classify data into several broad

types.

When spike train data, like those in Example 1.1, are summarized by spike counts
occurring in particular time intervals, the values taken by the counts are necessarily
non-negative integers. Because the integers are separated from each other, such data
are called discrete. On the other hand, many recordings, such as MEG signals, or
EEGs, can take on essentially all possible values within some range—subject only to
the accuracy of the recording instrument. These data are called continuous. This
is a very important distinction because specialized analytical methods have been
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developed to work with each kind of data.

Count data is an important subclass within the general category of discrete data.
Within count data, a further special case occurs when the only possible counts are
0 or 1. These are binary data. The key characterization is that there are only two
possible values; it is a matter of analytical convenience to consider the two values to
be 0 or 1. As an example, the response of patient P.S. on each trial was binary. By
taking the response “non-burning house” to be 1 and “burning house” to be zero,
we are able to add up all the coded values (the 1s and 0s) to get the total number of
times P.S. chose the non-burning house. This summation process is easy to deal with
mathematically. A set of binary data would almost always be assumed to consist of
0s and 1s.

Two other kinds of data arising in neuroscience deserve special mention here.
They are called time series and point processes. Both involve sequential observations
made across time. Imaging signals are good examples of time series: at each of
many successive points in time, a measurement is recorded. Spike trains are good
examples of point processes: neuronal action potentials are recorded as sequences of
event times. In each case, the crucial fact is that an observation at time t1 is related
to an observation made at time t2 whenever t1 and t2 are close to each other. Because
of this temporal relationship time series and point process data must be analyzed
with specialized methods. Statistical methods for analyzing time series and point
processes are discussed in Chapters 18 and 19.





Chapter 2

Manipulating Data

c©2010 SPRINGER SCIENCE+BUSINESS MEDIA, LLC. All rights reserved. No
part of this work may be reproduced in any form without the written permission of
SPRINGER SCIENCE+BUSINESS MEDIA, LLC.

Data analysis comprises two interrelated activities: manipulation and interpreta-
tion. Interpretation is based on the logic of statistical inference, which is discussed
in Chapters 7–10. Manipulation includes the mechanics of statistical inference, that
is, its formulas and computations. Another important kind of data manipulation has
no explicit connection with inference but is, instead, devoted to summarizing and
visualizing data so that they may be more easily comprehended. We describe a few
basic ideas below.

The term “data analysis” was coined by John Tukey (see Brillinger, 2002, Ap-
pendix D). (Brillinger, D.R. (2002) John W. Tukey: His life and professional con-
tributions, Annals of Statistics, 30: 1535–1575.) Tukey emphasized the distinc-
tion between formal methods, based on the logic of statistical inference, and in-
formal manipulations—which he called exploratory, having a role we indicated in
Section 1.2.4. The informality of exploratory data analysis (EDA), however, should
not be confused with mathematical simplicity. As we indicate in Section 2.1.2, the
manipulations behind many EDA methods are quite complicated. Tukey’s large and
lingering influence came from demonstrating the power of mathematical, computa-
tional, and statistical insight in producing useful displays and summaries of data.

31
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2.1 Describing Central Tendency and Variation

2.1.1 Alternative displays and summaries provide different
views of the data.

Alternative displays and summaries may emphasize different aspects of the data.
While certain data summaries may be well suited for particular purposes, there is
never a uniquely “right” way to collapse the data. A multiplicity of possible data
features is inherent to the data analytic process. Furthermore, the details of data
summary can be important. A histogram displays the distribution of data values,
but the way it does so depends on the way its bins are defined. This is illustrated in
the next example.

Example 2.1 Saccadic reaction time in hemispatial neglect. Let us consider
saccadic reaction times from a single patient in the study of hemispatial neglect
by Behrmann et al. (2000). (Behrmann, M., Ghiselli-Crippa, T., Sweeney, J.A.,
DiMatteo, I., and Kass, R. (2000) Mechanisms underlying spatial representation
revealed through studies of hemispatial neglect, J. Cognitive Neurosci., 14: 272–290.)
Each measured value is the time (in seconds) to complete an eye saccade. The data
have been aggregated across several conditions for pedagogical purposes. There are
119 reaction times, which range from .072 to .988 seconds, or 72 to 988 milliseconds.
The lower quartile (below which lie 25% of the data) is 140 milliseconds, the median
(below which lie 50% of the data) is 188 milliseconds, and the upper quartile (below
which lie 75% of the data) is 252 milliseconds. Thus, the fast reaction times (72 to 140
milliseconds) are bunched relatively close to the middle reaction of 188 milliseconds,
while the slow reaction times (252 to 988 milliseconds) are spread out and include
some comparatively large values. We refer to this feature of the distribution as
skewness toward high values.

Four histograms of the data are shown in Figure 2.1. Although the same 119
values are used in each, the four histograms give somewhat different impressions
of the data. In particular, the first histogram (top left) makes the distribution look
unimodal, i.e., it looks like it has a single peak, while the second (top right) makes the
distribution look bimodal (two peaks) or even multimodal (multiple peaks). However,
all four give the clear impression of skewness toward high values. 2
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Figure 2.1: Four histograms of saccadic reaction time data. The same data are used
in each histogram. The appearance of the data distribution depends on details of
histogram creation. The first three histograms have different bin sizes. The fourth
histogram (bottom right) uses the same bin size as the third (bottom left) but shifts
the bin locations slightly.

In discussing histograms it is important to distinguish this informal use of “dis-
tribution” from the mathematical use when we speak about a probability distribu-
tion. We will, beginning in Chapter 3, use probability distributions to describe data,
but that should be recognized as a conceptual leap: data are observed, and part
of the “real world” of Figure 1.9, while probability distributions are part of the
“theoretical world.” The word “distribution” is used in both contexts, and we typi-
cally hope that a particular probability distribution will do a good job describing a
data distribution. As an example, sometimes data distributions—as represented by
histograms—are unimodal and more-or-less symmetrical about the median, i.e., the
relative frequency of data higher than the median is about the same as that of corre-
sponding data lower than the median by an equal amount. Symmetric and unimodal
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data distributions are easier to describe concisely with probability distributions and
the normal distribution, discussed in Chapter 5, is unimodal and symmetrical (it is
often called “the bell-shaped curve”). It is very rare to find a set of data that, on close
inspection, may be described accurately by a normal distribution, but it is common
to find unimodal and symmetric data distributions that are roughly normal-looking.
A great deal of emphasis is placed on the normal distribution, in large part because
of its appearance as a basic assumption of many formal statistical procedures and
because such statistical procedures typically remain useful for modest departures
from normality. When departures from normality become large, however, they can
materially affect the behavior of the procedures. A standard practice, therefore, is
to examine data via displays such as histograms, looking especially for substantial
skewness.

The saccadic reaction time data are substantially skewed. One effect of this is
that the mean (the arithmetic average) is substantially higher than the median: the
mean reaction time is 226 milliseconds, while the median is 188 milliseconds. This
is because the mean is affected much more strongly by values that are far away
from the middle of the distribution. Data values that are very far from the middle
of the distribution are called outliers, and the sensitivity of the mean to outliers is
one reason it is often replaced by the median as a summary of central tendency.
In addition to the mean and median, the mode, which is the value occuring most
frequently, is sometimes mentioned in this context. However, the term “mode” is
not used in a precise way very often when describing a bunch of numbers. The
concept of a mode applies better to the theoretical setting of probability densities,
where it is the value at which the density is maximized. For a bunch of numbers we
typically speak, instead, informally and approximately, of “the mode” as being the
rough location of the peak of the distribution.

Just as central tendency in data may be summarized by mean or median, variabil-
ity may be summarized by more than one measure. We might ask, for example, how
much the saccade times vary. For instance, if we were to look at a control subject
might we expect less variability? How should we quantify this?

The most widely used summary of variability is the standard deviation:

s =

√
√
√
√

1

n− 1

n∑

i=1

(xi − x̄)2
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where x1, x2, . . . , xn are the observations and x̄ is their mean. We may think of s as
an “average deviation” of the values from their mean. For the saccadic reaction time
data we find the standard deviation to be s = .134, or 134 milliseconds. The use of
n− 1 rather than n in the formula for s comes from certain theoretical arguments.

Details: In Chapter 7 we will consider a random sample X1, X2, . . . , Xn

and define the sample variance as

S2 =
1

n− 1

n∑

i=1

(Xi − X̄)2.

We will see that the theoretical average value of S2, known as its expec-
tation, is E(S2) = σ2

X . Because its expectation is equal to the quantity it
is estimating, S2 is called unbiased. If we instead used n in the denomi-
nator the expectation would be (n− 1)/n times σ2

X , and for small n this
can make S2 slightly less accurate as an estimator of σ2

X . Furthermore, in
the related context of linear regression this kind of consideration becomes
more consequential: if a response variable y is being related to regression
variables x1, . . . , xp−1 the denominator of the unbiased estimator of σ2

becomes n− p.

An alternative to the standard deviation would be the mean absolute deviation
1
n

∑n
i=1 |xi − x̄| but this turns out to be mathematically less convenient. In some

contexts the median absolute deviation is used as this is not affected by outliers. If
x̃ = median(x1, x2, . . . , xn) is the median of the n data values xi then the median
absolute deviation is median(x1 − x̃, x2 − x̃, . . . , xn − x̃). Sometimes the difference
between the quartiles is used. This is called the interquartile range.

In this section we have reviewed several very basic methods of data summary and
display while trying to illustrate the general notion that alternative measures and
displays can produce differing impressions of the data. An additional concern is that
perception of data may depend on aspects of the way the data are displayed that have
nothing to do with choices of data features. For scatterplots of a variable y against
another variable x, Cleveland et al. (1982) showed that a subject’s perception of
association depends on the size of the scatterplot within the frame created by the
axes. (Cleveland, W.S., Diaconis, P. and McGill, R. (1982) Variables on scatterplots
look more highly correlated when the scales are increased, Science, 216: 1138-1141.)
In choosing data displays it is worth keeping such perceptual issues in mind.
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2.1.2 Exploratory methods can be sophisticated.

As we said in Section 1.2.4, exploratory data analysis (EDA) refers to the collection
of methods that are relatively informal, based not on a cohesive logical framework
built around statistical models but rather on tools that seem to illuminate interesting
features of the data. The informal methods of EDA can be extremely useful. In this
section we have mentioned a couple of very elementary descriptive methods, but in
some cases informal techniques can draw on quite sophisticated ideas. The next
example involves a method we will discuss in Chapter 18.

Example 2.2 EEG spectrogram under anesthesia When patients undergo gen-
eral anesthesia for certain surgical procedures EEGs are collected to monitor brain
activity. These recordings provide a comparison of various states of consciousness.
A set of EEG traces for a patient during carotid endarterectomy surgery at the
Massachusetts General Hospital is displayed in Figure 2.2. The figure shows EEGs
and spectrograms during an initial awake phase, an anesthesia induction phase, the
surgical phase, and the recovery phase. Spectrograms are made by taking the signal
within successive time bins (here, 1 second bins) and using Fourier analysis to de-
compose the signal into oscillatory components at varying frequencies. On the x-axis
is time and on the y-axis is the frequency. The plotted spectrogram is the resulting
power (a measure of the strength of a particular frequency component of the signal)
at each frequency, for each time bin, indicated in the figure by three different colors
representing low, medium, and high power. In Figure 2.2 the most easily visible
oscillations are the alpha rhythm (roughly 8-13 Hz) in the second half of the EEG
trace in the awake phase (when the eyes are closed) and the delta rhythm (below 4
Hz) during the surgical phase. Precise scientific statements often require statistical
inferences (indications of uncertainy or tests of hypotheses), but spectrograms are
very useful in displaying time-frequency information even without formal inferential
assessments. 2
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Figure 2.2: EEG spectrograms for a subject in various stages of general anesthesia.
In each of four stages an EEG voltage tracing is shown, and below it a spectrogram.
The EEG tracings are for the P4 (right parietal) lead in an array of 16 leads (it is
taken with O2 as reference lead). The spectrogram decomposes the voltage signal
into frequency components across successive time bins. Red indicates high magni-
tudes, yellow medium magnitudes, and blue low magnitudes. Each displayed trace
corresponds to several successive time bins in the spectrogram, as indicated by the
black lines. Two prominent features are the alpha rhythm, at roughly 10 Hz, and
the slower delta rhythm, below 4 Hz. Both sets of oscillations are visible in the EEG
tracings, and their temporal presence or absence is indicated in the spectrogram.
During the awake phase the alpha rhythm is absent when the eyes are open and
present when the eyes are closed; the delta rhythm is also present, but only weakly.
During surgery the delta rhythm is very strong, and the alpha rhythm is also stronger
than in the awake phase.

2.2 Data Transformations

2.2.1 Positive values are often transformed by logarithms.

Measurement scales arise from convenience, and need not be considered in any way
absolute or immutable; changing the scale often produces a more elegant description.
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A canonical example involves the acidity of a dilute aqueous solution, which is de-
termined by the concentration of hydrogen ions. The larger the concentration [H+]
of hydrogen ions, the more acidity. Rather than using [H+] to measure acidity, we
use its logarithm, which is known as pH . Specifically, pH = − log10([H

+]), so that
an increase in [H+] corresponds to a decrease in pH. Because the defining property
of the logarithm is

log ab = log a + log b, (2.1)

log transformations are used when multiplicative effects seem more natural than
additive. In the case of pH , a solution having a hydrogen ion concentration of 10−5

moles per liter is 1 unit greater pH (less acidic) than a solution having a concentration
of 10−4 moles per liter. Similarly, a solution having a hydrogen ion concentration of
10−9 moles per liter is 1 unit greater pH than a solution having a concentration of
10−8 moles per liter. In both cases, a 1 unit increase in pH corresponds to a 10-fold
decrease in hydrogen ion concentration, regardless of the concentration we started
with. In chemical calculations, the log concentration scale is simpler to work with
than the concentration scale.

Many other familiar scales are logarithmic. One example is the use of decibels to
measure the strength of an auditory signal.

Not only are log scales familiar and intuitive, data are often better behaved
following a log transformation. In particular, it frequently happens that a batch of
data look highly skewed in a given measurement scale, but are much closer to being
symmetric in the log scale.

Example 2.1 (continued from 32) Figure 2.3 displays the saccadic reaction
time data in both the original scale and the log transformed scale. To transform
the data to the log scale we have replaced x = reaction time by log10(x) for each of
the 119 values. In the log scale the distribution is more symmetrical. In addition,
the potential bimodality, or possibly even multimodality of the distribution is also
evident in the log scale. The data shown here were aggregated by combining con-
ditions in which the eyes began fixating centrally, to the right, or to the left, so it
is not surprising that the distribution appears non-unimodal. When the data are
disaggregated into single conditions, in the log scale they do appear unimodal and
roughly symmetrical. For this reason, Behrmann et al. chose to perform many of
their analyses in the log scale. 2

Example 2.3 High-field BOLD signal Lewis et al. (2005) have argued that for
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Figure 2.3: Histograms of eye saccade data. Top display is for data in the original
scale, bottom display is for the same data after being transformed by log10. The
data are distributed more symmetrically in the log scale.

some purposes it may be advantageous to transform the BOLD signal in fMRI data
by taking logarithms, at least in the case of high-field signals. (Lewis SM, Jerde
TA, Tzagarakis C, Gourtzelidis P, Georgopoulos MA, Tsekos N, Amirikian B, Kim
SG, Ugurbil K, Georgopoulos AP. (2005) Logarithmic transformation for high-field
BOLD fMRI data. Exp. Brain Res., 165:447-53.) Those authors examined the
BOLD intensity for subjects during 4 Tesla imaging, with a simple visual stimulus.
Figure 2.4 displays a histogram (with dots replacing bin heights) of the BOLD values
collected from 19,000 voxels for each of 15 subjects and 15 images under their control
condition, during which the subjects were fixating on a central spot on the screen
they were watching. It is apparent that this distribution across voxels is quite skewed.
The authors produced various plots aimed at suggesting the log transformation could
be useful. 2

The way we usually think of the log transformation is that it produces a more
“natural” scale for measurements whenever they are necessarily positive and might
reasonably be compared in proportional relationships. For instance, as we just de-
scribed, various values of pH are quite naturally compared in proportional terms.
Similarly, one might speak of eye saccades as taking, say, 35% longer in hemispa-
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Figure 2.4: High field of BOLD signal intensities. The frequencies are plotted as
dots, rather than bin heights. The distribution across voxels is skewed toward high
values. Modified from Lewis et al. (2005).

tial neglect patients than in control subjects. Growth phenomena, like lengths of
some anatomical feature in some organism, are often considered in percentage terms.
That is, in describing the variability in some set of organisms, we might find ourselves
thinking in terms of proportional change from one to the next.

Transformations are important in data analysis. We can understand this a little
more deeply by considering the way a bunch of numbers vary, and the resulting ef-
fects of taking logs. We have already mentioned that normal distributions for data
are assumed by standard statistical procedures, that data distributions are rarely
very close to normal, but that mild departures from normality are generally quite
tolerable. Such mild departures are common: once we transform the data to a suit-
able scale, distributions are often unimodal and more-or-less symmetrical. Why?
Presumably, this has to do with effects of the Central Limit Theorem. We will dis-
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cuss this great theorem in Chapter 6. For now let us be content to state it this way:
if we add up many small, independent effects their sum will be approximately nor-
mally distributed. The empirical observation of approximate normality may then be
interpreted as follows: if we choose the right scale, the data values may be considered
sums of many small, independent effects. With this in mind, let us return to the
logarithmic relationship in Equation (2.1), and the role it may play when many small
effects are combined to produce variability. The cases where the log transformation
is valuable are those where it is natural to think in terms of proportionality. So sup-
pose the reason that two measurements are different is that many small proportional
effects, of somewhat different sizes in the two measurements, have been combined.
For example, the length of a dendritic spine may depend on contributions to the cell
membrane and its contents by vast numbers of lipid and protein molecules. If we
break the growth process into many thousands of pieces, each might be considered
a small effect, so that the net result is a composition of many, many small effects.
When we see that one spine is longer than another, we might imagine that the many
small effects in the longer spine tended to be proportionally larger than those in the
shorter spine. Now consider two such small growth effects x1 and x2, occurring,
respectively, in the shorter and longer dendrites. If we think of the variation as pro-
portional, we may relate the values x1 and x2 by writing x2 = x1(1 + ǫ), where ǫ is
a small number representing the proportional change (e.g., ǫ = .05, or 5%) in going
from x1 to x2. From Equation (2.1) together with a little calculus, for small ǫ we
have log(1 + ǫ) ≈ ǫ (see Section A.4 of the Appendix). We then have

log x2 − log x1 = log(1 + ǫ)

≈ ǫ.

In other words, when we add a small perturbation ǫ to log x1 we get log x2. Thus,
if we wish to think of ǫ as a small random quantity that creates variability in the
data multiplicatively, it does so additively on the log scale. When we consider a large
number of such small effects acting proportionally, on the log scale the corresponding
effects will be summed. Thus, following a log transformation, data that are approx-
imately of this type will, according to the Central Limit Theorem, be described,
approximately, by a normal distribution.

All of this is heuristic; there is no argument here that can be claimed formally
correct—the Central Limit Theorem applies not to data but to mathematical quan-
tities that live in the “theoretical world” described in Section 1.2.5. We are simply
trying to provide a plausible explanation for the empirical fact that log-transformed
growth measurements usually have fairly symmetrical distributions.
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In transforming data either the “natural” log (base e) or the “common” log (base
10) may be used. The former is used in mathematics, and the latter in scientific
applications. They are distinguished with the notation loge(x) and log10(x). (Occa-
sionally log2(x) is used.) These transformations have a simple relationship:

loge(x) = loge(10) log10(x).

This implies a batch of numbers transformed by loge will look essentially the same
as the batch transformed by log10. The only distinction is multiplication by the
constant loge(10) applied to each value. Thus, for data analytic purposes it does not
matter which scaled is used. Of course, to interpret the results in a meaningful way,
based on relevant physiological units, one must know which logarithmic base has
been applied. The statistics literature follows the mathematics convention in using
loge unless otherwise noted. We follow this convention here.

Another motivation for logarithmic transformations is that they convert power
laws, which are useful in describing many neuroscientific phenomena, to simpler
linear forms. Power laws have the form

w = cvb (2.2)

and may be summarized by saying that a proportional change in v produces a pro-
portional change in w. If we let y = logw and x = log v then

y = a + bx,

where a = log c.

Example 2.4 Stimulus-response power laws Power laws may be used to de-
scribe the way increases in stimulus intensity produce increased magnitudes of sensa-
tion (Stevens, 1961, Science, 133: 80–86) (where they replace the “Weber-Fechner”
law w = a + d log v), or increased neural firing rate (Stevens, 1970, Science, 170:
1043–1050). For example, Figure 2.5 displays five classic sets of data on neural re-
sponses from the eye of the horshoe crab Limulus. For each data set, the log of neural
firing rate is plotted as a function of log of light intensity. In each case the function
is approximately linear. In other words, in each case the relationship of firing rate
to stimulus intensity follows, approximately, a power law. 2
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Figure 2.5: Power function fits to firing-rate data, shown on log-log scale. On the
y-axis are log firing rates, and on the x-axis is log intensity of light. The data are
from three different sources, using three distinct methods of collection. Except for
the deviation from the line at low intensities for the data set indicated by circles, the
fits are quite good. Modified from Stevens (1970).

Example 2.5 Power law for skill acquisition Power laws also arise in describing
the effects of practice on recall or reaction time in memory and skill acquisition (An-
derson, 1990, Cognitive Psychology and its Implications). An interesting set of data
comes from Kolers (1976, Reading a year later, J. Experimental Psychology: Human
Learning and Memory, 2: 554–565.) who investigated the learned skill of reading
inverted text.1 As shown in Figure 2.6, he found two things. First, a decreasing
power law describes the relationship of reading time to amount of practice. Second,
when subjects were tested a year later, they had lost some of their ability to read the
inverted text, and then regained it again according to a power law, though at a slower

1See also the related work on power laws by Anderson and Schooler (1991). (Anderson, J.R. and
Schooler, L.J. (1991) Reflections of the environment in memory, Psychological Rev., 2: 396-408.)
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Figure 2.6: Skill learning described by a power law, shown on a log-log scale. On
the y-axis is the log (base 2) of the time taken to read a passage of inverted text (in
minutes), and on the x-axis is log practice time (in pages). Four sets of data from
multiple subjects are displayed. Data were obtained on two occasions, separated by
a year, on both ordinary text and inverted text (creating a total of four conditions).
Line A is fit to data based on ordinary text on the first occasion and line B is
fit to data based on ordinary text on the second occasion. There is essentially no
training effect. Lines C and D are the fits for inverted text. In both cases there
is a clear power-law relationship, indicated by the good fit of the lines to the data.
Substantively, after the delay by a year the subjects again improved with practice,
but they had retained much of the skill of reading inverted text (line D is below line
C) and needed only about 100 pages of training to reach the proficiency previously
obtained after 200 pages. Modified from Kolers (1976).

rate. The two relationships are shown in Figure 2.6 as a pair of lines with differing
slopes and intercepts. These studies are of great interest for education: they suggest
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that retained learning may be quantified by the decrease in training time required to
achieve proficiency following re-training, compared to the original training time. 2

2.2.2 Non-logarithmic transformations are sometimes applied.

The log is by far the most common transformation, but there are others, too. The
general method of transformations is to replace a measured variable x, such as reac-
tion time, with some f(x) for every value of x. For example, reaction times and other
time measurements are sometimes analyzed on the reciprocal scale 1/x: the recip-
rocal transforms time to something proportional to speed (speed is distance/time).
Square-root transformations are also sometimes used, especially for spike counts be-
cause the square-root can be a so-called variance-stabilizing transformation, as dis-
cussed in Chapter 9. Square-roots are also sometimes used for measurements of area
and cube-root transformations are occasionally used for volumetric measurements.
We may order these transformations by letting, for the moment, the symbol < stand
for “less strong than” and then writing them as follows:

x < x1/2 < x1/3 < log(x) < 1/x.

In each case we strengthen the transformation (make it pull in the right-hand tail
more) as we decrease the power to which we raise x. Note that 1/x = x−1 and
that, in this context, the log corresponds to using the power 0, so that increasing the
strength of transformation corresponds to decreasing the exponent.

Details: We may imbed the log in the power family of transformations
by putting the power transformations in the normalized form

f(x) = (xα − 1)/α.

By calculus (L’Hôpital’s rule) it then follows that the log corresponds to
α = 0.

In general, both distributional symmetry and interpretability are important in
determining a scale for analysis.

These “power transformations” are all monotonic. Occasionally, non-monotonic
transformations are used, as in the analysis of EMG recordings.
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Example 2.6 EMG in frog movement An Electromyogram (EMG) is a recording
of the electrial impulses transmitted through a group of muscle fibers, recorded as
electrical potentials. Because the instantaneous potential is generated from both
agonist and antagonist muscle fibers, it is recorded as both positive and negative.
This is shown in the top panel of Figure 2.7, which is a display of an EMG taken
from a frog during a leg extension. Because the force generated by a muscle is only
positive, the standard convention is to analyze the rectified signal, i.e., the absolute
value of the potential. This is shown in the bottom panel of Figure 2.7. 2

Figure 2.7: EMG from the leg of a frog during a swimming motion. Top panel shows
raw signal. Bottom panel shows the rectified signal.
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Probability and Random Variables
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Probability is a rich and beautiful subject, a discipline unto itself. Its origins were
concerned primarily with games of chance, and many lectures on elementary prob-
ability theory still contain references to dice, playing cards, and coin flips. These
lottery-style scenarios remain useful because they are evocative and easy to un-
derstand. On the other hand, they give an extremely narrow and restrictive view
of what probability is about: lotteries are based on elementary outcomes that are
equally likely, but in many situations where quantification of uncertainty is helpful
there is no compelling way to decompose outcomes into equally-likely components.
In fact, the focus on equally-likely events is characteristic of pre-statistical thinking.1

The great leap forward toward a more general notion of probability was slow, requir-
ing over 200 years for full development.2 This long, difficult transition involved a
deep conceptual shift. In modern texts equally-likely outcomes are used to illustrate
elementary ideas, but they are relegated to special cases. It is sometimes possible to

1See Stigler, S.M. (1986) The History of Statistics: Measurement of Uncertainty before 1900,
Harvard.

2Its beginning point is usually traced to a text by Jacob Bernoulli, posthumously-published in
1713 (Bernoulli, J. (1713) Ars Conjectandi Basil: Thurnisiorum.), and its modern endpoint was
reached in 1933, with the publication of a text by Kolmogorov (Kolmogorov, A.N. (1933) Grundbe-

griffe der Wahrscheinlichkeithsrechnung, Berlin: Springer-Verlag. English translation: 1950, Foun-

dations of the Theory of Probability, New York: Chelsea.)

47
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compute the probability of an event by counting the outcomes within that event, and
dividing by the total number of outcomes. For example, the probability of rolling
an even number with a fair six-sided die, i.e., of rolling any of the three numbers
2, 4, or 6, out of the 6 possibilities, is 3

6
= 1

2
. In many situations, however, such

reasoning is at best a loose analogy. To quantify uncertainty via statistical models a
more general and abstract notion of probability must be introduced.

This chapter begins with the axioms and elementary laws of probability, and then
discusses the way probability is used to describe variability. The key concept of inde-
pendence is defined in Section 3.1.3. Quantities that are measured but uncertain are
formalized in probability theory as random variables. More specifically, we set up a
theoretical framework for understanding variation based on probability distributions
of random variables, and the variation of random variables is supposed to be similar
to real-world variation observed in data. Many families of probability distributions
are used throughout the book. The most common ones are discussed in Chapter 5.

One quick note on terminology: the word stochastic connotes variation describable
by probability. Within statistical theory it is often used in specialized contexts, but
it is almost always simply a synonym for “probabilistic.” We occasionally use this
word ourselves.

3.1 The Calculus of Probability

3.1.1 Probabilities are defined on sets of uncertain events.

The calculus of probability is defined for sets, which in this context are called events.
That is, we speak of “the probability of the event A” and we will write this as
P (A). Events are considered to be composed of outcomes from some experiment or
observational process. The collection of all possible outcomes (and, therefore, the
union of all possible events) is called the sample space and will be denoted by S.
Because S is a set, we might also say that S is made up of elements (each of which is
an outcome) and to indicate that ω is an element of S we would write ω ∈ S. Recall
the definitions of union and intersection: for events A and B the union A∪B consists
of all outcomes that are either in A or in B or in both A and B; the intersection
A ∩ B consists of all outcomes that are in both A and B. The complement Ac of A
consists of all outcomes that are not in A. We say two events are mutually exclusive
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or disjoint if they have empty intersection.

Example 3.1 Two neurons from primary visual cortex In an experiment
on response properties of cells in primary visual cortex, Ryan Kelly and colleagues
recorded approximately 100 neurons simultaneously from an anesthetized macaque
monkey while the animal’s visual system was stimulated by highly irregular random
visual input. (Kelly et al., 2007). (Kelly, R.C., Smith, M.A., Samonds, J.M., Kohn,
A., Bonds, A.B., Movshon, J.A., and Lee, T.-S. (2007) Comparison of recordings
from microelectrode arrays and single electrodes in the visual cortex, J. Neurosci.,
27: 261–264.) The stimulus they used is known as white noise, which will be defined
in Chapter 18. Kelly examined the response of two neurons during 100 milliseconds
of the stimulus. Let A be the event that the first neuron fires at least once within the
100 millisecond time interval and B the event that the second neuron fires at least
once during the same time interval. Here, A∪B is the event that at least one of the
2 neurons fires at least once, while A∩B is the event that both neurons fire at least
once. Because it is possible that both neurons will fire during the time interval, the
events A and B are not mutually exclusive. 2

We now state the axioms of probability.

Axioms of probability:

1. For all events A, P (A) ≥ 0.

2. P (S) = 1.

3. If A1, A2, . . . , An are mutually exclusive events, then P (A1 ∪ A2 ∪ · · · ∪ An) =
P (A1) + P (A2) + · · ·+ P (An).

A technical point is that in advanced texts, Axiom 3 would instead involve in-
finitely many events, and an infinite sum:

3′. If A1, A2, . . . , are mutually exclusive events (possibly infinitely many events),
then P (∪iAi) =

∑

i P (Ai)

where the notations mean that the union and summation extend across all events.
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Regardless of whether one worries about the possibility of infinitely many events,
it is easy to deduce from the axioms the elementary properties we need.

Theorem: Three Properties of Probability For any events A and B we have

(i) P (Ac) = 1− P (A), where Ac is the complement of A.

(ii) If A and B are mutually exclusive, P (A ∩B) = 0.

(iii) P (A ∪ B) = P (A) + P (B)− P (A ∩ B).

Proof: To prove (i) we simply note that S = A ∪ Ac. From axiom (2) we then
have P (A ∪ Ac) = 1 and because A and Ac are mutually exclusive axiom (3) gives
P (A) + P (Ac) = 1, which is the same as (i). It is similarly easy to prove (ii) and
(iii). 2

These facts are often illustrated by analyzing games of chance, which is the con-
text in which many of the basic methods of probability were first worked out. For
instance, in picking at random a playing card from a standard 52-card deck, we
may compute the probability of drawing a spade or a face card, meaning either a
spade that is not a face card, or a face card that is not a spade, or a face card
that is also a spade. We take A to be the event that we draw a spade and B to
be the event that we draw a face card. Then, because there are 3 face cards that
are spades we have P (A ∩ B) = 3

52
, and, appying the last formula above, we get

P (A ∪ B) = 1
4

+ 3
13
− 3

52
= 11

26
. This matches a simple enumeration argument: there

are 13 spades and 9 non-spade face cards, for a total of 22 cards that are either a
spade or a face card, i.e., P (A ∪ B) = 22

52
= 11

26
. The main virtue of such formulas is

that they also apply to contexts where probabilities are determined without reference
to a decomposition into equally-likely sub-components.

Example 3.1 (continued from page 49) From 1200 replications of the 100
millisecond stimulus Kelly calculated the probability that the first neuron would fire
at least once was P (A) = .13 and the probability that the second neuron would fire
at least once was P (B) = .22, while the probability that both would fire at least once
was P (A∩B) = .063. Applying the formula for the union (property (iii) above), the
probability that at least one neuron will fire is P (A ∪ B) = .13 + .22− .063 = .287.
2



3.1. THE CALCULUS OF PROBABILITY 51

3.1.2 The conditional probability P (A|B) is the probability
that A occurs given that B occurs.

We often have to compute probabilities under an assumption that some event has
occurred. For instance, one may be interested in the probability that a neuron will
fire in an interval of time (t, t+∆t) given that it has already fired at a previous time
t0. If we let A be the event we are interested in and B the event that is assumed to
have occurred, then we write3 P (A|B) for the conditional probability of A given B.
From a Venn diagram (see Figure 3.1) it is easy to visualize the calculation required:
we limit the universe to B and ask for the relative probability assigned to the part
of A that is contained in B. Algebraicly, the formula is the following:

Definition: Conditional Probability Assume P (B > 0). The conditional
probability of A given B is

P (A|B) =
P (A ∩ B)

P (B)
.

Again, using draws from a deck of cards, the probability of drawing a Jack given
that we draw a face card is P (A|B) = 4/52

12/52
= 1

3
.

A rewriting of the definition of conditional probability is also sufficiently useful
to have a name:

Multiplication rule If P (B) > 0 we have P (A ∩B) = P (A|B) · P (B).

Although conditional probability calculations are pretty straightforward, prob-
lems involving conditioning can be confusing. The trick to keeping things straight is
to be clear about the event to be conditioned upon. Here is one standard example.

Illustration: The boy next door Suppose a family moves in next door to you
and you know they have two children, but you do not know whether the children are
boys or girls. Let us assume the probability that either particular child is a boy is
1
2
. We might label them Child 1 and Child 2 (e.g., Child 1 could be the older of the

two). Thus, P (Child 1 is a boy) = P (Child 2 is a boy) = 1
2
. Now suppose you find

3This notation is due to Jeffreys (1931); see his page 15. (Jeffreys, H. (1931) Scientific Inference,
Cambridge)



52 CHAPTER 3. PROBABILITY AND RANDOM VARIABLES

A ∩B

A B

Figure 3.1: Venn diagram showing the intersection of A and B. The events A and B
are depicted as open and filled-in circles, respectively, while A∩B, the portion of B
that is also in A, is shown with diagonal lines. The conditional probability of A given
B is the relative amount of probability assigned to A within the probability assigned
to B, i.e., the probability assigned to the region having diagonal lines divided by the
probability assigned to the whole of B.

out that one of the children is a boy. What is the probability that the other child is
also a boy?

It may seem that the answer is 1
2

but, if we assume that “you find out one of
the children is a boy” means at least one of the children is a boy, then the correct
answer is 1

3
. Here is the argument. When you find out that one of the children is a

boy you don’t know whether Child 1 is a boy, nor whether Child 2 is a boy, but you
do know that one of them is a boy—and possibly both are boys. This information
amounts to telling you it is impossible that both are girls. Let A be the event that
both children are boys and B the event that at least one child is a boy. We want
P (A|B). Note that there are four equally-likely possibilities:

P (Child 1 is a boy and Child 2 is a boy)

= P (Child 1 is a boy and Child 2 is a girl)

= P (Child 1 is a girl and Child 2 is a boy)

= P (Child 1 is a girl and Child 2 is a girl).

Thus, we compute P (A ∩ B) = P (A) = 1
4

and P (B) = 3
4
. Plugging these numbers

into the formula for conditional probability we get P (A|B) = 1
3
. 2
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3.1.3 Probabilities multiply when the associated events are
independent.

Intuitively, two events are independent when the occurrence of one event does not
change the probability of the other event. This intuition is captured by conditional
probability: the events A and B are independent when knowing that B occurs does
not affect the probability of A, i.e., P (A|B) = P (A). This statement of independence
is symmetrical: A and B are also independent if P (B|A) = P (B). However, these
statements are not usually taken as the definition of independence because they
require the events to have nonzero probabilities (otherwise, conditional probability
is not defined). Instead, the following is used as a definition.

Definition: Independence Two events A and B are independent if and only if
P (A ∩B) = P (A) · P (B).

Note that from this definition, when A and B are independent and P (B) > 0 we
have, as a consequence,

P (A|B) = P (A ∩B)/P (B) = P (A)P (B)/P (B) = P (A).

Multiplication of probabilities should be very familiar. If a coin has probability .5
of coming up heads when flipped, then we usually say the probabiilty of getting two
heads is .25 = .5× .5, because we usually assume that the two flips are independent.

Example 3.1 (continued from page 50) For the probabilities P (A), P (B)
given on page 50 we have P (A)P (B) = .029 while the probability of the intersection
was reported to be P (A ∩ B) = .063. The latter is more than double the product
P (A)P (B). We conclude that the two neurons are not independent. Their tendency
to fire much more often together than they would if they were independent could be
due to their being connected, to their having similar response properties, or to their
both being driven by network fluctuations (see also Kelly et al., 2010). (Kelly, R.C.,
Smith, M.A., Kass, R.E., T.S. Lee (2010) Local field potentials indicate network
state and account for neuronal response variability, J. Computational Neuroscience,
to appear.) 2

This definition of independence extends immediately to more than two events. In-
dependence is extremely useful. Without it, dependencies represented by conditional
probabilities can become very complicated. Independence simplifies calculations and
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is often assumed in statistical models and methods. On the other hand, as illustrated
in Example 3.1, above, if the assumption of independence is wrong, the calculations
can be way off: in Example 3.1 the probability P (A∩B) predicted by independence
would be too small by a factor of more than 2. In many situations independence
is the most consequential statistical assumption, and therefore must be considered
carefully.

3.1.4 Bayes’ Theorem for events gives the conditional prob-
ability P (A|B) in terms of the conditional probability

P (B|A).

Bayes’ Theorem is a very simple identity, which we derive easily below. Yet, it
has profound consequences. We can state its purpose formally, without regard to
its applications: Bayes’ Theorem allows us to compute P (A|B) from the reverse
conditional probability P (B|A), if we also know P (A). As we will see below, and in
Chapter 16, there are more complicated versions of the theorem, and it is especially
these that produce the wide range of applications. But the power of the result
becomes apparent immediately when we take B to be some data and A to be a
scientific hypothesis. In this case, we can use the probability P (data|hypothesis)
from the statistical model to obtain the scientific inference P (hypothesis|data). In the
words used in Chapter 1, Bayes’ Theorem provides a vehicle for obtaining epistemic
probabilities from descriptive probabilities. The inverting of conditional probability
statements, together with the recognition that a different notion of probability was
involved, led to the name “inverse probablity” during the early 1800s. This has
been replaced by the name “Bayes” in the theorem, and the adjective “Bayesian”
to describe many of its applications.4 To derive the theorem we need a preliminary
result which is also important.

Theorem: Law of Total Probability For events A and B we have

P (B) = P (B|A)P (A) + P (B|Ac)P (Ac).

Proof: We begin by decomposing B into two pieces: B = (B ∩ A) ∪ (B ∩ Ac).
Because A and Ac are disjoint, (B ∩ A) and (B ∩ Ac) are disjoint. We then have

4For historical comments see Stigler (1986) and Fienberg (2006). (Fienberg, S.E. (2006) When
did Bayesian inference become “Bayesian”? Bayesian Analsysis, 1:1–40.)
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P (B) = P (B ∩ A) + P (B ∩ Ac). Applying the multiplication rule to P (B ∩ A) and
P (B ∩Ac) gives the result. 2

Bayes’ Theorem in the Simplest Case If P (B) > 0 then

P (A|B) =
P (B|A)P (A)

P (B|A)P (A) + P (B|Ac)P (Ac)
. (3.1)

Proof: We begin with the definition of conditional probability and then use the
multiplication rule in the numerator and the law of total probability in the denomi-
nator:

P (A|B) =
P (A ∩B)

P (B)

=
P (B|A)P (A)

P (B|A)P (A) + P (B|Ac)P (Ac)
.

2

The “simplest case” modifier here refers to the statement of the theorem using
only A and Ac as conditioning events. One interesting class of problems where this
simple case is useful is in the interpretation of clinical diagnostic screening tests.
These tests are used to indicate that a patient may have a particular disease, but
they are not definitive. Bayes’ Theorem serves as a quantitative reminder that when a
disease is rare, screening tests are preliminary, and other information will be needed
to provide a diagnosis. A famous example involves screening for prostate cancer
based on the radioimmunoassay prostatic acid phosphatase (PSA). Even though the
test is reasonably accurate, the disease remains sufficiently rare among young men
that a random male who tests as positive will still have a low probability of actually
having prostate cancer. An application of Bayes’ Theorem (with A being the event
that a randomly chosen man will have the disease and B the event that he tests
positive) to data from Watson and Tang (1980), places the probability of disease
given a positive test at about 1/125. The intuition comes from recognizing that,
among men under age 65 in the United States, the disease has a prevalence of about
1/1500. Suppose we were to examine 1500 men, 1 of whom actually had the disease.
If the test were 90% accurate, a 10% false positive rate would mean that about 150
men would test positively. In other words, about 1/150 of the positively tested men
would actually have the disease. Bayes’ Theorem refines this very crude calculation.
Here is an example drawn from neurology.
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Example 3.2 Diagnostic test for vascular dementia Vascular dementia (VD)
is the second leading cause of dementia. It is important that it be distinguished from
Alzheimer’s disease because the prognosis and treatments are different. In order to
study the effectiveness of clinical tests for vascular dementia, Gold et al. (1997) ex-
amined 113 brains of dementia patients post mortem. (Gold G; Giannakopoulos P;
Montes-Paixao Junior C; Herrmann FR; Mulligan R; Michel JP; Bouras C. (1997)
Sensitivity and specificity of newly proposed clinical criteria for possible vascular de-
mentia. Neurology, 49:690–4.) One of the clinical tests these authors considered was
proposed by the National Institute for Neurological Disorders (NINDS, an institute of
NIH). Gold et al. found that the proportion of patients with VD who were correctly
identifed by the NINDS test was .58, while the proportion of patients who did not
have VD who were correctly so identified by the NINDS tests was .80. These propor-
tions are usually called the sensitivity and specificity of the test. Using these results,
let us consider an elderly patient who is identified as having VD by the NINDS test,
and compute the probability that this person will actually have the disease. Let A
be the event that the person has the disease and B the event that the NINDS test is
positive. We want P (A|B), and we are given P (B|A) = .58 and P (Bc|Ac) = .8. To
apply Bayes’ Theorem we need P (A). Let us take this probability to be P (A) = .03
(which seems a reasonable value based on Hebert and Brayne, 1995; (Hebert R;
Brayne C, Epidemiology of vascular dementia, Neuroepidemiology 14:240–57.)). We
then also have P (Ac) = .97 and, in addition, P (B|Ac) = 1−P (Bc|Ac) = .2. Plugging
these numbers into the formula gives us

P (A|B) =
(.58)(.03)

(.58)(.03) + (.2)(.97)
= .082

or, approximately, 1/12. Thus, based on the Gold et al. study, because VD is a
relatively rare disease, without additional evidence, even when the NINDS test is
positive it remains unlikely that the patient has VD. 2

As in Example 3.2, this form of Bayes’ Theorem requires probabilities P (B|A),
P (B|Ac) and P (A) which must come from some background information. All ap-
plications of Bayes’ Theorem are analogous in needing background information as
inputs in order to get the desired conditional probability as output.

To generalize Bayes’ Theorem from the simplest case we need the law of total
probability, which gives a formula for P (B) in terms of a decomposition of S: Given
mutually exclusive events A1, A2, . . . , An that are exhaustive in the sense that S =
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A1 ∪A2 ∪ · · · ∪An, we have

B = (B ∩ A1) ∪ (B ∩ A2) ∪ · · · ∪ (B ∩An)

with the sets B ∩ Ai being mutually exclusive. We then have

P (B) = P (B ∩A1) + P (B ∩ A2) + · · ·+ P (B ∩An)

= P (B|A1)P (A1) + P (B|A2)P (A2) + · · ·+ P (B|An)P (An)

=
n∑

i=1

P (B|Ai)P (Ai).

From this we obtain a more general form of the theorem.

Bayes’ Theorem Suppose A1, A2, . . . , An are mutually exclusive with P (Ai) >
0, for all i, and A1 ∪ A2 ∪ · · · ∪ An = S. If P (B) > 0 then

P (Ak|B) =
P (B|Ak)P (Ak)

P (B|A1)P (A1) + P (B|A2)P (A2) + · · ·+ P (B|An)P (An)
.

Example 3.3 Decoding of saccade direction from SEF spike counts Bayes’
Theorem is frequently used to study the ability of the relatively small networks of
neurons to identify a stimulus or determine a behavior. As an example, Olson et al.
(2000, J. Neurophysiol.) reported results from a study of supplementary eye field
neurons during a delayed-saccade task. In this study, which we described Example 1.1
on page 3, there were four possible saccade directions: up, right, down, and left. For
each direction, and for each neuron, spike counts in fixed pre-saccade time intervals
were recorded across multiple trials. From a combination of data analysis, and
assumptions, the probability distribution of various spike counts could be determined
for each of the four directions. If we consider a single neuron, we may then let B
be the event that a particular spike count occurs, and the events A1, A2, A3, and
A4 be the saccade directions up, right, down, left. Assuming the four directions
are equally likely, from the probabilities P (B|Ak) together with Bayes’ Theorem, we
may determine from the spike count B the probability that the saccade will be in
each of the four directions. In Bayesian decoding, the signals from many neurons are
combined, and the direction Ak having the largest probability P (Ak|B) is considered
the “predicted” direction. In unpublished work, Kass and Ventura found that from 55
neurons (many of which contributed relatively little information), Bayesian decoding
was able to predict the correct direction more than 95% of the time. 2
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3.2 Random Variables
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Figure 3.2: Histogram of spike counts from a motor cortical neuron. The histogram
displays 60 spike counts from a particular neuron recorded in primary motor cortex
across 60 repetitions of the practiced condition.

So far we have discussed the basic rules of probability, which apply to sets repre-
senting uncertain events. A far more encompassing framework is obtained when we
consider quantities measured from those events. For example, the number of times a
neuron fires during a particular task may be observed, yielding a spike count. When
the behavior is repeated across many trials, the spike counts will vary.

Example 3.4 Spike counts from a motor cortical neuron Matsuzaka et al.
(2006) (Matsuzaka, Y., Picard, D., and Strick, P. (2006) Skill representation in
the primary motor cortex after long-term practice, J. Neurophys., 97: 1819–1832.)
studied cortical correlates of practicing a movement repeatedly by comparing the
firing of neurons in primary motor cortex during two sequential button-pressing tasks:
one in which the sequence was highly practiced, and the other in which the sequence
was determined at random. Figure 3.2 displays spike counts from a single neuron
across 60 repititions of the practiced condition. The histogram displays substantial
variation among the counts. 2
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Probability may be used to describe variation among quantitative measurements,
such as that seen in Figure 3.2. To extend the formalism we introduce mathematical
objects called random variables, which assign to each outcome (e.g., neuronal spik-
ing behavior on a particular trial) a number (the spike count). In this section we
develop some of the basic attributes and properties of random variables, and we use
probability distributions to describe the way they vary.

At the outset it is important to emphasize the abstraction involved in using a
random variable to describe observed data. Strictly speaking, random variables and
their probability distributions live in the theoretical world of mathematics, while data
live in the real world of observations. When we speak of the distribution of some
data, as in the histogram in Figure 3.2, we are talking about observed variation. On
the other hand, if we use a probability distribution (such as a normal distribution
or a Poisson distribution, both discussed in Chapter 5), to describe some data, we
are imposing a mathematical structure. To be useful, such a structure must capture
dominant features that drive scientific inferences, and a fundamental part of data
analytic expertise involves appreciation of the ways inaccuracies in probabilistic de-
scription may or may not lead to misleading inferences. We discuss assessments
of probability distributions, and consequences of incorrect assumptions, throughout
the book. In this chapter we concentrate on essential mathematical definitions and
results.

3.2.1 Random variables take on values determined by events.

Let us start by considering the Hardy-Weinberg distribution, which is fundamental
to population genetics because it describes the relative frequency of genotypes in
equilibrium. In the simplest case, we assume each parent contributes one allele to
an offspring. If we write this in the form

(allele from parent 1, allele from parent 2) → offspring pair of alleles

then the possibilities are denoted by

(A,A)→ AA
(A, a)→ Aa
(a, A)→ Aa
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(a, a)→ aa.

For instance, according to the classic Mendelian story, a garden pea might be wrin-
kled if aa but smooth otherwise. We assume that, in the population, the probability
of allele A being inherited by the offspring is P (A), and we will also write this num-
ber as p, so that p = P (A). That is, if we were to select some offspring at random
from the population, the probability that the offspring would have allele A is p. We
also assume the inherited alleles are independent, meaning that the allele inherited
from parent 1 does not affect the probability of inheriting allele A from parent 2. As
we have already seen, the assumption of independence implies that the probabilities
may be multiplied:

P (AA) = p2,
P (Aa) = p(1− p) + (1− p)p = 2p(1− p),

P (aa) = (1− p)2.

These are often called the Hardy-Weinberg frequencies and, together with the as-
sumptions on which they are based, they constitute the Hardy-Weinberg model. Now
take X to be the number of A alleles. Then

P (X = 2) = p2,
P (X = 1) = 2p(1− p),
P (X = 0) = (1− p)2.

In this situation X is a random variable and it has a binomial distribution. More
generally, given a sample space S, a random variable is a mapping that assigns to
every element of S a real number. That is, if ω ∈ S (see page 48) then X(ω) = x is
the value of the random variable X when ω occurs. In the simple genetics context
above, S = {AA,Aa, aa} and X(AA) = 2, X(Aa) = 1, X(aa) = 0.

In Chapter 1 we discussed the distinction between continuous and discrete data.
We may similarly distinguish continuous and discrete random variables: a random
variable is continuous if it can take on all values in some interval (A,B), where it
is possible that either A = −∞ or B = ∞ or both. The mathematical distinctions
between discrete and continuous distributions are that (i) discrete distributions take
on only certain specific values (such as non-negative integers) that can be separated
from each other and (ii) wherever summation signs appear for discrete distributions,
integrals replace them for continuous distributions.
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3.2.2 Distributions of random variables are defined using cu-
mulative distribution functions and probability density

functions, from which theoretical means and variances
may be computed.

There are several definitions we need, which will apply to other probability distribu-
tions besides the binomial. In the Hardy-Weinberg example, the values P (X = 0),
P (X = 1), and P (X = 2) form the probability mass function. For convenience, as
indicated in Section 3.2.3, we generally instead call the probability mass function a
probability density function (pdf). We would typically write P (X = x), with x taking
the values 0, 1, 2. The shorthand p(x) = P (X = x) is also often used. The function
F (x) = P (X ≤ x) is called the cumulative distribution function (cdf). Thus, in the
Hardy-Weinberg example we have F (1) = P (X ≤ 1) = P (X = 0) + P (X = 1).
From the pdf we can obtain the cdf, and vice-versa.

Illustration: Litter sizes of mice As a simple non-binomial example, useful
for pedagogical purposes, suppose that 50 female mice were maintained in a facility,
that each gave birth to a litter, and that the litter sizes may be summarized in the
following table:

size 3 4 5 6 7 8
count 3 7 12 14 10 4

Let us consider choosing a mouse at random from among the 50 that gave birth, and
let X be the litter size for that mouse. By dividing each count in the table above by
50 we get the following table for the probability distribution of X:

x 3 4 5 6 7 8
p(x) .06 .14 .24 .28 .20 .08

Thus, p(3) = 3/50 = .06 signifies the probability that a randomly drawn mouse that
will have litter size 3. 2

Notice that a plot of the counts (against x) would be a histogram of the 50
litter sizes. Aside from the divisor of 50 used in getting each probability from the
corresponding count, a plot of p(x) against x would look the same as the histogram of
the counts; this would, instead, be a plot of the relative frequencies.5 More generally,

5In this context terminology is inconsistent: “frequency” can mean either “count” or “relative
frequency.”
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a plot of a probability distribution looks something like a histogram, except that the
total amount of probability must equal 1.

One way to understand any specification of probabilities p(x) is to consider them
to represent relative frequencies among a population of individuals. However, in
many cases the idea of a random drawing from a population is an abstraction, and
may be rather unrealistic. This is actually an important philosophical point that has
been argued about a great deal, but we will not go into it.

Details: In experimental settings, it is quite artificial to imagine that
the repeated measurements (trials) of an experiment are being drawn at
random from some population of such things. Similarly, when there is a
single unique event, such as the outcome of a football game, or the flip
of a fair coin, we can be comfortable speaking about the probability of
the outcome without any need for a population. In the case of the coin,
suppose we let X = 1 if it comes up heads and X = 0 if it comes up tails,
and take p(1) = P (X = 1) = .5 and p(0) = P (X = 0) = .5. We could, if
we wished, imagine some very large population of fair coins, just like the
one we are going to flip, among which, if flipped in just the same way,
half would come up heads and half would come up tails. But we don’t
really need this imaginary device: thinking only about one single coin
it remains easy enough to understand the idea that it is “fair” precisely
when p(1) = .5 and p(0) = .5. That is, the notion that it is equally likely
to be heads and tails does not require further elaboration. If we wished
to have an operational meaning to “fair” we could take it to mean that
we are willing to accept a fair bet, i.e., one in which we would win the
same amount if heads as we would lose if tails. 2

For our purposes, what is important is that relative frequencies sometimes de-
fine probabilities, and more generally provide a useful analogy for thinking about
probability.

Now, let us go on to the concepts of mean and variance. For the 50 litter sizes in
the table on page 61 we would compute the mean as

mean =
3(3) + 7(4) + 12(5) + 14(6) + 10(7) + 4(8)

50
= 5.66.
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Alternatively, we could write

mean = 3(
3

50
) + 4(

7

50
) + 5(

12

50
) + 6(

14

50
) + 7(

10

50
) + 8(

4

50
) = 5.66

which, from the table on page 61 is the same as

mean = 3 · p(3) + 4 · p(4) + 5 · p(5) + 6 · p(6) + 7 · p(7) + 8 · p(8) = 5.66.

This latter form may be interpreted as the litter size we would expect to see (“on
average”) for a randomly drawn mouse, and it is an instance of the general expression
for the mean or expected value or expectation of the random variable X:

µX = E(X) =
∑

x

x · p(x). (3.2)

Correspondingly, the variance of X is

σ2
X = V (X) =

∑

x

(x− µX)2 · p(x)

and the standard deviation is σX =
√

σ2
X . The subscript X is often dropped, leaving

simply µ and σ. The standard deviation summarizes the magnitude of the devia-
tions from the mean; roughly speaking, it may be considered an average amount of
deviation from the mean. It is thus a measure of the spread, or variability, of the
distribution. There are alternative measures (such as

∑

x |x−µ|p(x)), and these are
used in special circumstances, but the standard deviation is the easiest to work with
mathematically. It is, therefore, the most common measure of spread.

Note that µX and σX are theoretical quantities defined for distributions, and are
analogous to the mean and standard deviation defined for data. In fact, if there
are n values of x and we plug into (3.2) the special case p(x) = 1

n
(which states

that all n values of x are equally likely) we get back6 µX = x̄. Because data are
often called samples, the data-based mean and standard deviation are often called
the sample mean and the sample standard deviation to differentiate them from µX

and σX , which are often called the population mean and standard deviation. This
terminolgy distinguishes samples from “populations,” rather than distributions, with

6We also get σX =
√

1
n

∑n

i=1(xi − µX)2 which, when we replace µX with X̄ , is not quite the

same thing as the sample standard deviation; the latter requires a change from n to n − 1 as the
divisor for certain theoretical reasons, including that the sample variance then becomes an unbiased

estimator of σ2
X . See Chapter 8.
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the word “sample” connoting a batch of observations randomly selected from some
large population. Sometimes there is a measurement process that corresponds to
such random selection. However, as we have already mentioned, probability is much
more general than the population/sample terminology might lead one to expect;
specifically, we do not need to have a well-defined population from which we are
randomly sampling in order to speak of a probability distribution. So, at least in
principle, we might rather avoid calling µX a population mean. On the other hand,
the “sample” terminology is useful for emphasizing that we are dealing with the
observations, as opposed to the theoretical distribution, and it is deeply imbedded in
statistical jargon. Similarly, the “population” identifier is frequently used rather than
“theoretical.” The crucial point is that one must be careful to distinguish between
a theoretical distribution and the actual distribution of some sample of data. Many
analyses assume that data follow some particular theoretical distribution, and in
doing so hope that the match between theory and reality is pretty good. We will
look at ways of assessing this match in Section 3.3.1.

The following properties are often useful.

Theorem For a discrete random variable X with mean µX and standard devia-
tion σX we have

E(a ·X + b) = a · µX + b (3.3)

and

σaX+b = |a| · σX (3.4)

Proof: These are easy to prove. For instance,

E(aX + b) =
∑

x

(ax+ b)p(x)

= a(
∑

x

xp(x)) + b
∑

x

p(x)

= aE(X) + b.

The proof of the variance formula is similar. 2
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3.2.3 Continuous random variables are similar to discrete
random variables.

Suppose X is a continuous random variable on an interval (A,B), with A = −∞
and B =∞ both being possible. The probability density function (pdf) of X will be
written as f(x) where now

P (a ≤ X ≤ b) =

∫ b

a

f(x)dx

and
∫ B

A

f(x)dx = 1.

Note that in this continuous case there is no distinction between P (a ≤ X) and
P (a < X) (we have P (X = a) = 0). We may think of f(x) as the probability per
unit of x; f(x)dx is the probability that X will lie in an infinitesimal interval about
x, that is, f(x)dx = P (x ≤ X ≤ x+dx). In some contexts there are various random
variables being considered and we write the pdf of X as fX(x).

A technical point is that when either A > −∞ or B <∞ or both, by convention,
the pdf f(x) is extended to (−∞,∞) by setting f(x) = 0 outside (A,B). When we
say that X is a continuous random variable on an interval (A,B) we will mean that
f(x) > 0 on (A,B) and, if either A or B is a number, f(x) = 0 outside of (A,B).
We next give several examples of continuous distributions.

Illustration: Uniform distribution Perhaps the simplest example is the uni-
form distribution. For instance, if the time of day at which births occurred followed
a uniform distribution, then the probability of a birth in any given 30 minute period
would be the same as that for any other 30 minute period throughout the day. In this
case the pdf f(x) would be constant over the interval from 0 to 24 hours. Because
it must integrate to 1, we must have f(x) = 1/24 and the probability of a birth in

any given 30 minute interval starting at a hours is
∫ a+.5

a
f(x)dx = 1/48. When a

random variable X has a uniform distribution on a finite interval (A,B) we write
this as X ∼ U(A,B) and the pdf is f(x) = 1

B−A
. 2

In this illustration above we have introduced a convention that is ubiquitous,
both in this book and throughout statistics: the squiggle “∼” means “is distributed
as.”
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Figure 3.3: Plots of pdfs for four continuous distributions. Top left: Exponential.
Top right: Gamma, with shape parameter 2. Bottom left: Beta. Bottom right:
Normal. See Chapter 5 for the explanation of the latter three distributions.

Figure 3.3 displays pdfs for four common distributions. For the two in the top
panels, exponential and gamma distributions, X may take on all positive values, i.e.,
values in (0,∞). The lower left panel shows a beta distribution, which is confined
to the interval (0,1). A normal distribution, which ranges over the whole real line,
is shown in the bottom right panel. We discuss the exponential and normal distri-
butions briefly below and return to them, and to the beta and gamma disributions
in Chapter 5.

Illustration: Normal distribution The normal distribution (also called the
Gaussian distribution) is the most important distribution in statistical analysis. The
reason for this, however, has little to do with its ability to describe data. Example 1.2,
below, presents one of the few examples we know in which the data really appear
normally distributed to a high degree of accuracy; it is rare for a batch of data not to
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be detectably non-normal. Instead, in statistical inference, the normal distribution
is used to describe the variability in quantities derived from the data as functions of a
sample mean. As we discuss in Chapter 6, according to the Central Limit Theorem,
sample means are approximately normally distributed and, in Chapter 9, we will also
see that functions of a sample mean are approximately normally distributed.

The normal distribution is characterized by two parameters: the mean and the
standard deviation (or, equivalently, its square, the variance). When a random
variable X is normally distributed we write X ∼ N(µ, σ2). Both in most software
and in most applications, one speaks of the parameters µ and σ rather than µ and
σ2. The pdf for the normal distribution with mean µ and standard deviation σ is

f(x) =
1√
2πσ

exp(−1

2
(
x− µ
σ

)2). (3.5)

This pdf can be hard to use for analytic calculations because its integral can not
be obtained in explicit form. Thus, probabilities for normal distributions are almost
always obtained numerically. Because of its shape the normal pdf is often called “the
bell-shaped curve.” We exemplify this in the next example. 2

Example 1.2 (continued from page 7) We previously noted that the SQUID
detectors in MEG are extremely sensitive, and there is nontrivial background noise
that is detected in the absence of any brain signal. Figure 3.4 shows a histogram of
the signal at one detector during a short period with nothing in the machine. The
noise histogram is very well approximated by a normal pdf. 2

In fact, the general bell shape of the distribution is not unique to the normal
distribution. On the other hand, the normal is very special among bell-shaped dis-
tributions. The most important aspect of its being very special is its role in the
Central Limit Theorem, which we’ll come back to in Chapter 6. We also describe
additional important properties of normal distributions on page 77 and in Chapter 5.

The cumulative distribution function (cdf), or simply distribution function, is
written again as F (x) and is defined as in the discrete case: F (x) = P (X ≤ x). If
A = −∞ and B =∞ this becomes

F (x) =

∫ x

−∞
f(t)dt.

If A is a number, i.e., −∞ < A, then F (x) = 0 when x < A and

F (x) =

∫ x

A

f(t)dt,
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Figure 3.4: A histogram of MEG noise at a SQUID sensor, overlaid with a normal
density function (the “bell-shaped curve”).

while if B is a number (B <∞) then F (x) = 1 when x > B.

Theorem Suppose f(x) is a continuous pdf that is positive on (A,B). Then
F (x) is a non-decreasing function and it is strictly increasing (F ′(x) > 0) on (A,B).
In addition we have F (x)→ 0 as x→ A and F (x)→ 1 as x→ B.

Proof: By differentiation (the Fundamental Theorem of Calculus) we have F ′(x) =
f(x), which implies F ′(x) ≥ 0 and, by assumption, F ′(x) > 0 on (A,B). Further-
more, because F (x) is differentiable, it is also continuous. Because f(x) integrates
to 1 on the interval (A,B), when A = −∞ we must have F (x) → 0 as x → −∞
(otherwise the integral would be infinite) and when B = ∞ F (x) → 1 as x → ∞.
When A is a number, from the integral form of F (x), F (A) = 0 and F (x) → 0 as
x → A. Similarly, when B is a number we get F (B) = 1 and then F (x) → 1 as
x→ B. 2
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In the continuous case, the expected value of X is

µX = E(X) =

∫ B

A

xf(x)dx

and the standard deviation of X is σX =
√

V (X) where

V (X) =

∫ B

A

(x− µX)2f(x)dx

is the variance of X. Note that in each of these formulas we have simply replaced
sums by integrals in the analagous definitions for discrete random variables. Note,
too, that pdf and cdf values for certain continuous distributions may be computed
with statistical software.7 We again have

µa·X+b = a · µX + b (3.6)

σa·X+b = |a| · σX . (3.7)

These formulas are just as easy to prove as (3.3) and (3.4). Another formula is useful
for certain calculations:

V (X) = E(X2)− µ2 (3.8)

and this, too, is easily verified.

The quantiles or percentiles are often used in working with continuous distribu-
tions: for p a number between 0 and 1 (such as .25), the pth quantile or 100p-th
percentile (e.g., the .25 quantile or the 25th percentile) of a distribution having cdf
F (x) is the value η such that p = F (η). Thus, we write the p quantile as ηp = F−1(p),
where F−1 is the inverse cdf.

Illustration: Exponential distribution Let us illustrate these ideas in the
case of the exponential distribution, which is special because it is easy to handle and
also because of its importance in applications. We provide an interesting application
in Example 3.5

A random variable X is said to have an exponential distribution with parameter
λ when its pdf is

f(x) = λe−λx (3.9)

7The definitions of expectation and variance assume that the integrals are finite; there are, in
fact, some important probability distributions that do not have expectations or variances because
the integrals are infinite.
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0 1 2 3 4 5

Figure 3.5: The pdf of a random variable X having an exponential distribution with
λ = 1. The shaded area under the pdf gives P (X > 2).

for x > 0, and is 0 for x ≤ 0. We will then say that X has an Exp(λ) distribution and
we will write X ∼ Exp(λ). The pdf of X when X ∼ Exp(1) is shown in Figure 3.5.
Also illustrated in that figure is computation of probabilities as areas under the pdf
for the case

P (X > 2) =

∫ ∞

2

f(x)dx

which means we compute the area under the curve to the right of x = 2. For the
exponential distribution this value is easy to compute using calculus. The cdf of an
exponential distribution is

F (x) =

∫ x

0

λe−λtdt

= −e−λt

∣
∣
∣
∣

x

0

= 1− e−λx.

Thus, when X ∼ Exp(λ), using P (X > x) = 1− F (x), we also have

P (X > x) = e−λx (3.10)

and if λ = 1

P (X > 2) = 1− F (2) = e−2.
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The quantiles are also easily obtained. For example, if X ∼ Exp(λ) the .95
quantile of X is the value η.95 such that P (X ≤ η.95) = F (η.95) = .95. We have

.95 = F (η.95) = 1− e−λη.95

and solving for η.95 gives η.95 = − loge(.05)/λ.

If X ∼ Exp(λ) then, by similar calculations, we obtain

E(X) = 1/λ

V (X) = 1/λ2

σX = 1/λ.

We omit the details. 2

If X1, X2, . . . , Xn are independently distributed as Exp(λ) then their sum Y =
X1 + X2 + · · ·+ Xn follows a gamma distribution with shape parameter n, written
Y ∼ G(n, λ). The exponential is often used to describe event durations, and the
gamma then becomes a sum of event durations, as illustrated in the next example.

Example 3.5 Duration of ion channel activation To investigate the function-
ing of ion channels, Colquhoun and Sakmann (1985) used patch-clamp methods to
record currents from individual ion channels in the presence of various acetylcholine-
like agonists. (Colquhoun, D. and Sakmann, B. (1985), Fast events in single-channel
currents activated by acetylcholine and its analogues at the frog muscle end-plate,
J. Physiology, 369: 501–557; see also Colquhoun, D. (2007) Classical Perspective:
What have we learned from single ion channels? J. Physiology, 581: 425–427.) A
set of their recordings is shown in Figure 3.6. One of their main objectives was to
describe the opening and closing of the channels in detail, and to infer mechanistic
actions from the results. Colquhoun and Sakmann found that channels open in sets
of activation “bursts” in which the channel may open, then shut again and open
again in rapid succession, and this may be repeated, with small gaps of elapsed time
during which the ion channel is closed. A burst may thus have 1 or several open-
ings. As displayed in Figure 3.7, Colquhoun and Sakmann examined separately the
bursts having a single opening, then bursts with 2 openings, then bursts 3, 4, and 5
openings. Panel B of Figure 3.7 indicates that, for bursts with a single opening, the
opening durations follow closely an exponential distribution. As discussed in Chap-
ter 5, in the case of bursts with 2 openings, if each of the two opening durations
were exponentially distributed, and the two were independent, then their sum—the
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Figure 3.6: Current recordings from individual ion channels in the presence of
acetylcholine-type agonists. The records show the opening (higher current levels)
and closing (lower current levels), with the timing of opening and closing being
stochastic. Modified from Colquhoun and Sakmann (1985).

total opening duration—would be gamma with shape parameter α = 2. Panel C of
Figure 3.7 indicates the good agreement of the gamma with the data. The remaining
panels show similar results for the other cases. 2

The formulas and concepts that apply to random variables are usually stated with
the notation of integrals rather than sums. This is partly because it is cumbersome
to repeat everything for both continuous and discrete random variables, when the
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Figure 3.7: Duration of channel openings. Panel A depicts the distribution of burst
durations for a particular agonist. Panel B displays the distribution of bursts for
which there was only 1 opening, with an exponential pdf overlaid. This illusrates the
good fit of the exponential distribution to the durations of ion channel opening. Pan-
els C displays the distributions of bursts for which there were 2 apparent openings,
with a gamma pdf, with shape parameter 2, overlaid. Panel C again indicates good
agreement. Panels D-F show similar results, for bursts with 3-5 openings. Modified
from Colquhoun and Sakmann (1985).

results are in essence the same. In fact, there is an elegant theory of integration8

8Lebesgue integration is a standard topic in mathematical analysis; see for example, Billingsley,
P. (1995) Probability and Measure, Third Edition.
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that, among other things, treats continuous and discrete random variables together,
with summations becoming special cases of integrals. Throughout our presentation
we will, for the most part, discuss the continuous case with the understanding that
the analogous results follow for discrete random variables. For example, we will freely
use the terminology pdf for both continuous and discrete random variables, where
for the latter it will refer to a probability mass function.

For many purposes we don’t actually need formulas such as those derived for the
exponential distribution. Most statistical software contains routines to generate ran-
dom observations artificially9 from standard distributions, such as those presented
below, and the software will typically also provide pdf values, probabilities, and quan-
tiles. Indeed, as we note below, random variables having essentially any continuous
distribution may be generated on a computer from a program that generates U(0, 1)
random variables. In showing this we will have to use the cdf, which is given next.

Illustration: Uniform distribution (continued from page 65) If a conti-
nous random variable X has cdf F (x) = x on the interval (0, 1) we may differentiate
to get the U(0, 1) pdf f(x) = 1. On the other hand, if X ∼ U(0, 1) we integrate
f(x) = 1 to get

F (x) =

∫ x

0

1 · dx = x.

In other words, X has a U(0, 1) distribution if and only if its cdf is F (x) = x on the
interval (0, 1). 2

Illustration: Normal distribution (continued from page 66) When X is
distributed normally with mean µ and standard deviation σ it has a pdf given by
Equation 3.5. Its cdf is given by

F (x) =

∫ x

−∞

1√
2πσ

exp(−1

2
(
x− µ
σ

)2).

This integral can not be evaluated in explicit form. Therefore, normal probabilities
of the form P (a ≤ X ≤ b) are obtained, by numerical approximation, with the help
of computer software. 2

9The numbers generated by the computer are really pseudo-random numbers because they are
created by algorithms that are actually deterministic, so that in very long sequences they repeat
and their non-random nature becomes apparent. However, good computer simulation programs use
good random number generators, which take an extremely long time to repeat, so this is rarely a
practical concern.
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3.2.4 The hazard function of a random variable X at x is its
conditional probability density, given that X ≥ x.

Another useful characterization of a probability distribution arises in specialized
contexts, including the analysis of spike train data, where a random variable X
represents the waiting time until some event occurs. In the case of a spiking neuron,
X would be the elapsed time since the neuron last fired, and the event of interest
would be next time it fires. We want a formula for the instantaneous probability
that the neuron will fire at time t, i.e., that it will fire in an interval (t, t+ dt). This
is obtained from the hazard function which, for a continuous random variable X, is

λ(x) =
f(x)

1− F (x)
.

Note that if P (B) > 0 then

P (A|B) =
P (A ∩ B)

P (B)
.

Applying this to a continuous random variable X we have

P (X ∈ (x, x+ h)|X > x) =
F (x+ h)− F (x)

1− F (x)
.

Therefore,

lim
h→0

P (X ∈ (x, x+ h)|X > x)

h
=

f(x)

1− F (x)
= λ(x)

which provides the fundamental interpretation of λ(x)dx as the probability X ∈
(x, x+ dx) given X > x. For example, if X is the elapsed time that an ion channel
is open, so that its values are times x = t, then λ(t)dt becomes the probability the
ion channel will close in the interval (t, t+dt), given that it has remained open up to
time t. Similarly, if X is the elapsed time since a neuron last fired an action potential
then λ(t)dt becomes the probability the neuron will fire in the interval (t, t + dt),
given that it has not yet fired again before elapsed time t. In spike train analysis,
the hazard function for a neuron becomes its theoretical firing rate (its instantaneous
probability of firing per unit time); see Chapter 19.

The “hazard” terminology comes from lifetime analysis, where the random vari-
able X is the lifetime of a unit (a lightbulb; a person) in units of time t and λ(t)dt is
the probability of failure (death) in the interval (t, t+ dt) given that failure has not
yet occurred.
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3.2.5 The distribution of a function of a random variable is
found by the change of variables formula.

There are many situations in which we begin with a random variable X that has
a particular distribution and we want, in addition, to obtain the distribution of
another random variable Y = g(X) for some function g(x). This arises in the
context of data transformations (discussed in Chapter 2) and it is also important in
various theoretical derivations. In the simplest cases there is no need for any special
formula.

Illustration: Hardy-Weinberg distribution Let us return to the genetics
context where X is the number of A alleles and P (X = 2) = p2, P (X = 1) = p(1−p),
P (X = 0) = (1 − p)2. Suppose g(x) = 10x. Then we have P (Y = 100) = p2,
P (Y = 10) = p(1− p), P (Y = 1) = (1− p)2. It would be easy to calculate the mean
and variance of Y from these probabilities. 2

When X has a continuous distribution we may obtain the pdf fY (y) of Y = g(X)
using the change-of-variables formula from calculus—which follows from the chain
rule.

Theorem: Pdf of a Function of a Random Variable Suppose X is
a continuous random variable having pdf fX(x) for which fX(x) > 0 on
an interval (A,B) and fX(x) = 0 otherwise; suppose further that g(x) is
a differentiable function and g′(x) 6= 0 for x ∈ (A,B). Then the random
variable Y = g(X) has pdf given by

fY (y) = fX(g−1(y))| d
dy
g−1(y)|

wherever y = g(x) for some x, and fY (y) = 0 elsewhere.

Proof: Let us consider x ∈ (A,B). Because g′(x) 6= 0, g′(x) is either
always positive, in which case g(x) is monotonically increasing, or always
negative in which case g(x) is monotonically decreasing. Let us assume
g′(x) > 0. Because g(x) is monotonically increasing we then have x ≤
c ⇐⇒ g(x) ≤ g(c). We will obtain the pdf fy(y) by differentiating the
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cdf FY (y), using fy(y) = F ′
Y (y). Suppose y = g(x) for some x. Then

FY (y) = P (g(X) ≤ y)

= P (X ≤ g−1(y))

= FX(g−1(y))

where the second equality used x ≤ c ⇐⇒ g(x) ≤ g(c). Now, by the
chain rule, differentiation gives

fy(y) = fX(g−1(y))
d

dy
g−1(y).

The case in which g′(x) < 0 requires a small modification of the argument
above (which we leave to the attentive reader). 2

Here is a simple consequence of the theorem above.

Theorem: Linear transformation of a normal random variable. Suppose
X ∼ N(µX , σ

2
X) and let g(x) = a+ bx with b 6= 0. If Y = g(X) then Y ∼ N(µY , σ

2
Y )

where µY = a + bµX and σY = |b|σX .

Proof: Notice first that the mean and standard deviation formulas follow from
(3.6) and (3.7). Let us apply the transformation theorem above. We have g−1(y) =
(y − a)/b and

| d
dy
g−1(y)| = 1

|b| . (3.11)

If we substitute x = (y − a)/b into the pdf formula (3.5), multiply by the derivative
factor 1/|b| from (3.11) as required by the theorem above, and simplify we obtain
the pdf

fY (y) =
1√

2πσY

exp(−1

2
(
y − µY

σY

)2)

in agreement with (3.5). 2

Another result that will be used later in the book provides a way of reducing the
distribution of X to a uniform distribution.

Theorem: The Probability Integral Transform, Part 1 Suppose X is a
continuous random variable having pdf fX(x) for which fX(x) > 0 on an interval
(A,B) and fX(x) = 0 otherwise and let Y = FX(X). Then Y has a U(0, 1) distri-
bution.
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Proof: First, let us note that FX(x) is strictly increasing on (A,B). It therefore
has a well-defined, strictly increasing inverse function F−1

X (y) satisfying F−1
X (y) = x

whenever FX(x) = y. Furthermore, x ≤ c⇐⇒ F−1
X (x) ≤ F−1

X (c) and FX(F−1
X (y)) =

y. We must show that P (Y ≤ y) = y whenever y ∈ (0, 1). We have

P (Y ≤ y) = P (FX(X) ≤ y) = P (X ≤ F−1
X (y))

= FX(F−1
X (y))

= y.

2

Theorem: The Probability Integral Transform, Part 2 Suppose X is a
continuous random variable having pdf fX(x) for which fX(x) > 0 on an interval
(A,B) and fX(x) = 0 otherwise. If U ∼ U(0, 1) then F−1

X (U) has a distribution with
cdf FX .

Proof: The proof involves manipulations similar to those of part 1. 2

This result gives a general method of generating a random variable that has a
distribution with a given distribution function F (x): we generate a U(0, 1) random
variable U and apply the transformation F−1(U).

3.3 The Empirical Cumulative Distribution Func-

tion

One way to check the accuracy with which a probability distribution fits the data is
to overlay a pdf on a histogram, as in Figures 3.4 and 3.7. (In Chapter 7 we discuss
how to choose the parameter values for the pdf, e.g., the λ in an exponential.) In
this section we consider another pair of graphical techniques, called Q-Q and P-P
plots, which can be somewhat more sensitive than plotting the pdf.

The difficulty in examining the pdf is that its values cover a large range: it can
be hard to judge deviations from a curving trend, especially when some of the values
are close to zero. An alternative is to straighten things out so that a perfect fit is
represented by a straight line. The two ways to accomplish this, employed with Q-Q
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and P-P plots, are based on the cdf. We begin by defining the data-based counterpart
of the theoretical cdf.
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Figure 3.8: Convergence of the empirical cdf to the theoretical cdf. The left panel
shows the empirical cdf for a random sample of size 10 from a Gamma(2, 1) distri-
bution, together with the gamma cdf (dashed line). The right panel shows the same
for a random sample of size 200. In the right panel the emprical cdf is quite close to
the theoretical gamma cdf.

Let X1, . . . , Xn be independent random variables all having the same distribution
function F (x). The empirical cumulative distribution function, written F̂n(x), is
the cdf for the discrete probability distribution that puts mass 1/n on each value
X1, . . . , Xn, i.e.,

F̂n(x) =
number of indices i for which Xi ≤ x

n
.

That is, F̂n(x) provides the proportion of the random variables, out of n, that are
less than or equal to x. When n is large, we might expect this proportion to be close
to the theoretical probability that each random variable is less than or equal to x,
i.e., we might expect F̂n(x) to be close to F (x). We will see in Chapter 6 that this
is necessarily so, for sufficiently large n. Figure 3.8 illustrates this in the case of a
Gamma(2,1) distribution, for samples of size n = 10 and n = 200. Specifically, to
create the left panel in Figure 3.8 we (i) used the computer to generate 10 observations
x1, x2, . . . , x10 from a Gamma(2,1) distribution, then (ii) plotted F̂n(x) versus x and
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(iii) overlaid a plot (dashed line) of the theoretical Gamma(2,1) cdf F (x) versus x.
In this case there is a reasonably close agreement between F̂n(x) and F (x). The
agreement is much closer in the right panel, when n = 100.

The same procedure could be used for any set of observations x1, . . . , xn to check
whether they seem to be consistent with random draws from a distribution with cdf
F (x), i.e., we could plot F (x) versus x on together with a plot of F̂n(x) versus x and
see whether they agree well. A variation on this idea is to plot F̂n(x) versus F (x).
This becomes a P-P plot, discussed in Section 3.3.1.

3.3.1 Q-Q and P-P plots provide graphical checks for gross
departures from a distributional form.

Suppose we wish to compare a cdf F̃ (x) with another, similar cdf F (x). If F̃ (x) ≈
F (x), we could define v = F̃ (x) and u = F (x), plot v against u over the range
of values of x, and judge the accuracy of the approximation by the deviation of
this plot from the line v = u. In other words, we could plot probabilities against
probabilities. This is the idea behind the P-P plot (P-P for Probability-Probability),
except that in examining data it is performed with the empirical cdf F̂n(x) replacing
F̃ (x). Specifically, to examine the fit of a theoretical cdf F (x) to some data, we pick
suitable values of x spanning the range of the data and for compute v = F̂n(x) and
u = F (x) and then plot v against u. Often, the “suitable values” of x are simply
the data values themselves. In other words, for data values x1, . . . , xn we plot F̂n(xi)
against F (xi), for i = 1, . . . , n.

Example 1.2 (continued from page 67) A P-P plot of the data shown in
Figure 3.4 is given in Figure 3.9, where we have used a normal distribution as our
theoretical F (x). The plot follows extremely closely the line y = x. 2

One difficulty with the P-P plot is that the range of both axes is [0, 1], which
sometimes makes it a bit difficult to see clearly the departures from the line v = u
for values of u near 0 or 1. An alternative is to plot pick suitable values of w between
0 and 1 and plot F̂−1

n (w) versus F−1(w), both of which will be on the scale of the
data. This is the idea behind the Q-Q plot, which is based on quantiles (Q-Q for
Quantile-Quantile).

On page 69 we defined the quantiles of a continuous probability distribution.
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Figure 3.9: A P-P plot of the MEG noise data from Figure 3.4. The straightness of
the plot indicates excellent agreement with the normal distribution.

The data quantiles (or observed quantiles, or sample quantiles) are analogous, but it
turns out that there is no unique analogue and instead one of several variants may be
used. If we start from a sample of observations x1, x2, . . . , xn we first put the data in
ascending order according to the size of each observation: we write x(1), x(2), . . . , x(n),
where x(1) is the smallest value, x(2) is the second-smallest, and x(n) is the largest.
Let us use r to denote the index of ordered values, meaning that x(r) is the r-th
smallest value. Working by analogy with the definition η = F−1(p) we could define
the r

n
sample quantile, or the 100 r

n
sample percentile, by setting p = r

n
and replacing

F with F̂n to get F̂−1
n ( r

n
) = xr. We then define

η(r) = F̃−1(
r

n
)

for r = 1, . . . , n and plot the ordered data against these values. That is, we plot the
points (η(1), x(1)), . . . , (η(n), x(n)). Most software modifies the details of this procedure,
but the idea remains the same.

Details: A common variation is to take xr to be the 100 r−.5
n

sample
percentile. To see why this makes some sense, suppose we have n = 7
ordered observations. Then the 4th is the median. This divides the 7
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numbers into the 3 smallest and the 3 largest and, effectively says that
the 4th is part of both the smallest half of the numbers and the largest
half of the numbers. It could therefore be considered the 3.5th ordered
value. The reasoning behind the designation of x(r) as the r−.5

n
quantile

is similar. Statistical software sometimes chooses alternative definitions
based on expected values of x(r) under particular assumptions. Also, in

creating a P-P plot, some software plots F̂ ( r−.5
n

) against r−.5
n

. 2
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Figure 3.10: Q-Q plots for 200 randomly-drawn observations from a three distri-
butions. Top left: observations from a N(0, 1) distribution; top right: observations
from a χ2

4 distribution (see Section 5.4.4), which is skewed to toward high values; bot-
tom: observations from a t2 distribution (see Section 5.4.7), which is symmetric with
heavy tails. In each case the theoretical quantiles come from a normal distribution.

Figure 3.10 displays three Q-Q plots, where the theoretical quantiles are based on
the normal distribution. Thus, we would make these plots in order to check whether
the data could reasonably be described by a normal distribution. The three data sets
were generated on the computer from three very different probability distributions.
The first comes from a normal distribution, the second from a gamma distribution,
which is skewed toward high values, and the third from a t-distribution, which has
heavy tails in both directions. The first plot shows adherence to a linear relationship
between the observed and theoretical quantiles. The second, for skewed data, shows
upward curvature: the points on the far right-hand side of the plot correspond to
data values that are farther from the middle than would be expected if normal (the
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observed quantiles for those points are too large for the theoretical quantiles—the
data should have been pulled in toward the middle—so the points appear too high)
and those on the far left-hand side are too close to the middle (the observed quantiles
are again too large—the data should now be pushed away from the middle—and the
points are again too high). The third plot, for symmetrical but heavy-tailed data,
has an S-shaped tendency (the observed quantiles are too large on the far right-hand
side and too small on the left; on both extremes, to look more normal, the data
should be pushed back toward the middle).
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Figure 3.11: Normal Q-Q plots for 30 randomly-drawn observations from a N(0, 1),
repeated 8 times. The plots are more or less linear, but display mild departures
(wiggles, etc.) from linearity.

Although such plots are very useful for revealing serious departures from nor-
mality, small wiggles in these plots are very common even for computer-generated
normal data. Thus, strong nonlinearities are what we look for, and even these are
sometimes a bit subtle. Figure 3.11 shows Q-Q plots based on 30 randomly drawn
observations from a N(0, 1) distribution; the 8 plots show 8 replications of this ran-
dom number generation and plotting. The departures from linearity indicate that
randomly drawn observations fluctuate; they do not conform perfectly to what is
theoretically “expected.” Or, put differently, what we should expect is that small
samples of truly normal data will be somewhat erratic and less regular than the
theoretical curve based on infinitely much data. This basic lesson applies to all prob-



84 CHAPTER 3. PROBABILITY AND RANDOM VARIABLES

ability distributions, and applies to many situations other than examination of Q-Q
plots. It is something we must keep in mind when using our personal perceptions to
judge random quantities.10

3.3.2 Q-Q and P-P plots may be used to judge the effective-
ness of transformations.

In Chapter 2 we discussed transformations of data, especially to improve symmetry.
There we used histograms as displays. An alternative is to use Q-Q or P-P plots.
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Figure 3.12: Q-Q plots. Upper left: Q-Q plot for the data from a particular patient,
shown in Chapter 1, from the study by Behrmann et al. (2000); upper right: Q-Q
plot of the same data following a log transformation; lower left: Q-Q plot following
a reciprocal transformation. The plot for the log-transformed data is straighter than
that for the raw data; the plot for the reciprocal-transformed data is straighter still.
Lower right: Q-Q plot of data from a different patient, which exhibits an S shape.

10The cognitive psychology of perception of randomness has been studied quite extensively. See,
for instance, Gilovich, T., Vallone, R., and Tversky, A. (1985) The hot hand in basketball: on the
misperception of random sequences, Cognitive Psychology, 17, 295-314.
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Example 2.1 (continued from page 32) Figure 3.12 provides Q-Q plots for the
human eye saccade data shown in Chapter 2. The logarithm makes the distribution
more symmetrical, and the reciprocal does an even better job. An unusually long
delay in the saccade time becomes apparent as an outlier in the latter plot.

On the bottom right of Figure 3.12 is a Q-Q plot from a different patient, for
whom much of the data were unusable. We have included this because the plot has
the classic S-shape, indicating a “heavy-tailed” distribution. Power transformations
do not fix this problem. If one wishes to analyze data of this sort it is important to
use a statistical procedure either specifically designed for such situations or having
well-understood behavior in the presence of heavy-tailed distributions. We discuss
nonparametric procedures in Chapters 9 and 11.





Chapter 4

Random Vectors

c©2010 SPRINGER SCIENCE+BUSINESS MEDIA, LLC. All rights reserved. No
part of this work may be reproduced in any form without the written permission of
SPRINGER SCIENCE+BUSINESS MEDIA, LLC.

In most experimental settings data are collected simultaneously on many vari-
ables, and the statistical modeling problem is to describe their joint variation, mean-
ing their tendency to vary together. The starting point involves m-dimensional ran-
dom vectors (where m is some positive integer), which are the natural multivariate
extension of random variables. The fundamental concepts of distribution, expecta-
tion, and variance discussed in Chapter 3 extend fairly easily to m dimensions. We
review the essential definitions in Section 4.1, then consider bivariate dependence
in Section 4.2 and multivariate dependence in Section 4.3. The most commonly
applied measure of association between two random variables is the correlation, de-
fined in Section 4.2.1. As we explain, correlation is a measure of linear dependence.
Nonlinear dependence is often quantified by mutual information, which we define in
Section 4.3.2. In Section 4.3.4 we apply concepts of multivariate dependence to the
problem of classification, and show that Bayes classifiers provide the best possible
classification accuracy.

87



88 CHAPTER 4. RANDOM VECTORS

4.1 Two or More Random Variables

Let us begin our discussion of multivariate dependence with a motivating example.

Figure 4.1: Spike sorting from a tetrode recording. Panel A is a diagram of a tetrode
recording device, which is a set of four electrodes; also shown there are signals being
recorded from a particular neuron (indicated as an elliptical disk) that is sitting near
the tetrode. Panel B displays the six pairs of plots of event amplitudes. For instance,
the top left plot in panel B shows the event amplitudes for channel 1 (x-axis) and
channel 2 (y-axis). Also overlaid on the data in panel B are 95% probability contours
found from a suitable bivariate normal distribution. Panel C displays histograms for
the event amplitudes on each channel, together with fitted normal pdfs, and panel
D provides the corresponding normal Q-Q plots.

Example 4.1 Tetrode spike sorting One relatively reliable method of identifying
extracellular action potentials in vivo is to use a “tetrode.” As pictured in panel A
of Figure 4.1, a tetrode is a set of four electrodes that sit near a neuron and record
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slightly different voltage readings in response to an action potential. The use of all
four recordings allows more accurate discrimination of a particular neuronal signal
from the many others that affect each of the electrodes. Action potentials corre-
sponding to a particular neuron are identified from a complex voltage recording by
first “thresholding” the recording, i.e., identifying all events that have voltages above
the threshold. Each thresholded event is a four-dimensional vector (x1, x2, x3, x4),
with xi being the voltage amplitude (in millivolts) recorded at the ith electrode or
“channel.” Panels B-D display data from a rat hippocampal CA1 neuron. Because
there are six pairs of the four tetrodes (channel 1 and channel 2, channel 1 and chan-
nel 3, etc.) six bivariate plots are shown in panel B. The univariate distributions
are displayed in panel C and Q-Q plots are in panel D. We return to this figure in
Chapter 5. 2

Particularly for m > 2 it becomes hard to visualize multidimensional variation.
Some form of one and two-dimensional visualization is usually the best we can do,
as illustrated in Figure 4.1 of Example 4.1. As we contemplate theoretical repre-
sentations, the possibilities for interactions among many variables quickly become
quite complicated. Typically, simplifications are introduced and an important chal-
lenge is to assess the magnitude of any distortions they might entail. We content
ourselves here with a discussion of multivariate means and variances, beginning with
the bivariate case.

4.1.1 The variation of several random variables is described

by their joint distribution.

If X and Y are random variables, their joint distribution may be found from their
joint pdf, which we write as f(x, y):

P (a ≤ X ≤ b, c ≤ Y ≤ d) =

∫ d

c

∫ b

a

f(x, y)dxdy.

In the discrete case the integrals are replaced by sums. Each individual or marginal
pdf is obtained from the joint pdf by integration (or, in the discrete case, summation):
if fX(x) is the pdf of X then

fX(x) =

∫ ∞

−∞
f(x, y)dy.
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Illustration: Spike Count Pairs Suppose we observe spike counts for two
neurons recorded simultaneously over an interval of 100 milliseconds. Let X and Y
be the random variables representing the two spike counts. We may specify the joint
distribution by writing down its pdf. Suppose it is given by the following table:

2| .03 .07 .10
Y 1| .06 .16 .08

0| .30 .15 .05
0 1 2

X

This means the probability that the first neuron will spike once and the second
neuron will spike twice, during the observation interval, is P (X = 1, Y = 2) = .07.
We may compute from this table all of the marginal probabilities. For example, we
have the following marginal probabilities: P (X = 1) = .07 + .16 + .15 = .38 and
P (Y = 2) = .03 + .07 + .10 = .2. 2

The example above explains some terminology. When we compute P (Y = 2) we
are finding a probability that would naturally be put in the margin of the table; thus,
it is a marginal probability.

More generally, if X1, X2, . . . , Xn are continuous random variables their joint
distribution may be found from their joint pdf f(x1, x2, . . . , xn):

P (a1 ≤ X1 ≤ b1, a2 ≤ X2 ≤ b2, . . . , an ≤ Xn ≤ bn) =
∫ bn

an

· · ·
∫ b2

a2

∫ b1

a1

f(x1, x2, . . . , xn)dx1dx2 · · · dxn

and the marginal pdf of the ith random variable Xi is given by

fXi
(xi) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
f(x1, x2, . . . , xn)dx1dx2 · · · dxi−1dxi+1 · · · dxn

where all the variables other than xi are integrated out. The joint cdf is defined by

F (x1, x2, . . . , xn) = P (X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn).

Once again, the formulas for discrete random variables are analogous.

Let us introduce a general notation. Sometimes we will writeX = (X1, X2, . . . , Xn),
so that X becomes a random vector with pdf (really, a joint pdf for its components)
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fX(x) = f(X1,X2,...,Xn)(x1, x2, . . . , xn). When we must distinguish row vectors from
column vectors we will usually want X to be an n × 1 column vector, so we would
instead write X = (X1, X2, . . . , Xn)T , where the superscript T denotes the transpose
of a matrix.

A very useful and important fact concerning two or more random variables is that
their expectation is linear in the sense that the expectation of a linear combination
of them is the corresponding linear combination of their expectations.

Theorem: Linearity of Expectation For random variables X1 and X2 we
have

E(aX1 + bX2) = aE(X1) + bE(X2).

More generally, for random variables X1, X2, . . . , Xn we have

E(
n∑

i=1

aiXi) =
n∑

i=1

aiE(Xi). (4.1)

Proof: Consider the case of two random variables and assume X1 and X2 are
continuous. Let f1(x1), f2(x2), and f12(x1, x2) be the marginal and joint pdfs of X1

and X2, and assume these random variables take values in the respective intervals
(A1, B1) and (A2, B2) (which could be infinite). We have

E(aX1 + bX2) =

∫ B2

A2

∫ B1

A1

(ax1 + bx2)f12(x1, x2)dx1dx2

= a

∫ B2

A2

∫ B1

A1

x1f12(x1, x2)dx1dx2 + b

∫ B2

A2

∫ B1

A1

x2f12(x1, x2)dx1dx2

= a

∫ B1

A1

x1

∫ B2

A2

f12(x1, x2)dx2dx1 + b

∫ B2

A2

x2

∫ B1

A1

f12(x1, x2)dx1dx2

= a

∫ B1

A1

x1f1(x1)dx1 + b

∫ B2

A2

x2f2(x2)dx2

= aE(X1) + bE(X2).

The proof in the discrete case would replace the integrals by sums, and the proof in
the general case of n variables follows the same steps. 2
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4.1.2 Random variables are independent when their joint
pdf is the product of their marginal pdfs.

We previously said that two events A andB are independent if P (A∩B) = P (A)P (B),
and we used this in the context of random variables that identify dichotomous events.
There, for example, if the probability of a pea being wrinkled were p, and two peas
with independently-sorting alleles were observed, the probability that both of the
two peas would be wrinkled was p2. Generally, we say that two random variables X1

and X2 are independent if

P (a ≤ X1 ≤ b and c ≤ X2 ≤ d) = P (a ≤ X1 ≤ b)P (c ≤ X2 ≤ d) (4.2)

for all choices of a, b, c, d. It follows that when X and Y are independent we also
have

f(x, y) = fX(x)fY (y) (4.3)

for all x and y. Indeed, when X and Y are random variables with pdf f(x, y), they
are independent if and only if Equation (4.3) holds. Thus, we may instead take (4.3)
as the definition of independence of two random variables.

Details: Suppose X and Y are continuous random variables. If (4.3) holds
we may integrate both sides over the region (a, b)× (c, d) to obtain (4.2).
If (4.2) holds we rewrite it in terms of integrals, set b = x and d = y,
and compute the mixed second partial derivatives with respect to x and
y. This gives (4.3). If X and Y are discrete, the integrals are replaced
by sums. If (4.3) holds then we set a = b = x and c = d = y to get (4.2).
If (4.2) holds for all x and y then the summations on both sides of (4.3)
must be equal. 2

Illustration: Spike Count Pairs (continued from page 90) We return once
again to the joint distribution of spike counts for two neurons, given by the table on
page 90. Are X and Y independent?

The marginal pdf for X is fX(0) = .39, fX(1) = .38, fX(2) = .23 and the
marginal pdf for Y is fY (0) = .50, fY (1) = .30, fY (2) = .20. We thus obtain
fX(0)fY (0) = .195 6= .30 = f(0, 0), which immediately shows that X and Y are not
independent. 2

We may generalize the definition of independence to multiple random variables:
we say that X1, X2, . . . , Xn are independent random variables if their joint pdf
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f(X1,X2,...,Xn)(x1, x2, . . . , xn) is equal to the product of their marginal pdfs,

f(X1,X2,...,Xn)(x1, x2, . . . , xn) =

n∏

i=1

fXi
(xi).

In the previous subsection we showed that the expectation of a sum is always
the sum of the expectations. In general, it is not true that the variance of a sum of
random variables is the sum of their variances, but this is true under independence.

Theorem: Variance of a Sum of Independent Random Variables For
independent random variables X1 and X2 we have

V (aX1 + bX2) = a2V (X1) + b2V (X2). (4.4)

More generally, for independent random variables X1, X2, . . . , Xn we have

V (

n∑

i=1

aiXi) =

n∑

i=1

a2
iV (Xi). (4.5)

Proof: The proof is similar to that of the theorem on linearity of expectations,
except that the factorization of the joint pdf, due to independence, must be used. 2

The formula (4.5) may fail if X1 and X2 are not independent. For example, if
X2 = −X1 then X1 + X2 = 0 and V (X1 + X2) = 0. A general formula appears in
Equation (4.6).

4.2 Bivariate Dependence

In Section 4.1.2 we said that random variables X1, X2, . . . , Xn are independent if
their joint pdf f(X1,X2,...,Xn)(x1, x2, . . . , xn) is equal to the product of their marginal
pdfs. We now consider the possibility that X1, X2, . . . , Xn are not independent and
develop some simple ways to quantify their dependence. In the case of two random
variables the most common way to measure dependence is through their correlation,
which is discussed in Section 4.2.1. We first interpret the correlation as a measure
of linear dependence then, in Section 4.2.2, describe its role in the bivariate normal
distribution. After we discuss conditional densities in Section 4.2.3 we re-interpret
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correlation using conditional expectation in Section 4.2.4. We then turn to the case
of arbitrarily many random variables (X1, . . . , Xn with n ≥ 2), providing results
in Section 4.3 that will be useful later on. We discuss general multivariate normal
distributions later, in Section 5.5.

4.2.1 The linear dependence of two random variables may
be quantified by their correlation.

When we consider X and Y simultaneously, we may characterize numerically their
joint variation, meaning their tendency to be large or small together. This is most
commonly done via the covariance of X and Y which, for continuous random vari-
ables, is

Cov(X, Y ) = E ((X − µX)(Y − µY ))

=

∫ ∞

−∞

∫ ∞

−∞
(x− µX)(y − µY )f(x, y)dxdy

and for discrete random variables the integrals are replaced by sums. The covari-
ance is analagous to the variance of a single random variable. We now generalize
Equation (4.5) to the case in which the random variables may not be independent.

Theorem: Variance of a Sum of Random Variables For random variables
X1 and X2 we have

V (aX1 + bX2) = a2V (X1) + b2V (X2) + 2abCov(X1, X2).

More generally, for random variables X1, X2, . . . , Xn we have

V (

n∑

i=1

aiXi) =

(
n∑

i=1

a2
iV (Xi)

)

+ 2
∑

i<j

aiajCov(Xi, Xj). (4.6)

Proof: The proof follows from the definition by straightforward algebraic manip-
ulations and is omitted. 2

The covariance depends on the variability ofX and Y individually, as well as their
joint variation, and therefore depends on scaling. For instance, as is immediately
verified from the definition, Cov(3X, Y ) = 3Cov(X, Y ). To obtain a measure of
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joint variation that does not depend on the variance of X and Y , we standardize.
The correlation of X and Y is

Cor(X, Y ) =
Cov(X, Y )

σXσY
.

This is also often called the Pearson correlation, after Karl Pearson who studied
extensively this and other measures of association.1 The correlation is also called the
correlation coefficient and is commonly denoted by ρ, as in

ρXY = Cor(X, Y ),

and when it clear which random variables are being considered the subscript is omit-
ted.

Let us emphasize that, just as a theoretical mean µ and standard deviation σ
should be distinguished from the sample mean x̄ and sample standard deviation s,
the theoretical quantities Cov(X, Y ) and Cor(X, Y ) should be distinguished from
the analogous quantities computed from data: if x1, . . . , xn and y1, . . . , yn are two
batches of numbers their sample correlation is

rXY =
1

n−1

∑n
i=1

∑n
i=1(xi − x̄)(yi − ȳ)
sxsy

(4.7)

where sx is the sample standard deviation of x1, . . . , xn and sy is the sample standard
deviation of y1, . . . , yn. The numerator in (4.7) is sample covariance of these two
samples. The quantity rXY in (4.7) is also often called the sample Pearson correlation
and sometimes “Pearson correlation” may mean either ρXY or rXY . The sample
correlation is also often written using the alternate notation

ρ̂XY = rXY (4.8)

to indicate that ρXY is being estimated by the sample correlation. We discuss the
sample correlation further in Chapter 12. In the remainder of this section we focus
exclusively on Cor(X, Y ).

It is easy to check that Cor(X, Y ) is invariant to linear rescaling of X and Y and
it may be shown that −1 ≤ Cor(X, Y ) ≤ 1. The latter is an instance of what is
known in mathematical analysis as the Cauchy-Schwartz inequality. When X and Y
are independent their covariance, and therefore also their correlation, is zero.

1The concept of association also played a prominent role in Pearson’s influential book The

Grammar of Science, the first edition of which appeared in 1892. For a discussion of Pearson’s
research see Stigler (1986).
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Details: This last fact follows from the definition of covariance: if X and
Y are independent we have f(x, y) = fX(x)fY (y) and then

∫ ∞

−∞

∫ ∞

−∞
(x− µX)(y − µY )f(x, y)dxdy

=

∫ ∞

−∞

∫ ∞

−∞
(x− µX)fX(x)(y − µY )fY (y)dxdy

=

∫ ∞

−∞
(x− µX)fX(x)dx

∫ ∞

−∞
(y − µY )fY (y)dy

but from the definition of µY
∫ ∞

−∞
(y − µY )fY (y)dy = 0

(and similarly the integral over x is zero). 2

We now illustrate the calculation of correlation in a simple example, introduced
earlier.

Illustration: Spike count pairs (continued from page 92) We return to
the joint distribution of spike counts for two neurons, discussed on page 90, given by
the following table:

2| .03 .07 .10
Y 1| .06 .16 .08

0| .30 .15 .05
0 1 2

X

We may compute the covariance and correlation of X and Y as follows:

µX = 0 + 1 · (.38) + 2 · (.23)

µY = 0 + 1 · (.30) + 2 · (.2)

σX =
√

.39 · (0− µX)2 + .38 · (1− µX)2 + .23 · (2− µX)2

σY =
√

.5 · (0− µY )2 + .3 · (1− µY )2 + .2 · (2− µY )2

which gives

µX = .84

µY = .7

σX = .771

σY = .781.
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We then get
∑

f(x, y)(x− µX)(y − µY ) = .272

and ∑
f(x, y)(x− µX)(y − µY )

σXσY
= .452.

Thus, the correlation is ρ ≈ .45. 2

The correlation is undoubtedly the most commonly used measure of association
between two random variables, but it is rather special. For one thing, Cor(X, Y ) = 0
does not imply that X and Y are independent. Here is a counterexample.

Illustration: Dependent variables with zero correlation. Suppose X is a
continuous random variable having a distribution that is symmetric about 0, meaning
that for all x we have fX(−x) = fX(x), and let us assume that E(X4) is a number
(i.e., E(X4) <∞). From symmetry we have

∫ 0

−∞
xfX(x)dx = −

∫ ∞

0

xfX(x)dx

so that

E(X) =

∫ ∞

−∞
xfX(x)dx

=

∫ 0

−∞
xfX(x)dx+

∫ ∞

0

xfX(x)dx = 0

and, similarly, E(X3) = 0. Now let Y = X2. Clearly X and Y are not independent:
given X = x we know that Y = x2. On the other hand,

Cov(X, Y ) = E(X(Y − µY )) = E(X3)−E(X)µY = 0.

Therefore, Cor(X, Y ) = 0. 2

A more complete intuition about correlation may be found from the next result.
Suppose we wish to predict a random variable Y based on another random variable
X. That is, suppose we take a function f(x) and apply it to X to get f(X) as our
prediction of Y . To evaluate how well f(X) predicts Y we can examine the average
size of the error, letting under-prediction (f(x) < y) be valued the same as over-
prediction (f(x) > y). A mathematically simple criterion that accomplishes this is
expected squared error, or mean squared error, E((Y − f(X))2). We therefore pose
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the problem of finding the form of f(x) that minimizes mean squared error. There
is a general solution to this problem, which we give in Section 4.2.4. For now we
consider the special case in which f(x) is linear, and find the best linear predictor in
the sense of minimizing mean squared error.

Theorem: Linear prediction Suppose X and Y are random variables having
variances σ2

X and σ2
Y (with σ2

X <∞ and σ2
Y <∞ ). In terms of mean squared error,

the best linear predictor of Y based on X is α + βX where

β = ρ
σY

σX
(4.9)

α = µY − βµX (4.10)

where ρ = Cor(X, Y ). In other words, the values of α and β given by (4.10) and
(4.9) minimize E((Y − α− βX)2). With α and β given by (4.10) and (4.9) we also
obtain

E
(
(Y − α− βX)2

)
= σ2

Y (1− ρ2). (4.11)

Proof Details: Write

Y − α− βX = (Y − µY )− (α + β(X − µX)) + µY − βµX

then square both sides, take the expected value, and use the fact that for
any constants c and d, E(c(X − µX)) = 0 = E(d(Y − µY )). This leaves

E
(
(Y − α− βX)2

)
= σ2

Y +β2σ2
X −2βρσXσY +(µY −α−βµX)2. (4.12)

Minimizing this quantity by setting

0 =
∂

∂α
E
(
(Y − α− βX)2

)

and

0 =
∂

∂β
E
(
(Y − α− βX)2

)

and then solving for α and β gives (4.10) and (4.9). Inserting these into
(4.12) gives (4.11). 2

Let us now interpret these results by considering how well α + βX can predict
Y . From (4.11) we can make the prediction error (the mean squared error) smaller
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simply by decreasing σY . In order to standardize we may instead consider the ratio
E((Y − α− βX)2)/σ2

Y . Solving (4.11) for ρ2 we get

ρ2 = 1− E ((Y − α− βX)2)

σ2
Y

. (4.13)

Expression (4.13)shows that the better the linear prediction is, the closer to 1 will ρ2

be; and, conversely, the prediction error is maximized when ρ = 0. Furthermore, we
have ρ > 0 for positive association, i.e, β > 0, and ρ < 0 for negative association, i.e,
β < 0. Based on (4.13) we may say that correlation is a measure of linear association
between X and Y . Note that the counterexample on page 97, in which X and Y
were perfectly dependent yet had zero correlation, is a case of nonlinear dependence.

4.2.2 A bivariate normal distribution is determined by a pair

of means, a pair of standard deviations, and a correla-
tion coefficient.

As you might imagine, to say that two random variables X and Y have a bivariate
normal distribution is to imply that each of them has a (univariate) normal distribu-
tion and, in addition, they have some covariance. Actually, there is a mathematical
subtlety here: the requirement of bivariate normality is much more than that each
has a univariate normal distribution. We return to this technical point later in this
section. For now, we will say that X and Y have a bivariate normal distribution
when they have a joint pdf

f(x, y) =
1

2πσXσY

√

1− ρ2
e
− 1

2(1−ρ2)

„

“

x−µX
σX

”2
−2ρ

“

x−µX
σX

”“

y−µY
σY

”

+
“

y−µY
σY

”2
«

where ρ = Cor(X, Y ) and we assume that σX > 0, σY > 0, and −1 < ρ < 1. We
may also write this pdf in the form

f(x, y) =
1

2πσXσY

√

1− ρ2
e−

1
2
Q(x,y) (4.14)

where

Q(x, y) =
1

√

1− ρ2

((
x− µX

σX

)2

− 2ρ

(
x− µX

σX

)(
y − µY

σY

)

+

(
y − µY

σY

)2
)

.
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Figure 4.2: The bivariate normal pdf. Perspective plots and contour plots are shown
for various values of σX , σY and ρ, with (µX , µY ) = (0, 0). Left column has σX = σY

and right column has 2σX = σY . First, second, and third rows correspond to ρ = 0,
ρ = .75, ρ = −.75. Contours enclose probability equal to .8, .9, .95, and .99.

Note that the factor multiplying the exponential in (4.14) does not depend on either x
or y and that Q(x, y) is a quadratic centered at the mean vector; we have inserted the
minus sign as a reminder that the density has a maximum rather than a minimum.
An implication involves the contours of the pdf. In general, a contour of a function
f(x, y) is the set of (x, y) points such that f(x, y) = c for some particular number
c > 0. When the graph z = f(x, y) is considered, a particular contour represents a set
of points for which the height of f(x, y) is the same. The various contours of f(x, y)
are found by varying c. The contours of a bivariate normal pdf satisfy Q(x, y) = c∗,
for some number c∗, and it may be shown that the set of points (x, y) satisfying
such a quadratic equation form an ellipse (see Equation (A.23) in the Appendix).
Therefore, the bivariate normal distribution has elliptical contours. See Figure 4.2.
The orientation and narrowness of these elliptical contours are governed by σX , σY ,
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and ρ. When σX = σY the axes of the ellipse are on the lines y = x and y = −x.
As ρ increases toward 1 (or decreases toward -1) the ellipse becomes more tightly
concentrated around y = x (or y = −x). When ρ = 0 the contours become circles.
When σX 6= σY the axes rotate to y = σY

σX
x and y = −σX

σY
x.

We have assumed here that σX > 0, σY > 0, and −1 < ρ < 1, which corresponds
to “positive definiteness” of the quadratic, a point we return to in Section 4.3. Some-
times a more general definition of bivariate normality is needed: we say that (X, Y )
is bivariate normal if every nonzero linear combination of X and Y has a normal
distribution, i.e., for all numbers a and b that are not both zero, aX+bY is normally
distributed. This covers additional cases, such as when ρ = 1, and we mention it
again in Chapter 5 when we discuss the general multivariate normal distribution. An
important point is that joint normality is a stronger requirement than normality of
the individual components. It is not hard to construct a counterexample in which
X and Y are both normally distributed but their joint distribution is not bivariate
normal.

Illustration: Marginal normality without joint normality. Here is an ex-
ample in which X and Y are each normally distributed, but they do not have a
bivariate normal distribution. Let U and V be independent N(0, 1) random vari-
ables. Let Y = V and for U < 0, V > 0 or U > 0, V < 0 take X = −U . This
amounts to taking the probability assigned to (U, V ) in the 2nd and 4th quadrants
and moving it, respectively, to the 1st and 3rd quadrants. The distribution of (X, Y )
is then concentrated in the 1st and 3rd quadrants ((X, Y ) has zero probability of
being in the 2nd or 4th quadrants), yet X and Y remain distributed as N(0, 1). 2

While this counterexample is admittedly somewhat contrived, the logical inability
to infer joint normality from marginal normality should be kept in mind. In prac-
tice, when we examine data x1, . . . , xn and y1, . . . , yn to see whether their variation
appears roughly to follow a bivariate normal distribution, the general result sug-
gests one should plot them together as scatterplot pairs (x1, y1), . . . , (xn, yn), rather
than simply examining x1, . . . , xn and y1, . . . , yn separately. In the multivariate case,
however, one must rely on 1-dimensional and 2-dimensional visual representations of
data, as in Figure 4.1.
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4.2.3 Conditional probabilities involving random variables
are obtained from conditional densities.

We previously defined the probability of one event conditionally on another, which
we wrote P (A|B), as the ratio P (A∩B)/P (B), assuming P (B) > 0. When we have
a pair of random variables X and Y with f(y) > 0, the conditional density of X
given Y = y is

fX|Y (x|y) =
f(x, y)

fY (y)
. (4.15)

For discrete random variables fX|Y (x|y) is the probability that X = x given that Y =
y. For continuous random variables, roughly speaking, f(x, y)dxdy is the probability
thatX will lie in the infinitesimal interval (x, x+dx) and Y will lie in the infinitesimal
interval (y, y + dy). We may thus think of fX|Y (x|y)dx as the probability that X
will lie in the infinitesimal interval (x, x + dx) given that Y lies in the infinitesimal
interval (y, y + dy). When X and Y are independent we have

fX|Y (x|y) = fX(x).

Illustration: Spike count pairs (continued) We return to the joint dis-
tribution of spike counts for two neurons (see page 96). We may calculate the
conditional distribution of X given Y = 0. We have fX|Y (0|0) = .30/.50 = .60,
fX|Y (1|0) = .15/.50 = .30, fX|Y (2|0) = .05/.50 = .10. Note that these probabilities
are different than the marginal probabilities .39, .38, .23. In fact, if Y = 0 it becomes
more likely that X will also be 0, and less likely that X will be 1 or 2. 2

4.2.4 The conditional expectation E(Y |X = x) is called the
regression of Y on X.

The conditional expectation of Y |X is

E(Y |X = x) =

∫

yfY |X(y|x)dy

where the integral is taken over the range of y.

Illustration: Spike count pairs (continued) For the joint distribution of
spike counts let us compute E(X|Y = 0). We previously found fX|Y (0|0) = .60,
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fX|Y (1|0) = .30, fX|Y (2|0) = .10. Then

E(X|Y = 0) = 0(.6) + 1(.3) + 2(.1) = .5.

2

Note that E(Y |X = x) is a function of x, so we might write M(x) = E(Y |X = x)
and thus M(X) = E(Y |X) is a random variable. An important result concerning
M(X) is often called the law of total expectation.

Theorem: Law of total expectation. Suppose X and Y are random variables
and Y has finite expectation. Then we have

E(E(Y |X)) = E(Y ).

Proof: From the definition we compute

E(E(Y |X = x)) =

∫ (∫

yfY |X(y|x)dy
)

fX(x)dx

=

∫ ∫

yfY |X(y|x)fX(x)dxdy

=

∫ ∫

yf(X,Y )(x, y)dxdy

=

∫

yfY (y)dy = E(Y ).2

There are also the closely-related law of total probability and law of total variance.

Theorem: Law of total probability. Suppose X and Y are random variables.
Then we have

E(P (Y ≤ y|X)) = FY (y).

Proof: The proof follows a series of steps similar to those in the proof of the law
of total expectation. 2

We may also define the conditional variance of Y |X

V (Y |X = x) =

∫

(y − E(Y |X = x))2fY |X(y|x)dy
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and then get the following, which has important applications.

Theorem: Law of total variance. Suppose X and Y are random variables
and Y has finite variance. Then we have

V (Y ) = V (E(Y |X)) + E(V (Y |X)).

Proof: The proof is similar to that of the law of total expectation. 2

In the spike count pairs illustration, we computed the conditional expectation
E(X|Y = y) for a single value of y. We could evaluate it for each possible value
of y. When we consider E(X|Y = y) as a function of y, this function is called the
regression of X on Y . Similarly, the function E(Y |X = x) is called the regression of
Y on X. To understand this terminology, and the interpretation of the conditional
expectation, consider the case in which (X, Y ) is bivariate normal.

Example: Regression of son’s height on father’s height famous data set,
from Pearson and Lee (1903) (Pearson, K. and Lee, A. (1903) On the laws of inher-
itance in man, Biometrika, 2: 357–462.), has been used frequently as an example of
regression. (See Freedman, Pisani, and Purves (2007).) (Freedman, D., Pisani, R.,
and Purves, R. (2007) Statistics, Fourth Edition, W.W. Norton.) Figure 4.3 displays
both a bivariate normal pdf and a set of data generated from the bivariate normal
pdf—the latter are similar to the data obtained by Pearson and Lee (who did not
report the data, but only summaries of them). The left panel of Figure 4.3 shows
the theoretical regression line. The right panel shows the regression based on the
data, fitted by the method of least-squares, was discussed briefly in Chapter 1 and
will be discussed more extensively in Chapter 12. In a large sample like this one, the
least-squares regression line (right panel) is close to the theoretical regression line
(left panel). The purpose of showing both is to help clarify the averaging process
represented by the conditional expectation E(Y |X = x).

The terminology “regression” is illustrated in Figure 4.3 by the slope of the
regression line being less than that of the dashed line. Here, σY = σX , because the
variation in sons’ heights and fathers’ heights was about the same, while (µX , µY ) =
(68, 69), so that the average height of the sons was about an inch more than the
average height among their fathers. The dashed line has slope σY /σX = 1 and it
goes through the point (µX , µY ). Thus, the points falling on the dashed line in
the left panel, for example, would be those for which a theoretical son’s height was
exactly 1 inch more than his theoretical father. Similarly, in the plot on the left,
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Figure 4.3: Conditional expectation for bivariate normal data mimicking Pearson and
Lee’s data on heights of fathers and sons. Left panel shows contours of the bivariate
normal distribution based on the means, standard deviations, and correlation in
Pearson and Lee’s data. The dashed vertical lines indicate the averaging process
used in computing the conditional expectation when X = 64 or X = 72 inches:
we average y using the probability fY |X(y|x), which is the probability, roughly,
in between the dashed vertical lines, integrating across y. In the right panel we
generated a sample of 1,078 points (the sample size in Pearson and Lee’s data set)
from the bivariate normal distribution pictured in the left panel. We then, again,
illustrate the averaging process: when we average the values of y within the dashed
vertical lines we obtain the two values indicated by the red x. These fall very close
to the least-squares regression line (the solid line).

any data points falling on the dashed line would correspond to a real son-father
pair for which the son was an inch taller than the father. However, if we look at
E(Y |X = 72) we see that among these taller fathers, their son’s height tends, on
average, to be less than the 1 inch more than the father’s predicted by the dashed
line. In other words, if a father is 3 inches taller than average, his son will likely
be less than 3 inches taller than average. This is the tendency for the son’s height
to “regress toward the mean.” We understand the phenomenon as follows. First,
the father is tall partly for genetic reasons and partly due to environmental factors
which pushed him to be taller. If we represent the effect due to the environmental
factors as a random variable U , and assume its distribution follows a bell-shaped
curve centered at 0, then for any positive u we have P (U < u) > 1/2. Thus, if u
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represents the effect due to environmental factors that the father received and U the
effect that the son receives, the son’s environmental effect will tend to be smaller
than the father’s whenever the father’s effect is above average. For a tall father,
while the son will inherit the father’s genetic component, his positive push toward
being tall from the environmental factors will tend to be somewhat smaller than his
father’s had been. This is regression toward the mean. The same tendency, now in
the reverse direction, is apparent when the father’s height is X = 64. Regression to
the mean is a ubiquitous phenomenon found whenever two variables vary together.
2

In general, the regression E(Y |X = x) could be a nonlinear function of x but in
Figure 4.3 it is a straight line. This is not an accident: if (X, Y ) is bivariate normal,
the regression of Y on X is linear with slope ρ · σY /σX . Specifically,

E(Y |X = x) = µY + ρ
σY

σX

(x− µX) . (4.16)

We say that Y has a regression on X with regression coefficient

βY |X = ρ
σY

σX
. (4.17)

This means that when X = x, the average value of Y is given by (4.16). We
should emphasize, again, that we are talking about random variables, which are
theoretical quantities, as opposed to observed data. In data-analytic contexts the
word “regression” almost always refers to least-squares regression, illustrated in the
right panel of Figure 4.3.

For later use let us note that when (X, Y ) is bivariate normal we may also consider
the regression of X on Y

E(Y |X = x) = µY + βX|Y (y − µY )

where, as in (4.17),

βX|Y = ρ
σX

σY
(4.18)

so that if we combine (4.17) and (4.18) we get the following expression for the cor-
relation:

ρ = sign(βY|X)
√

βY|XβX|Y (4.19)

where sign(βY|X) is −1 if βY |X is negative and 1 if βY |X is positive.
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Compare Equation (4.16) to Equations (4.9) and (4.10). From (4.9) and (4.10)
we have that the best linear predictor of Y based on X is f(X) where

f(x) = µY + ρ
σY

σX
(x− µX) . (4.20)

In general, we may call this the linear regression of Y on X. In the case of bivariate
normality, the regression of Y on X is equal to the linear regression of Y on X, i.e.,
the regression is linear. We derived (4.20) as the best linear predictor of Y based
on X by minimizing mean squared error. More generally, if we write the regression
function as M(x) = E(Y |X = x). then M(X) is the best predictor of Y in the sense
of minimizing mean squared error.

Theorem: Prediction The function f(x) that minimizes E((Y −f(X))2) is the
conditional expectation f(x) = M(x) = E(Y |X = x).

Proof Details: Note that E(Y −M(X)) = E(Y )−E(E(Y |X)) and by the
law of total expectation (page 103) this is zero. Now write Y − f(X) =
(Y −M(X)) + (M(X)− f(X)) and expand E((Y − f(X))2) to get

E((Y − f(X))2) = E((Y −M(X))2) + 0 + E((M(X)− f(X))2).

The right-hand term E((M(X)−f(X))2) is always non-negative and it is
zero when f(x) is chosen to equal M(x). Therefore the whole expression
is minimized when f(x) = M(x). 2

4.3 Multivariate Dependence

4.3.1 The mean of a random vector is a vector and its vari-
ance is a matrix.

Now suppose we wish to consider the way m random variables X1, . . . , Xm vary
together. If we have µi = E(Xi), σ

2
i = V (Xi), and ρij = Cor(Xi, Xj), for i =

1, . . . , m and j = 1, . . . , m, we may collect the variables in an m-dimensional random
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vector X = (X1, . . . , Xm)T , and can likewise collect the means in a vector

µ =








µ1

µ2
...
µm







.

Similarly, we can collect the variances and covariances in a matrix

Σ =







σ2
1 ρ12σ1σ2 · · · ρ1mσ1σm

ρ21σ1σ2 σ2
2 · · · ρ2mσ1σm

· · · · · · · · · · · ·
ρm1σ1σm ρm2σ2σm · · · σ2

m






.

Note that ρij = ρji so that Σ is a symmetric matrix (the element in its ith row and
jth column is equal to the element in its jth row and ith column, for every i and j).
We write the mean vector E(X) = µ and the variance matrix V (Y ) = Σ. The latter
is also called the covariance matrix. Once again we wish to distinguish these from
sample-based analogues. If we have m batches of numbers their collective sample
mean vector is the vector of the m sample means, and their sample variance matrix
is the matrix S having the form of Σ, above, but with each theoretical standard
deviation being replaced by a corresponding sample standard deviation, and each
theoretical correlation replaced by a sample correlation, i.e.,

S =







s2
1 ρ̂12s1s2 · · · ρ̂1ms1sm

ρ̂21s1s2 s2
2 · · · ρ̂2ms1sm

· · · · · · · · · · · ·
ρ̂m1s1sm ρ̂m2s2sm · · · s2

m






. (4.21)

Let w be an m-dimensional vector. By straightforward matrix manipulations we
obtain the mean and variance of wTX as

E(wTX) = wTµ (4.22)

V (wTX) = wTΣw. (4.23)

Equations (4.22) and (4.23) generalize (4.1) and (4.6).

Let us now recall that a symmetric m×m matrix A is positive semi-definite if for
every m-dimensional vector v we have vTAv ≥ 0 and it is positive definite if for every
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nonzero m-dimensional vector v we have vTAv > 0. From the definition of variance
(involving the integral of a non-negative function), every variance is non-negative.
Therefore, V (wTX) ≥ 0 so that the variance matrix Σ is necessarily positive semi-
definite. However, a variance matrix may or may not be positive definite. The
non-positive-definite case is the generalization of σX = 0 for a random variable X:
in the non-positive-definite case the distribution of the random vector X “lives”
on a subspace that has dimensionality less than m. For example, if X and Y are
both normally distributed but Y = X then their joint distribution “lives” on a
1-dimensional subspace y = x of the 2-dimensional plane.

An important tool in analyzing a variance matrix is the spectral decomposition.
As stated in Section A.8 of the Appendix, the spectral decomposition of a positive
semi-definite matrix A is A = PDP T where D is a diagonal matrix with diagonal
elements λi = Dii for i = 1, . . . , m, and P is an orthogonal matrix, i.e., P TP = I,
where I is the m-dimensional identity matrix. Here, λ1, . . . , λm are the eigenvalues
of A and the columns of P are the corresponding eigenvectors.

Lemma If Σ is a symmetric positive definite matrix then there is a symmetric
positive definite matrix Σ

1
2 such that

Σ = Σ
1
2 Σ

1
2

and, furthermore, writing its inverse matrix as Σ− 1
2 = (Σ

1
2 )−1 we have

Σ−1 = Σ− 1
2 Σ− 1

2 .

Proof: This follows from the spectral decomposition (Section A.8). Writing Σ =

PDP T , with D being diagonal we simply define D
1
2 to be the diagonal matrix having

elements (
√
D11, . . . ,

√
Dmm) and take Σ

1
2 = PD

1
2P T . The stated results are easily

checked. 2

Theorem Suppose X is a random vector with mean µ and covariance matrix
Σ. Define the random vector Y = Σ−1/2(X − µ). Then E(Y ) is the zero vector and
V (Y ) is the m-dimensional identity matrix.

Proof: This follows from the lemma. We omit the details. 2

We will use this kind of standardization of a random vector in Chapter 6.
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4.3.2 The dependence of two random vectors may be quan-
tified by mutual information.

It often happens that the deviation of one distribution from another must be eval-
uated. Consider two continuous pdfs f(x) and g(x), both being positive on (A,B).
The Kullback-Leibler (KL) discrepancy is the quantity

DKL(f, g) = Ef

(

log
f(X)

g(X)

)

where the subscript on the expectation Ef signifies that the random variable X has
pdf f(x). In other words, we have

DKL(f, g) =

∫ B

A

f(x) log
f(x)

g(x)
dx.

The KL discrepancy may also be defined, analogously, for discrete distributions.
Note that DKL(f, g) may also be written in the difference form

DKL(f, g) = Ef (log f(X))− Ef (log g(X)) . (4.24)

In fact, the KL discrepancy is essentially unique among all discrepancies D(f, g) that
satisfy

(i) D(f, g) = Ef (ϕ(f(X)))−Ef (ϕ(g(X))) for some differentiable function ϕ, and

(ii) D(f, g) is minimized over g by g = f .

Details: When there are finitely many outcomes (so that sums replace
integrals in the definition of DKL(f, g)) it may be shown that the form
of ϕ must be logarithmic, i.e., ϕ must satisfy ϕ(f(x)) = a + b log f(x)
for some a, b, with b > 0. See Konishi and Kitagawa (2008, Section 3.1).
(Konishi, S. and Kitagawa, G. (2008) Information Criteria and Statistical
Modeling, Springer.) 2

In addition to having the special difference-of-averages property in (4.24), the KL
discrepancy takes a simple and intuitive form when applied to normal distributions.
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Illustration: Two normal distributions Suppose f(x) and g(x) are the
N(µ1, σ

2) and N(µ2, σ
2) pdfs. Then, from the formula for the normal pdf we have

log
f(x)

g(x)
= −(x− µ1)

2 − (x− µ2)
2

2σ2
=

2x(µ1 − µ2)− (µ2
1 − µ2

2)

2σ2

and substituting X for x and taking the expectation (using EX(X) = µ1), we get

DKL(f, g) =
2µ2

1 − 2µ1µ2 − µ2
1 + µ2

2

2σ2
=

(
µ1 − µ2

σ

)2

.

That is, DKL(f, g) is simply the squared standardized difference between the means.
This is a highly intuitive notion of how far apart these two normal distributions are.
2

Example 4.2 Auditory-dependent vocal recovery in zebra finches Song
learning among zebra finches has been heavily studied. When microlesions are made
in the HVC region of an adult finch brain, songs become destabilized but the bird
will recover its song within about 1 week. Thompson et al. (2007) ablated the out-
put nucleus (LMAN) of the anterior forebrain pathway of zebra finches in order to
investigate its role in song recovery. (Thompson, J.A., Wu, W., Bertram, R., and
Johnson, F. (2007) Auditory-dependent vocal recovery in adult male zebra finches is
facilitated by lesion of a forebrain pathway that includes basal ganglia, J. Neurosci.,
27: 12308–12320.) They recorded songs before and after the surgery. The multi-
ple bouts of songs, across 24 hours, were represented as individual notes having a
particular spectral composition and duration. The distribution of these notes post-
surgery was then compared to the distribution pre-surgery. In one of their analyses,
for instance, the authors examined the distributions of pitch and duration. Their
method of comparing pos-surgery and pre-surgery distributions was to compute the
KL discrepancy. Thompson et al. found that deafening following song disruption
produced a large KL discrepancy whereas LMAN ablation did not. This indicated
that the anterior forebrain pathway is not the neural locus of the learning mechanism
that uses auditory feedback to guide song recovery. 2

The Kullback-Leibler discrepancy may be used to evaluate the association of two
random vectors X and Y . We define the mutual information of X and Y as

I(X, Y ) = DKL(f(X,Y ), fXfY ) = E(X,Y ) log
f(X,Y )(X, Y )

fX(X)fY (Y )
.
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In other words, the mutual information between X and Y is the Kullback-Leibler
discrepancy between their joint distribution and the distribution they would have if
they were independent. In this sense, the mutual information measures how far a
joint distribution is from independence.

Illustration: Bivariate normal If X and Y are bivariate normal with correla-
tion ρ some calculation following application of the definition of mutual information
gives

I(X, Y ) = −1

2
log(1− ρ2). (4.25)

Thus, when X and Y are independent, I(X, Y ) = 0 and as they become highly
correlated (or negatively correlated) I(X, Y ) increases indefinitely. 2

Theorem For random variables X and Y that are either discrete or jointly
continuous having a positive joint pdf, mutual information satisfies (i) I(X, Y ) =
I(Y,X), (ii) I(X, Y ) ≥ 0, (iii) I(X, Y ) = 0 if and only if X and Y are independent,
and (iv) for any one-to-one continuous transformations f(x) and g(y), I(X, Y ) =
I(f(X), g(Y )).

Proof: Omitted. See, e.g, Cover and Thomas (1991). (Cover, T.M. and Thomas,
J.Y. (1991) Elements of Information Theory, New York: Wiley.) 2

Property (iv) makes mutual information quite different from correlation. We
noted that correlation is a measure of linear association and, as we saw in the il-
lustration on page 97, it is possible to have Cor(X,X2) = 0. In contrast, by prop-
erty (iv), we may consider mutual information to be a measure of more general
forms of association, and for the continuous illustration on page 97 we would have
I(X,X2) =∞.

The use here of the word “information” is important. For emphasis we say, in
somewhat imprecise terms, what we think is meant by this word.

Roughly speaking, information about a random variable Y is
associated with the random variable X if the uncertainty in Y
is larger than the uncertainty in Y |X.

For example, we might interpret “uncertainty” in terms of variance. If the regression
of Y on X is linear, as in (4.16) (which it is if (X, Y ) is bivariate normal), we have

σ2
Y |X = (1− ρ2)σ2

Y . (4.26)
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In this case, information about Y is associated with X whenever |ρ| > 0 so that
1− ρ2 < 1. A slight modification of (4.26) will help us connect it more strongly with
mutual information. First, if we redefine “uncertainty” to be standard deviation
rather than variance, (4.26) becomes

σY |X =
√

1− ρ2σY . (4.27)

Like Equation (4.26), Equation (4.27) describes a multiplicative (proportional) de-
crease in uncertainty in Y associated with X. An alternative is to redefine “un-
certainty,” and rewrite (4.27) in an additive form, so that the uncertainty in Y |X
is obtained by subtracting an appropriate quantity from the uncertainty in Y . To
obtain an additive form we define “uncertainty” as the log standard deviation. As-
suming |ρ| < 1, log

√

1− ρ2 is negative and, using log
√

1− ρ2 = 1
2
log(1 − ρ2), we

get

log σY |X = log σY −
(

−1

2
log(1− ρ2)

)

. (4.28)

In words, Equation (4.28) says that −1
2
log(1 − ρ2) is the amount of information

associated with X in reducing the uncertainty in Y to that of Y |X. If (X, Y ) is
bivariate normal then, according to (4.25), this amount of information associated
with X is the mutual information.

Formula (4.28) may be generalized by quantifying “uncertainty” in terms of en-
tropy, which leads to a popular interpretation of mutual information.

Details: We say that the entropy of a discrete random variable X is

H(X) = −
∑

x

fX(x) log fX(x) (4.29)

We may also call this the entropy of the distribution of X. In the contin-
uous case the sum is replaced by an integral (though there it is defined
only up to a multiplicative constant, and is often called differential en-
tropy). The entropy of a distribution was formalized analogously to Gibbs
entropy in statistical mechanics by Claude Shannon in his development
of communication theory. As in statistical mechanics, the entropy may
be considered a measure of disorder in a distribution. For example, the
distribution over a set of values {x1, x2, . . . , xm} having maximal entropy
is the uniform distribution (giving equal probability 1

m
to each value) and,
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roughly speaking, as a distribution becomes concentrated near a point its
entropy decreases.

For ease of interpretation the base of the logarithm is often taken to be
2 so that, in the discrete case,

H(X) = −
∑

x

fX(x) log2 fX(x). (4.30)

Suppose there are finitely many possible values of X, say x1, . . . , xm, and
someone picks one of these values with probabilities given by f(xi), then
we try to guess which value has been picked by asking “yes” or “no”
questions (e.g., “Is it greater than x3?”). In this case the entropy (using
log2, as above) may be interpreted as the minimum average number of
yes/no questions that must be asked in order to determine the number,
the average being taken over replications of the game. When the outcomes
x1, . . . , xm are equally likely we have f(xi) = 1/m, for i = 1, . . . , m, and
(4.30) reduces to H(X) = log2(m).

Entropy may be used to characterize many important probability distri-
butions. The distribution on the set of integers 0, 1, 2, . . . , n that maxi-
mizes entropy subject to having mean µ is the binomial. The distribution
on the set of all non-negative integers that maximizes entropy subject to
having mean µ is the Poisson. In the continuous case, the distribution
on the interval (0, 1) having maximal entropy is the uniform distribution.
The distribution on the positive real line that maximizes entropy subject
to having mean µ is the exponential. The distribution on the positive
real line that maximizes entropy subject to having mean µ and variance
σ2 is the gamma. The distribution on the whole real line that maximizes
entropy subject to having mean µ and variance σ2 is the normal.

Now, if Y is another discrete random variable then the entropy in the
conditional distribution of Y |X = x may be written

H(Y |X = x) = −
∑

y

fY |X(y|x) log fY |X(y|x)

and if we average this quantity over X, by taking its expectation with
respect to fX(x), we get what is called the conditional entropy of Y given
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X:

H(Y |X) =
∑

x

(

−
∑

y

fY |X(y|x) log fY |X(y|x)
)

fX(x).

Algebraic manipulation then shows that the mutual information may be
written

I(X, Y ) = H(Y )−H(Y |X).

This says that the mutual information is the average amount (over X)
by which the entropy of Y decreases given the additional information
X = x. In the discrete case, working directly from the definition we
find that entropy is always non-negative and, furthermore, H(Y |Y ) = 0.
The expression for the mutual information, above, therefore also shows
that in the discrete case I(Y, Y ) = H(Y ). (In the continuous case we
get I(Y, Y ) = ∞.) For an extensive discussion of entropy, mutual in-
formation, and communication theory see Cover and Thomas (1991) or
MacKay (2003). (Mackay, D. (2003) Information Theory, Inference, and
Learning Algorithms, Cambridge.)

Mutual information was used to define the channel capacity of communication
system that transmits a signal in the presence of noise: if X is a random variable
representing a transmitted message and Y is a random variable representing the
received message after noise has been injected during the transmission process, then
the channel capacity is

C = max
X

I(X, Y )

where the maximum is taken over all possible distributions of X. This concept,
developed to characterize electronic communication channels, has also been applied
to human behavior and neural activity. Because the mutual information in this
context concerns discrete distributions for (X, Y ), and log2 is used, the units are
said to be in bits for “binary digits” (because, for a positive integer n, log2(n) is the
number of binary digits used to represent n in base 2). Thus, human and neural
information processing capacity is usually reported in bits.

Example 4.3 The Magical Number Seven In a famous paper, George Miller
reviewed several psychophysical studies that attempted to characterize the capacity
of humans to process sensory input signals (Miller, 1956). One study, for example,
exposed subjects to audible tones of several different values of pitch (frequency) and
asked them to identify the pitch (e.g., pitch 1, 2, or 3, corresponding to high, medium,
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or low). The question was, how many distinct values of pitch can humans reliably
discriminate? It turned out that with five or more tones of different pitch, the human
observers made frequent mistakes. The experimental design allowed calculation of the
probability of responding with a particular answer Y based on a particular input tone
X, and with this the mutual information could be calculated. By examining several
different studies, of similar yet differenet types, Miller concluded that there was a
discernable channel capacity, which was roughly C = 2.6± .6 bits. Transforming this
back to numbers of discernable categories gives 22.6−.6 = 4 and 22.6+.6 = 9.2. After
looking at other, related psychophysical data Miller summarized by saying there was
a “magical number seven, plus or minus two,” which characterized many aspects of
human information processing in terms of channel capacity. 2

Mutual information has also been used extensively to quantify the information
about a stochastic stimulus (Y ) associated with a neural response (X). In that
context the notation is often changed by setting Y = S for “stimulus” and X = R
for neural “response,” and the idea is to determine the amount of information about
the stimulus that is associated with the neural response.

Example 4.4 Temporal coding in inferotemporal cortex In an influential pa-
per, Optican and Richmond (1987) reported responses of single neurons in inferotem-
poral (IT) cortex of monkeys while the subjects were shown various checkerboard-
style grating patterns as visual stimuli. (Optican, L.M. and Richmond, B.J. (1987)
Temporal encoding of two-dimensional patterns by single units in primate inferior
temporal cortex. III. Information theoretic analysis. J. Neurophysiol., 57: 162–178.)
Optican and Richmond computed the mutual information between the 64 randomly-
chosen stimuli (the random variable Y here taking 64 equally-likely values) and the
neural response (X), represented by firing rates across multiple time bins. They
compared this with the mutual information between the stimuli and a single firing
rate across a large time interval and concluded that there was considerably more
mutual information in the time-varying signal. Put differently, more information
about the stimulus was carried by the time-varying signal than by the overall spike
count. 2

In both Example 4.2 and Example 4.4 the calculations were based on pdfs that
were estimated from the data. We discuss probability density estimation in Chap-
ter 15.
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4.3.3 Bayes’ Theorem for random vectors is analogous to
Bayes’ Theorem for events.

Now suppose X and Y are random vectors with a joint density f(x, y). Substituting
f(x, y) = fY |X(y|x)f(x) into (4.15), we have

fX|Y (x|y) =
fY |X(x, y)

fY (y)

=
fY |X(y|x)fX(x)

fY (y)
. (4.31)

This is a form of Bayes’ Theorem.

Bayes’ Theorem for Random Vectors If X and Y are continuous random
vectors and fY (y) > 0 we have

fX|Y (x|y) =
fY |X(y|x)fX(x)

∫
fY |X(y|x)fX(x)dx

.

If X and Y are discrete random vectors and fY (y) > 0 we have

fX|Y (x|y) =
fY |X(y|x)fX(x)

∑

x fY |X(y|x)fX(x)
.

Proof: These results follow by using the definition of marginal pdf in the denom-
inator of (4.31). 2

The resemblance of this result to Bayes’ Theorem for events may be seen by
comparing the formula (3.1), identifying X with A and Y with B. The theorem also
holds, as a special case, if X and Y are random variables.

4.3.4 Bayes classifiers are optimal.

Suppose X is a random variable (or random vector) that may follow one of two
possible distributions having pdf f(x) or g(x). If x is observed, which distribution
did it come from? This is the problem of classification. Typically, there is a random
sample X1, . . . , Xn and the problem is to classify (to one of the two distributions)
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each of the many observations. A decision rule or classification rule is a mapping
that assigns to each possible x a classification (that is, a distribution). What is the
best classification rule? A classification error is made if either X ∼ f(x) and the
observation X = x is classified as coming from g(x) or X ∼ g(x) and the observation
X = x is classified as coming from f(x).

Theorem Suppose X is drawn from a distribution having pdf f(x), where f(x) > 0
for all x, with probability π and from a distribution having pdf g(x), where g(x) > 0
for all x, with probability 1− π. Then the probability of committing a classification
error is minimized if X = x is classified as arising from f(x) whenever πf(x) >
(1− π)g(x), and is classified as arising from g(x) when (1− π)g(x) ≥ πf(x).

Before proving the theorem let us interpret it. Let C1 refer to the case X ∼ f(x)
and C2 to X ∼ g(x), where we use the letter C to stand for “class,” so that the
problem is to classify x as falling either in class C1 or class C2. We take P (C1) = π
and P (C2) = 1 − π. The Bayes classifier assigns to each x the class having the
maximal posterior probability, P (C1|X = x) versus P (C2|X = x), given by

P (C1|X = x) =
f(x)π

f(x)π + g(x)(1− π)
(4.32)

and

P (C2|X = x) =
g(x)(1− π)

f(x)π + g(x)(1− π)
.

The theorem says that the Bayes classifier minimizes the probability of misclassifi-
cation.

Proof details: We consider the case in which the two distributions are
discrete and, for simplicity, we assume π = 1

2
. Let R = {x : f(x) ≤

g(x)}. We want to show that the classification rule assigning x → g(x)
whenever x ∈ R has a smaller probability of error than the classification
rule x→ g(x) whenever x ∈ A for any set A that is different than R. To
do this we decompose R and its complement Rc as R = (R∩A)∪(R∩Ac)
and Rc = (Rc ∩A) ∪ (Rc ∩Ac). We have

∑

x∈R

f(x) =
∑

x∈R∩A

f(x) +
∑

x∈R∩Ac

f(x) (4.33)

and ∑

x∈Rc

g(x) =
∑

x∈Rc∩A

g(x) +
∑

x∈Rc∩Ac

g(x). (4.34)
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By the definition of R we have, for every x ∈ R, f(x) ≤ g(x) and, in
particular, for every x ∈ R ∩ Ac, f(x) ≤ g(x). Therefore, from (4.33) we
have ∑

x∈R

f(x) ≤
∑

x∈R∩A

f(x) +
∑

x∈R∩Ac

g(x). (4.35)

Similarly, from (4.34) we have

∑

x∈Rc

g(x) <
∑

x∈Rc∩A

f(x) +
∑

x∈Rc∩Ac

g(x). (4.36)

Strict inequality holds in (4.36) because A is distinct from R; if A = R
then Rc∩A = ∅ and the first sums in both (4.34) and (4.36) become zero.
Combining (4.35) and (4.36) we get

∑

x∈R

f(x)+
∑

x∈Rc

g(x) <
∑

x∈R∩A

f(x)+
∑

x∈R∩Ac

g(x)+
∑

x∈Rc∩A

f(x)+
∑

x∈Rc∩Ac

g(x)

and the right-hand side reduces to
∑

x∈A f(x) +
∑

x∈Ac g(x). In other
words, we have

∑

x∈R

f(x) +
∑

x∈Rc

g(x) <
∑

x∈A

f(x) +
∑

x∈Ac

g(x). (4.37)

The left-hand side of (4.37) is the probability of an error using the rule
x → g(x) whenever x ∈ R while the right-hand side of (4.37) is the
probability of an error using the rule x → g(x) whenever x ∈ A. There-
fore the rule x → g(x) whenever x ∈ R has the smallest probability of
classification error.

The case for general π is essentially the same, and the continuous case
replaces sums with integrals. 2

Corollary Suppose that with equal probabilities X is drawn either from a distribu-
tion having pdf f(x), where f(x) > 0 for all x, or from a distribution having pdf g(x),
where g(x) > 0 for all x. Then the probability of committing a classification error is
minimized if X = x is classified to the distribution having the higher likelihood.

The theorem extends immediately to finitely many alternative classes (distribu-
tions). We state it in the language of Bayes classifiers.
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Theorem Suppose X is drawn from a distribution having pdf fi(x), where fi(x) > 0
for all x, with probability πi, for i = 1, . . . , m, where π1 + · · ·+ πm = 1, and let Ci

be the class X ∼ fi(x). Then the probability of committing a classification error is
minimized if X = x is classified as arising from the distribution having pdf fk(x) for
which Hk has the maximum posterior probability

P (Ck|X = x) =
fk(x)πk

∑m
i=1 fi(x)πi

(4.38)

among all the classes Ci.

Corollary Suppose n observations X1, . . . , Xn are drawn, independently, from a
distribution having pdf fi(x), where fi(x) > 0 for all x, with probability πi, for
i = 1, . . . , m, where π1 + · · · + πm = 1, and let Ci be the class X ∼ fi(x). Then
the expected number of misclassifications is minimized if each Xj = xj is classified
as arising from the distribution having pdf fk(xj) for which Ck has the maximum
posterior probability

P (Ck|Xj = xj) =
fk(xj)πk

∑m
i=1 fi(xj)πi

among all the classes Ci.

Proof: Let Yi = 1 if Xi is misclassified, and 0 otherwise. The theorem says that
P (Yi = 1) = P (Y1 = 1) is minimized by the Bayes classifier, which maximizes (4.38).
The expected number of misclassifications is then E(

∑

i Yi) and we have

E(
∑

i

Yi) =
∑

i

E(Yi)

=
∑

i

P (Yi = 1)

= nP (Y1 = 1).

Therefore, the expected number of misclassifications is minimized by the Bayes clas-
sifier. 2

Example 3.3 (continued from page 57) e described previously the use of
Bayes’ theorem in decoding saccade direction from the activity of neurons in the
supplementary eye field. This may be considered an application of Bayesian clas-
sification. Previously we took the events A1, A2, A3, and A4 to be the saccade
directions up, right, down, left. To put this in the notation of the corollary above,
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we may write Ci : Ai, for i = 1, 2, 3, 4. The observations Xi are then random vectors
of length 55 representing spike counts among 55 neurons. The unpublished work,
previously cited, by Kass and Ventura, took the neural spike counts to be indepen-
dent (they were, in fact, recorded separately) and Poisson distributed. Initial data
(usually called training data) were used to estimate the 55 Poisson parameters. This
provided the pdfs fk(x) that appear in the corollary above. The cited prediction
accuracy of 95% from Bayesian classification (“Bayesian decoding”) was achieved on
separate data (test data). 2

The fundamental result given in the theorem extends to the case in which different
penalties result from the various incorrect classifications. This more general situation
is treated by decision theory. Suppose d(x) is a mapping that assigns to each x a class
(a distribution). Such a mapping is called a decision rule. Let us denote the possible
values of any such rule by a (for action), so that a may equal any of the integers
1, 2, . . . , m. The penalties associated with various classifications, or decisions, may
be specified by a loss function L(a, i), where each L(a, i) is the non-negative number
representing the penalty for deciding to classify x as arising from fa(x) when actually
it arose from fi(x). We then may consider the expected loss E(L(d(X), i)), i.e., the
average behavior of the decision rule, which is also known as the risk of the decision
rule. The decision rule with the smallest risk is called the optimal decision rule.
Assuming that the distribution with pdf fi(x) has probability πi, for i = 1, . . . , m,
this optimal rule turns out to be the Bayes rule, which is found by minimizing the
expected loss computed from the posterior distribution. The theorem above then
becomes the special case in which L(a, i) = 0 if a = i and L(a, i) = 1 otherwise, for
then the risk is simply the probability of misclassification.
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Chapter 5

Important Probability
Distributions

c©2010 SPRINGER SCIENCE+BUSINESS MEDIA, LLC. All rights reserved. No
part of this work may be reproduced in any form without the written permission of
SPRINGER SCIENCE+BUSINESS MEDIA, LLC.

In Chapter 1 we said that a measurement is determined in part by a “signal”
of interest, and in part by unknown factors we may call “noise.” Statistical mod-
els introduce probability distributions to describe the variation due to noise, and
thereby achieve quantitative expressions of knowledge about the signal—a process
we will describe more fully in Chapters 7 and 10. The essential ideas in statistical
modeling are simple and very general, allowing modern methods to make flexible—
and thus reasonably realistic—assumptions. Despite this wide-ranging generality,
the models found in elementary statistics rely heavily on a small handful of prob-
ability distributions. For this reason alone, a beginning student must learn about
the binomial model for binary observations, the Poisson model for counts, and the
normal model for continuous measurements. But there are additional motivations for
studying these and several other probability distributions. While it may be tempting
to dismiss the ubiquity of these distributions as a historical quirk, a throwback to a
pre-computer age in which simplicity was essential, a small number of distributions
remain especially important in contemporary practice. This is partly because many
methods of statistical inference, when applied carefully, are remarkably robust in the
face of modest deviations from theoretical assumptions. In addition, the simplest
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distributions often serve as a starting point when building more general and elabo-
rate models. Furthermore, these distributions continue to be important because they
arise in theoretical calculations. In this chapter we discuss at greater length some of
the probability distributions we mentioned in Chapters 3 and 4. We also introduce
several others.

5.1 Bernoulli Random Variables and the Binomial

Distribution

5.1.1 Bernoulli random variables take values 0 or 1.

A random variable X that takes the value 1 with probability p and 0 with proba-
bility 1 − p is called a Bernoulli random variable. We have already considered, as
an example, the inheritance of allele A from one of an offspring’s parents. Any di-
chotomous pair of events whose outcome is uncertain may be considered a Bernoulli
random variable. For example, patient P.S. in Example 1.4 made repeated choices
of the “burning” or “non-burning” house. Each such choice could be considered
a Bernoulli random variable by coding “burning” as 0 and “non-burning” as 1 (or
vice-versa).

5.1.2 The binomial distribution results from a sum of in-
dependent and homogeneous Bernoulli random vari-

ables.

In the case of the binomial distribution arising from Hardy-Weinberg equilibrium,
the two probabilistic assumptions were (i) independence, the pairs of alleles sorted
independently, and (ii) homogeneity, the allele probabilities were the same across
individuals. With X being the number of A alleles, these assumptions lead to X
having a binomial distribution over the possible values 0, 1, 2, with p = P (A). We
would write this by saying the distribution of X is B(2, p), or X ∼ B(2, p).

The binomial distribution is easy to generalize: instead of counting the number
of outcomes of a certain type out of a maximal possible value of 2, we allow the
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maximal value to be any positive integer n; under assumptions of independence and
homogeneity we then would say X has distribution B(n, p), or simply X ∼ B(n, p).
For example, if we were counting the number of wrinkled peas in a pod of only 3,
with each pea having probability p of being wrinkled, then we would let X be the
number of wrinkled peas and would say that X has a binomial distribution with
n = 3 or X ∼ B(3, p). By a similar argument to that made in the Hardy-Weinberg
example, we obtain P (X = 3) = p3, P (X = 2) = 3p2(1−p), P (X = 1) = 3p(1−p)2,
P (X = 0) = (1− p)3.

Again, similarly, if we count the number of wrinkled peas out of a total of 4, then
X ∼ B(4, p) and P (X = 4) = p4, P (X = 3) = 4p3(1− p), P (X = 2) = 6p2(1− p)2,
P (X = 1) = 4p(1− p)3, P (X = 0) = (1− p)4.

The general formula for n peas, with X ∼ B(n, p), is

P (X = x) =

(
n

x

)

px(1− p)(n−x) (5.1)

for x = 0, 1, 2, . . . , n, where
(

n
x

)
= n!

x!(n−x)!
is the number of ways of choosing x objects

from n without regard to ordering. Equation (5.1) is the binomial probability mass
function (or pdf). If X ∼ B(n, p) then straightforward calculations produce

E(X) = np

V (X) = np(1− p)
σX =

√

np(1− p).

The individual binary observations, such as the outcomes for the individual peas, are
independent Bernoulli random variables all having the same probability of taking the
value 1, i.e., the Bernoulli random variables are both independent and homogeneous.
Such random variables are often called Bernoulli trials. The sum of n Bernoulli
trials has a B(n, p) distribution. That is, in general, if Y1, Y2, . . . , Yn are independent
Bernoulli random variables and P (Yi = 1) = p for all i, and we define X =

∑n
i=1 Yi,

then X ∼ B(n, p).

Binomial distributions usually arise as the sum of Bernoulli trials. Thus, the bi-
nomial distribution is reasonable to assume if the Bernoulli random variables appear
to be independent and homogeneous. It is important to consider both assumptions
carefully. In particular, the assumptions of independence and homogeneity are fre-
quently violated when the Bernoulli random variables are observed across time.
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Example 1.4 (continued; initially described on page 11) In judging the
14 out of 17 occasions on which P.S. chose the non-burning house by statistical
methods we would assume that the set of 17 forced choices were Bernoulli trials.
The independence assumption would be violated if P.S. had a tendency, say, to
repeat the same response she had just given regardless of her actual perception.
The homogeneity assumption would be violated if there were a drift in her response
probabilities (e.g., due to fatigue) over the time during which the experiment was
carried out. 2

In the case of alleles contributed by parents in producing offspring the assumption
of independence would be violated if somehow the two parents were coupled at the
molecular level, so that the processes of separating the alleles in the two parents were
connected; in most studies this seems very unlikely and thus the first assumption is
quite reasonable. The second assumption is that there is a single, stable value for the
probability of the allele A. This clearly could be violated: for instance, the population
might actually be a mixture of two or more types of individuals, each type having
a different value of P (A); or, when the population is not in equilibrium due to such
things as non-random mating, or genetic drift, we would expect deviations from the
binomial prediction of the Hardy-Weingberg model. Indeed, in population genetics,
a check on the fit of the Hardy-Weinberg model to a set of data is used as a prelimary
test before further analyses are carried out.

Example 5.1 Nicotinic acetylcholine receptor and ADHD Attention deficit
hyperactivity disorder (ADHD),a major psychiatric disorder among children, has
been the focus of much recent research. There is evidence of heritability of ADHD,
and effective medications (such as Ritalin) involve inhibition of dopamine transport.
There is also evidence of involvement of the nicotine system, possibly due to its
effects on dopamine receptors. Kent et al. (2001, Psychiatric Gentics, 11: 37–40)
examined genotype frequencies for the nicotinic acetylcholine receptor subunit α4
gene among children with ADHD and their parents. At issue was the frequency of
an T → C exchange in one base in the gene sequence. In order to carry out the
standard analysis the authors first examined whether the population appeared to be
in equilibrium. If so, the probabilities of the allele combinations TT, CT, CC would
be given by the Hardy-Weinberg model (see page 60). The frequencies for the 136
parents in their study were as follows:
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TT CT CC
Number 48 71 17
Frequency .35 .52 .13
Hardy-Weinberg Probability .38 .47 .15

In this case, the probabilities determined from the Hardy-Weinberg model (how
we obtain these will be discussed in Chapter 7) are close to the observed allele
frequencies, and there is no evidence of disequilibrium in the population (we also
discuss these details later). Kent et al. went on to find no evidence of an association
between this genetic polymorphism and the diagnosis of ADHD. 2

In some cases the probability p is not stable across repititions. Indeed, sometimes
the change in probability is the focus of the experiment, as when learning is being
studied.

Example 5.2 Learning impairment following NMDA antagonist injection
Experiments on learning often record responses of subjects as either correct or incor-
rect on a sequence of trials during which the subject is given feedback as to whether
their response was correct or not. The subjects typically begin with a probability
of being correct that is much less than 1, perhaps near the guessing value of .5, but
after some number of trials they get good at responding and have a high probability
of being correct, i.e., a probability near 1. An illustration of this paradigm comes
from Smith et al. (2005), who examined data from an experiment in rats by Stefani
et al. (2003) demonstrating that learning is impaired following an injection of an
NMDA antagonist into the frontal lobe. (Smith, A., Stefani, M., Moghaddam, B.,
Brown, E. (2005) Analysis and design of behavioral experiments to characterize pop-
ulation learning. Journal of Neurophysiology, 93:1776-92.) (Stefani, M.R., Groth,
K., Moghaddam, B. (2003) Glutamate receptors in the rat medial prefrontal cortex
regulate set-shifting ability. Behavioral Neuroscience, 117:728-37.) In a first set of
trials, the rats learned to discriminate light from dark targets, then, in a second set
of trials, which were the trials of interest, they needed to discrimate smooth versus
rough textures of targets. In two groups of rats a buffered salt solution with the
NMDA antagonist was injected prior to the second set of trials, and in two other
groups of rats the buffered salt solution without the antagonist was injected. Fig-
ure 5.1 displays the responses across 80 learning trials for set 2. It appears from the
plot of the data that the groups of rats without the NMDA antagonist did learn the
second task more quickly than the second group of rats, as expected.
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Figure 5.1: Responses for 13 rats in the placebo group (labeled “Vehicle,” in refer-
ence to the buffered solution vehicle) and 9 rats in the treatment group (“MK801
Treatment”) for set 2. Black and white indicate correct and incorrect responses,
respectively. Each row displays responses for a particular rat across 80 trials. Gray
triangles indicate that the rat had 8 correct trials in a row. A gray triangle appearing
after the end of the trials, to the right, indicates that the rat did not achieve 8 correct
trials in a row by the end of the 80 trials. Groups A and C were rewarded for dark
arm on set 1 while groups B and D were rewarded for light arm on set 1. The rats
in group A clearly learned the discrimination task relatively quickly.

The Smith et al. analysis was based on the method of maximum likelihood, which
we will discuss subsequently. For now, however, we may use the example to consider
the possibility of aggregating the responses within groups of rats. Two possible ways
to aggregate would be either across rats or across trials, the latter producing blocks of
trials (e.g., 10 blocks of 8 trials). In each case, aggregation would produce a number
X of correct responses out of a possible number n. We would then be able to plot the
value of X across time in order to help examine the differences among the groups.
If we were to assume X ∼ B(n, p), in each case, what would we be assuming about
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the trials themselves? If we were to aggregate across rats we would be assuming that
the different rats’ responses were independent, which is reasonable, and that the rats
all had the same probability of responding correctly, which is dubious. Making this
kind of dubious assumption is often a useful first step, and in fact can be innocuous
for certain analyses, but it must be considered critically. After aggregating trials
into blocks, the binomial assumption would be valid if the trials were independent
and had the same probability of correct response, both of which would be dubious—
though again potentially useful if its effects were examined carefully. In situations
such as these it would be incumbent upon the investigator to show that aggregation
would be unlikely to produce incorrect analytical results. 2

Before leaving the binomial distribution, let us briefly examine one further appli-
cation.

Example 5.3 Membrane conductance Anderson and Stevens (1983, J. Physi-
ology, 235: 655–691) were able to estimate single-channel membrane conductance by
measuring total conductance at a frog neuromuscular junction. Their method relied
on properties of the binomial distribution. Suppose that there are n channels, each
either open or closed, all acting independently, and all having probability p of being
open. Let X be the number of channels that are open, and γ the single-channel
conductance. Then the measured membrane conductance G satisfies G = γX where
X ∼ B(n, p). From formulas (3.3) and (3.4) it follows that the mean and variance
of G are given by

E(G) = γnp

and
V (G) = γ2np(1− p).

Now, assuming that p is small, we have 1− p ≈ 1 so that γ satisfies

γ =
V (G)

E(G)
.

Anderson and Stevens made multiple measurements of the membrane conductance
at many different voltages, obtaining many estimates of V (G) and E(G). The slope
of the line through the origin fitted to a plot of V (G) against E(G) thereby furnished
an estimate of the single-channel conductance.1 2

1Additional comments on this method, and its use in analysis of synaptic plasticity, may be
found in Faber and Korn (1991). Faber, D.S. and Korn, H. (1991) Applicability of the coefficient
of variation method for analyzing synaptic plasticity, Biophysical J., 60: 1288–1294.
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The Anderson and Stevens estimate of single-channel conductance is based on
the approximate proportionality of the variance and mean across voltages. In the
derivation above this was justified from the binomial, for small p. The small-p case
of the binomial is very important and, in general, when p is small while n is large,
the binomial distribution may be approximated by the Poisson distribution.

5.2 The Poisson Distribution

5.2.1 The Poisson distribution is often used to describe counts

of binary events.

The Poisson distribution is the most widely-used distribution for counts. Strictly
speaking, the Poisson distribution assigns a positive probability to every nonnega-
tive integer 0, 1, 2, . . ., so that every nonnegative integer becomes a mathematical
possibility. This may be contrasted with the binomial, which takes on numbers only
up to some n, and leads to a proportion (out of n). The defining feature of the Pois-
son distribution, however, is that it arises as a small-p and large-n approximation to
the binomial, which we discuss in Section 5.2.2. That mathematical characterization
portrays the count, approximately, as a sum of many binary variables, each indicat-
ing whether an event occurs (perhaps across time or across space), with each event
occurrence having a small probability p. For example, neural spike counts are some-
times modeled as Poisson random variables. This results from a characterization of
the spike train as a sequence of discrete event times, and if we decompose time into
small bins (e.g., having 1 millisecond width) we may consider each time bin to define
a binary variable that indicates whether a spike occurs within that bin, as depicted
in Figure 5.2. When we consider discrete events across time there is necessarily some
time scale (corresponding to a small bin width) on which the events become rare, so
that the probability p that any binary variable will take the value 1 becomes small.
For a spiking neuron with a low or moderate firing rate (say 10 spikes per second
or less), for example, a scale in milliseconds leaves large gaps (many milliseconds)
between each spike and makes the probability of a spike within any 1 millisecond bin
quite small (e.g., less than 10/1000=.01). For this reason the Poisson is often said
to be a model for the variation in the number of occurrences of rare events.2

2The derivation of the Poisson distribution as an approximation to the binomial is credited to
Siméon D. Poisson, having appeared in his book, published in 1837. Bortkiewicz (1898, The Law of
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discrete

continuous

0 0 1 1 0 0 0 0 1 0 0 1 0 0 0

Figure 5.2: Several event times displayed both in continuous time and in discrete
time. In the discrete case time has been decomposed into bins and for each bin the
presence or absence of an event is indicated by a 1 or 0.

Counts of such “rare” events are common in neuronal data analysis, but it is
important to recognize that many count distributions are discernibly non-Poisson.
We begin our discussion with a classic data set from a situation where there are good
reasons to think the Poisson distribution ought to provide an excellent description
of the variation among counts. Although drawn from physics, this example helps
to fix ideas about assumptions that generate Poisson variability. We then mention
some situations in neural data analysis where Poisson distributions have been as-
sumed. After that, we will elaborate on the motivation for the Poisson and then we
will conclude with some discussion of frequently-occurring departures from Poisson
variation among counts.

Example 5.4 Emission of α particles Emission of alpha particles Rutherford
and colleagues (1920) counted the number of α-particles emitted from a radioactive
specimen during 2608 7.5 second intervals.3 The data are summarized in the table
below. The first column gives the counts 0, 1, 2, . . . , 9,≥ 10, and the second column
gives number of times the corresponding count occurred. For example, in 383 of
the 2608 intervals there were 2 particles emitted. The third colum provides the
“expected” frequencies based on the Poisson distribution (obtained by maximum
likelihood, defined in Section 7.2.2).

Small Numbers) emphasized the importance of the Poisson distribution as a model of rare events.
3Rutherford, Chadwick, and Ellis (1920) Radiations from Radioactive Substances, Cambridge,

p. 172; cited in Feller, W. (1968) An Introduction to Probability Theory and Its Applications, Third
Ed., New York: Wiley.
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x observed expected
0 57 54.40
1 203 210.52
2 383 407.36
3 525 525.50
4 532 508.42
5 408 393.52
6 273 253.82
7 139 140.33
8 45 67.88
9 27 29.19

≥ 10 16 17.08

Here, the emission of any one particle is (on an atomic time scale) a “rare event” so
that the number emitted during 7.5 seconds may be considered the number of rare
events that occurred. 2.

The Poisson pdf is

P (X = x) = e−λλ
x

x!
(5.2)

and we write X ∼ P (λ). The mean, variance, and standard deviation of X are given
by

E(X) = λ

V (X) = λ

σX =
√
λ.

The equality of variance and mean is highly restrictive and is often used to examine
whether repeated series of observations depart from Poisson variation: a plot of
variance vs. mean should fall approximately on the line y = x.

Here is a physiological setting involving particle emissions where the Poisson
distribution was used much as in Example 5.4.

Example 5.5 Human detection of light Hecht, Schlaer, and Pirenne (1942, J.
Gen. Physiol., 25: 819–40) investigated the sensitivity of the human visual system
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to very dim light, and calculated the number of light quanta required to drive per-
ception. To do this, Hecht et al. constructed an apparatus that would emit very dim
flashes of light, of 1 ms duration, in a darkened room; they presented these to several
subjects and determined the proportion of times each subject would respond that he
or she had seen a flash of light. In one part of their analysis, they assumed that the
number of light quanta penetrating the retina would follow a Poisson distribution.
If X is the number of quanta emitted, and if c is the number required for perception
of the flash, then the probability of perception of flash is

P (X ≥ c) = 1− F (c− 1) (5.3)

where F (x) is the Poisson cumulative distribution function. (Note that the argument
c−1 appears because P (X ≥ c) = P (X > c−1) = 1−F (c−1).) Using the formula
for the Poisson cdf (i.e., the summed pdf), Hecht et al. fit this to observed data and
found that, roughly, a minimum of 6 quanta must be absorbed by the retina in order
for a human to detect light. 2.

Not all applications of the Poisson distribution involve events across time. In the
next example the events are distributed across space—on neural synaptic boutons.

Example 5.6 Quantal response in synaptic transmission The quantal re-
sponse hypothesis is that neurotransmitter is released from a large number of presy-
naptic vesicles in packets, or “quanta,” each of which has a small probability of
being released. To test this, del Castillo and Katz (1954, J. Physiol., 124: 560–573)
recorded postsynaptic potentials, or end-plate potentials (EPPs), at a frog neuromus-
cular junction. By assuming a Poisson distribution for the number of quanta released
following an action potential, the authors obtained good experimental support for
the quantal hypothesis. 2.

5.2.2 For large n and small p the binomial distribution is

approximately the same as Poisson.

Example 5.6 (continued from Section 5.2.1) Let us go a step further in exam-
ining the argument of del Castillo and Katz. Under behavioral conditions the EPP
would typically involve hundreds of quanta, but del Castillo and Katz used a magne-
sium bath to greatly decrease this number. In addition, they recorded spontaneous
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(“miniature”) EPPs, which, according to the quantal hypothesis, should involve sin-
gle quanta. They observed that this gave them two different ways to estimate the
mean number of quanta released. The first method is to estimate the mean in terms
of P (X = 0) using the Poisson pdf formula P (X = 0) = e−λ or

λ = − logP (X = 0). (5.4)

To estimate P (X = 0) they used the ratio D/C, where C was the total number of
presynaptic action potentials and D was the number of times that the postsynaptic
voltage failed to increase. Their second method used the ratio A/B, where A was
the mean EPP voltage response following actional potentials and B was the mean
spontaneous EPP voltage response. When the data from 10 experiments were plot-
ted, the ten (x, y) pairs with y = − logD/C and x = A/B were very close to the
line y = x. 2.

A major motivation for the Poisson distribution is that it approximates the bino-
mial distribution as p gets small and n gets large (with λ = np). One way to express
this is given by the theorem below, but the argument used by del Castillo and Katz,
described above, highlights both the key assumptions and the key mathematical re-
sult. Under the quantal hypothesis that vesicle release is binary together with the
Bernoulli assumptions of independence and homogeneity, we have

P (X = 0) = (1− p)n

where p is the probability that any given vesicle will release and n is the number of
vesicles. We define λ = np and make the substitution p = λ/n, then take logs of
both sides to get

logP (X = 0) = n log(1− λ

n
).

Now, for large n, an expansion of the log (see Section A.4 of the Appendix) gives
n log(1− λ/n) ≈ −λ. This says that Equation (5.4) becomes a good approximation
for small p and large n. The rest of the argument is given below.

Theorem: Poisson pdf approximation to binomial pdf For λ > 0,
letting p = λ/n, as n→∞ we have

(
n

k

)

pk(1− p)n−k → e−λλ
k

k!
. (5.5)
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Proof: To derive Equation (5.5), the key manipulation is an expansion of
the log function. First, for t near 0 we may use a first-order Taylor series
to expand the function log(1 + t) as log(1 + t) ≈ t. We may use this with
t = −λ/n for any fixed number λ when n is large (so that t is near zero)
and get

log(1− λ/n) ≈ −λ/n.
Multiplying by n we have

n log(1− λ/n) ≈ −λ

and taking the exponential of both sides we get the equivalent approxi-
mation

(1− λ/n)n ≈ e−λ

which is formalized by saying that as n→∞,

(1− λ

n
)n → e−λ. (5.6)

Now let λ = pn, substitute p = λ/n into the binomial pdf,

f(k) =

(
n

k

)

pk(1− p)n−k =
n!

(n− k)!k!

(
λ

n

)k (

1− λ

n

)n−k

and rearrange the terms to get

f(k) = A · B

where

A =
(n

n

)(n− 1

n

)(
n− 2

n

)

· · ·
(
n− k + 1

n

)

B =

(
λk

k!

)

︸ ︷︷ ︸

(

1− λ

n

)n

︸ ︷︷ ︸

(

1− λ

n

)−k

︸ ︷︷ ︸

.

As n → ∞, the expression for A converges to 1; the expression over the
first underbrace defining B remains constant (n does not appear there);
by (5.6) the expression over the second underbrace defining B converges
e−λ; and the expression over the third underbrace defining B converges
to 1. This gives (5.5). 2
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5.2.3 The Poisson distribution results when the binary events
are independent.

In thinking about the binomial assumption for a random variable X one generally
ponders whether it is reasonable to conceptualize X as a sum of Bernoulli trials with
the independence and homogeity assumptions. Similarly, in the Poisson case, one
typically asks whether the count variable X could be considered a sum of Bernoulli
trials for small p and large n. The first requirement is that the counts really are
sums of binary events. This means that X results from a string of 0s and 1s, as in
Figure 5.1, page 128. In Example 5.4, page 131, each emission event corresponds
to a state transition in the nucleus of a particular atom. It is reasonable to assume
that it is impossible for two nuclei to emit particles at precisely the same time and,
furthermore, that each Geiger-counter “click” corresponds to exactly one particle
emission. Independence, usually the crucial assumption, here refers to the inde-
pendence of the many billions of neuclei residing within the specimen. This is an
assumption, apparently well justified, within the quantum-mechanical conception of
radioactive decay. It implies, for example, that any tendency for two particles to be
emitted at nearly the same time would be due to chance alone: because there is no
interaction among the nuclei, there is no physical “bursting” of multiple particles.
Furthermore, the probability of an emission would be unlikely to change over the
course of the experiment unless the speciman were so tiny that its mass changed
appreciably. To summarize, the Poisson distribution for counts of events across time
makes intuitive sense when we can conceptualize the events as Bernoulli trials, which
are homogeneous and independent, where the success probability p is small.

The framework we have constructed above to discuss emission of α particles would
apply equally well to quanta of light in the Hecht et al. experiment. What about
the vesicles at the neuromuscular junction? Here, the quantal hypothesis is what
generates the sequence of dichotomous events (release vs. no release). Is release at
one vesicle independent of release at another vesicle? If neighboring vesicles tend to
release in small clumps, then we would expect to see more variability in the counts
than that predicted by the Poisson, while if release from one vesicle tended to inhibit
release of neighbors we would expect to see more regularity, and less variability in
the counts. It is reasonable to begin by assuming independence, but ultimately
it is an empirical question whether this is justified. Homogeneity is suspect: the
release probability at one vesicle may differ substantially from that at another vesicle.
However, as del Castillo and Katz realized, homogeneity is actually not an essential
assumption. We elaborate on this point when we return to the Poisson distribution,
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and its relationship to the Poisson process in Section 19.2.2.

Neuronal spike counts are sometimes assumed to be Poisson-distributed. Let us
consider the underlying assumptions in this case. First, if measurements are made
on a single neuron to a resolution of 1 millisecond or less, it is the case that a
sequence of dichotomous firing events will be observed: in any given time bin (e.g.,
any given millisecond) the neuron either will or will not have an action potential, and
it can not have two. But are these events independent? Immediately a neuron has
fired the membrane of a neuron undergoes changes that alter its propensity to fire
again. In particular, there is a refractory period during which sodium channels are
inactivated and the neuron can not fire again. This clearly violates the assumption
of independence. In addition, there may be a build-up of ions, or activity in the
local neural network, that makes a neuron more likely to fire if it has fired recently
in the past (it may be “bursting”). This again would be a violation of independence.
In many experiments such violations of independence produce markedly non-Poisson
count distributions and turn out to have a substantial effect, but in others the effects
are relatively minor and may be ignored. We indicated that, in the case of vesicle
release of neurotransmitters, the homogeneity assumption is not needed in order
to apply the Poisson approximation. The same is true for neuronal spike counts:
the spike probabilities can vary across time and still lead to Poisson-distributed
counts. The key assumption, requiring thought, is independence. On the other hand,
the question of whether it is safe to assume Poisson variation remains an empirical
matter, subject to statistical examination. As in nearly all statistical situations,
judgment of the accuracy of the modeling assumptions—here, the accuracy of the
Poisson distribution in describing spike count variation—will depend on the analysis
to be performed.

5.3 The Normal Distribution

As we said in Chapter 3, the normal distribution (or Gaussian distribution) plays
a dominant role in statistical theory because of the Central Limit Theorem, which
we state in Chapter 6. In Section 5.3.1 we review a property of the normal distribu-
tion that leads to interpretation of standard errors and confidence intervals, and in
Section 5.3.2 we note its relationship to the binomial and Poisson distributions.
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5.3.1 Normal random variables are within 1 standard devia-
tion of their mean with probability 2/3; they are within

2 standard deviations of their mean with probability
.95.

We indicated on page 74 that when X has a normal distribution probabilities of the
form P (a ≤ X ≤ b) can not be found directly by calculus and must, instead, be
obtained numerically. Two such probabilities are so important in practice that they
should be committed to memory. We will call these the “2

3
and 95% rule.”

The 2
3

and 95% rule: For a normal random variable X with mean µ
and standard deviation σ,

P (µ− σ ≤ X ≤ µ+ σ) ≈ 2
3

P (µ− 2σ ≤ X ≤ µ+ 2σ) ≈ .95

We also have P (µ− 3σ ≤ X ≤ µ+ 3σ) ≈ .997, but this is less important.

Example: Ebbinghaus on human memory A very early experiment on
human memory was reported by Ebbinghaus (1885). Ebbinghaus used himself as
the sole subject of his investigation, and he taught himself to learn lists of nonsense
syllables made up of consonant-vowel-consonant trigrams such as DAX. Ebbinghaus
memorized relatively long lists (e.g., 16 trigrams) to the point of being able to recite
them without error, twice consecutively, and kept track of the time it took for him
to achieve this success. He then repeated the task using the same lists after a delay
period, that is, he re-learned the lists, and he examined the way his re-learning time
increased with the length of the delay period. This was a way to quantify his rate
of forgetting. (Compare the experiment of Kolers in Example 2.5 on page 43.) The
method Ebbinghaus used relied on the normal distribution. In one of his tabulations,
he examined 84 memorization times, each obtained by averaging sets of 6 lists. He
found the distribution of these 84 data values to be well approximated by the normal
distribution, with mean 1,261 seconds and standard deviation 72 seconds.4 This
would mean that for about 2/3 of the sets of lists his learning time was between

4He actually found the “probable error,” which is .6745σ to be 48.4 seconds. See Stigler (1986)
for a discussion of these data.
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1,189 seconds and 1,333 seconds. It also would mean that a set-averaged learning
time less than 1,117 seconds or greater than 1,405 seconds would be rare: each of
these would occur for only about 2.5% of the sets of lists. 2

It may seem odd that in examining the suitability of the normal distribution
Ebbinghaus did not look at the distribution of learning times for lists, but rather
chose to work with the distribution of average learning times across sets of 6 lists.
The distribution of learning times was skewed. Only after averaging across several
learning times did the distribution become approximately normal. This effect is due
to the Central Limit Theorem, discussed in Section 6.3.1.

Normal distributions are often standardized so that µ = 0 and σ = 1. In general,
using Equation (3.6) if X ∼ N(µ, σ2) and Y = aX+ b then Y ∼ N(aµ+ b, a2σ2). As
a special case, if X ∼ N(µ, σ2) and Z = (X − µ)/σ then Z ∼ N(0, 1). The N(0, 1)
distribution is often called the standard normal. This is often used for calculation:
if we know probabilities for the N(0, 1) distribution then we can easily obtain them
for any other normal distribution. For example, we also have

P (a ≤ X ≤ b) = P (
a− µ
σ
≤ X − µ

σ
≤ b− µ

σ
) = P (

a− µ
σ
≤ Z ≤ b− µ

σ
).

Thus, the right-hand side may be found using a table in order to obtain the answer
for the left-hand side. Standardized variables are often denoted by Z, sometimes
with the terminology Z-score.

5.3.2 Binomial and Poisson distributions are approximately
normal, for large n or large λ.

The normal distribution may be used to approximate a large variety of distributions
for certain values of parameters. In the case of the binomial with parameters n and p,
we take the normal mean and standard deviation to be µ = np and σ =

√

np(1− p).
An illustration is given in Figure 5.3. The approximation is generally considered
to be quite accurate for most calculations when n is large and p is not close to its
boundary values of 0 and 1; a commonly-used rule of thumb (which is somewhat
conservative, at least for .2 < p < .8) is that it will work well when np ≥ 5 and
n(1− p) ≥ 5.

In the case of the Poisson with parameter λ we take the normal mean and standard
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10 20 30 40 50 60 70

Figure 5.3: The normal approximation to the binomial. Black circles are pdf values
for a B(100, .4) distribution; Curve is pdf of a normal having the same mean and
variance.

deviation to be µ = λ and σ =
√
λ; the approximation is generally considered to be

acceptably accurate for many calculations5 when λ ≥ 15.

These approximations are a great convenience, especially in conjunction with the
“2

3
− 95% rule.”

5Actually, different authors give somewhat different advice. The acceptability of this or any
other approximation must depend on the particular use to which it will be put. For computing the
probability that a Poisson random variable will fall within 1 standard deviation of its mean, the
normal approximation has an error of less than 10% when λ = 15. However, it will not be suitable
for calculations that go far out into the tails, or that require several digits of accuracy. In addition,
a computational fine point is mentioned in many books. Suppose we wish to approximate a discrete
cdf F (x) by a normal, say F̃ (x). The the value F̃ (x + .5) is generally closer to F (x) than is F̃ (x).
This is sometimes called a continuity correction.
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5.4 Some Other Common Distributions

5.4.1 The multinomial distribution extends the binomial to

multiple categories.

In Example 5.1, on page 126, we cited an application of the Hardy-Weinberg model
in a study of genotype frequencies for the nicotinic acetylcholine receptor subunit
α4 gene among children with ADHD and their parents. The three genotypes were
labeled TT, CT, CC. This constitutes three distinct categories. For the ith individual
in the study, let Yi = (1, 0, 0) if that individual has genotype TT , Yi = (0, 1, 0) if that
individual has genotype CT , and Yi = (0, 0, 1) if that individual has genotype CC.
The variable Yi thus indicates the genotype of the ith individual, for i = 1, 2, . . . , n.
Let p1 = P (Yi = (1, 0, 0)), p2 = P (Yi = (0, 1, 0)), and p3 = P (Yi = (0, 0, 1)),
where p1 + pn + p3 = 1 and define X =

∑n
i=1 Yi. Note that X gives the number of

individuals, among a total of n, that have each of the three genotypes. In the Kent
et al. data in Example 5.1 there were 136 individuals: 48 of genotype TT , 71 of
genotype CT , and 17 of genotype CC, and we could write X = (48, 71, 17). If we
assume the Y1, Y2, . . . , Yn are independent then X follows a multinomial distribution,
written X ∼M(n; p1, p2, p3) with pdf

P (X = (x1, x2, x3)) =
n!

x1!x2!x3!
px1

1 p
x2
2 p

x3
3 . (5.7)

According to the Hardy-Weinberg model the probabilities (p1, p2, p3) would be re-
stricted to satisfy the binomial pdf p1 = p2, p2 = 2p(1 − p) and p3 = (1 − p)2.
However, (5.7) holds regardless of the validity of the Hardy-Weinberg model, as long
as the genotypes are independent and homogeneous across individuals.

More generally, a random variable is distributed as X ∼M(n; p1, p2, . . . , pk) if its
pdf is given by

P (X = (x1, x2, . . . , xk)) =
n!

x1!x2! · · ·xk!

k∏

j=1

px1
1 p

x2
2 · · · pxk

k

where p1 + · · ·+pk = 1 and x1 + · · ·+xk = n. When k = 2 we obtain as a special case
the binomial pdf of Equation (5.1). (To see this, with x as in Equation (5.1) define
(x1, x2) in (5.1) to be (x1, x2) = (x, n − x).) Thus, the multinomial is an extension
of the binomial to multiple categories.
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5.4.2 The exponential distribution is used to describe wait-
ing times without memory.

We defined the exponential distribution in Equation (3.9), page 69, using it to illus-
trate calculations based on the pdf, and we showed how it may be applied to ion
channel activation durations in Example 3.5. The exponential distribution is very
special6 because of its “memoryless” property. To understand this, let X be the
length of time an ion channel is open, and let us consider the probability that the
channel will remain open for the next time interval of length h. For example, h
might be 5 milliseconds. How do we write this? If we begin the moment the channel
opens, i.e., at x = 0, the next interval of length h is (0, h) and we want P (X > h).
On the other hand, if we begin at time x = t, for some positive t, such as 25 mil-
liseconds, the interval in question is (t, t + h) and we are asking for a conditional
probability: if the channel is open at time t we must have X > t, so we are asking
for P (X > t+ h|X > t). We say that the channel opening duration is memoryless if

P (X > t+ h|X > t) = P (X > h) (5.8)

for all t > 0 and h > 0. That is, if t = 25 milliseconds, the channel does not “remem-
ber” that it has been open for 25 milliseconds already; it still has the same probability
of remaining open for the next 5 milliseconds that it had when it first opened; and
this is true regardless of the time t we pick. The exponential distributions are the
only distributions7 that satisfy Equation (5.8).

Contrast this memorylessness with, say, a uniform distribution on the interval
[0, 10], measured in milliseconds. According to this uniform distribution, the event
(e.g., the closing of the channel) must occur within 10 milliseconds and initially
every 5 millisecond interval has the same probability. In particular, the probability
the event will occur in the first 5 milliseconds, i.e., in the interval [0, 5], is the same
as the probability it will occur in the last 5 milliseconds, in [5, 10]. Both probabilities
are equal to 1

2
. However, if at time t = 5 milliseconds the event has not yet occurred

then we are certain it will occur in the next half second [5, 10], i.e., this probability
is 1, which is quite different than 1

2
. In anthropomorphic language we might say

the random variable “remembers” that no event has yet occurred, so its conditional
probability is adjusted. For the exponential distribution, the probability the event

6Another reason the exponential distribution is special is that among all distributions on (0,∞)
with mean µ = 1/λ, the Exp(λ) distribution has the maximum entropy. See Equation (4.29).

7The memoryless property can also be stated analogously for discrete distributions; in the dis-
crete case only the geometric distributions are memoryless.
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will occur in the next 5 milliseconds, given that it has not already occurred, stays
the same as time progresses.

Theorem A random variable X satisfies X ∼ Exp(λ) if and only if (5.8) is
satisfied for all positive t and h.

Proof: Using Equation (3.10) we have

P (X > t+ h|X > t) =
P (X > t+ h,X > t)

P (X > t)

=
P (X > t+ h)

P (X > t)

=
e−λ(t+h)

e−λt

= e−λh

= P (X > h).

Thus, every exponential distribution is memoryless. On the other hand,
let G(x) = 1−F (x) where F (x) is the distribution function of X. Mem-
orylessness implies

P (X > t+ h) = P (X > t)P (X > h)

i.e.,

G(t+ h) = G(t)G(h)

for all positive t and h. But (as mentioned in Section A.4 of the Ap-
pendix), G(x) can satisfy this equation for all positive t and h only if
it has an exponential form G(x) = aebx. Because F (x) = 1 − G(x) is
a distribution function, it satisfies F (x) → 1 as x → ∞, which implies
b < 0, and it satisfies F (x) → 0 as x → 0, which implies a = 1. Thus
F (x) = 1− e−λx for some λ, i.e., X ∼ Exp(λ). 2

An additional characterization of the exponential distribution is that it has a
constant hazard function.

Theorem: A continuous random variable X satistfies X ∼ Exp(λ0) if and only
if its hazard function is λ(x) = λ0.
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Proof: First suppose X ∼ Exp(λ0). The hazard function is easy to
compute from the definition

λ(x) =
f(x)

1− F (x)
.

Substituting f(x) = λ0e
−λ0x and F (x) = 1− e−λ0x we have

λ(x) =
λ0e

−λ0x

e−λ0x

= λ0.

On the other hand, if the hazard function is λ(x) = λ0 we may rewrite
the definition of λ(x) and solve for F (x),

F (x) = 1− λ0f(x)

and then differentiate to get

f(x) = −λ0f
′(x)

which implies f(x) ∝ e−λ0x (see Section A.4) and because f(x) must
integrate to 1 we get f(x) = λ0e

−λ0x. 2

The constant hazard of the exponential may be considered another way to view
memorylessness: with constant hazard, given that the event has not already occurred
at time t the probability that the event occurs in the next infinitesimal interval
(t, t+ dt) is the same as it would be for any other infinitesimal interval (t′, t′ + dt).

In Chapter 19 we will discuss the role played by the exponential distribution in
Poisson processes, which are sometimes used to model spike trains.

5.4.3 Gamma distributions are sums of exponentials.

In Example 3.5, on page 71, we illustrated a basic property of a gamma distribution:
if X1, X2, . . . , Xn are distributed as Exp(λ), independently, and Y = X1 + · · ·+Xn,
then Y ∼ Gamma(n, λ). Note that a Gamma(1, λ) distribution is the same as
an Exp(λ) distribution. More generally, a random variable X is said to have a
Gamma(α, β) distribution when its pdf is

f(x|α, β) =
βα

Γ(α)
xα−1e−βx
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for x > 0 and is 0 when x ≤ 0. Here, the function Γ(a) is the gamma function:

Γ(a) =

∫ ∞

0

xa−1e−xdx.

The gamma function is a variant of the factorial function; we have Γ(n) = (n − 1)!
for any positive integer n. If X ∼ Gamma(α, β) then

E(X) =
α

β

V (X) =
α

β2

σX =

√
α

β
.

Plots of the gamma will be displayed for the special case of the chi-squared distribu-
tion, in the next subsection.

5.4.4 Chi-squared distributions are special cases of gamma

distributions.

If W ∼ N(0, 1) then X = W 2 is said to have a chi-squared distribution on 1 degree
of freedom, which is written X ∼ χ2

1. If Wi ∼ χ2
1 for all i = 1, . . . , n, independently,

and if X = W1 + W2 + · · ·+ Wn, then X is said to have a chi-squared distribution
on n degrees of freedom, written X ∼ χ2

n. The most important way chi-squared
distributions arise is as sums of squares of independent normal distributions. In
general, a random variable X is said to have a chi-squared distribution with degrees
of freedom ν, written χ2

ν , if it has a Gamma(α, β) distribution with α = ν
2

and β = 1
2
.

If X ∼ χ2
ν then

E(X) = ν

V (X) = 2ν

σX =
√

2ν.

Figure 5.4 shows several chi-squared pdfs. Note that, for small degrees of freedom,
the distribution is skewed toward high values (or skewed to the right). That is, it
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Figure 5.4: Chi-squared pdfs for four values of the degrees of freedom: ν = 1 (top
left), 4 (top right), 9 (bottom left), and 16 (bottom right).

is not symmetrical, but rather large values distant from the middle (to the right)
are more likely than small values distant from the middle (to the left). For the χ2

4,
the middle of the distribution is roughly between 1 and 6 but values less than 0 are
impossible while values much greater than 7 have substantial probability. For large
degrees of freedom ν the χ2

ν becomes approximately normal. For ν = 16 in Figure
5.4 there remains some slight skewness, but the distribution is already pretty close
to normal over the plotted range.

5.4.5 The beta distribution may be used to describe varia-

tion on a finite interval.

A random variable X is said to have a beta distribution with parameters α and β if
its pdf is

f(x) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1

for 0 < x < 1 and is 0 otherwise. We then write X ∼ Beta(α, β). Suppose W1 ∼
Gamma(α1, β) and W2 ∼ Gamma(α2, β), independently, and let X = W1/(W1 +
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W2). Then we have X ∼ Beta(α, β).

If X ∼ Beta(α, β) then E(X) = α/(α + β) and V (X) = α + β + 1. The beta
distribution is sometimes written instead in terms of the parameters µ = E(X) and
ν = V (X)−1, so that α = µν and β = (1−µ)ν. The beta distribution is commonly
used to describe continuous variation that is confined to (0,1). By rescaling it is easy
to obtain a distribution confined to any finite interval (a, b). When α > 1 and β > 1
the beta pdf is unimodal and f(x) → 0 as x → 0 or x→ 1, and if α = β the pdf is
symmetric about x = .5. A unimodal symmetric beta pdf was plotted in Figure 3.3.

The beta pdf arises in Bayesian analysis of binomial data, which is discussed
in Section 7.3.9. There, the binomial parameter p must be in (0, 1) and the beta
distribution is used to represent knowledge about its value.

5.4.6 The inverse Gaussian distribution describes the wait-

ing time for a threshold crossing by Brownian motion.

A random variable X is said to have an inverse Gaussian distribution if its pdf is

f(x) =
√

λ/(2πx3) exp(−λ(x− µ)2/(2µ2x))

for x > 0. Here, E(X) = µ and V (X) = µ3/λ.

The inverse Gaussian arises in conjunction with Brownian motion, where it is
the distribution of “first passage time,” meaning the time it takes for the Brownian
motion (with drift) to cross a boundary. (See Whitmore, G.A. and Seshadri, V.
(1987) A Heuristic Derivation of the Inverse Gaussian Distribution The American
Statistician, 41: 280-281. Also, Mudholkar, G.S. and Tian, L. (2002) An entropy
characterization of the inverse Gaussian distribution and related goodness-of-fit test,
J. Statist. Planning and Inference, 102: 211–221.) In theoretical neurobiology the
interspike interval distribution for an integrate-and-fire neuron is inverse Gaussian
when the subthreshold neuronal voltage is modeled as Brownian motion, with drift,
and the “boundary” is the voltage threshold for action potential generation. The
essential idea here is that excitatory and inhibitory post-synaptic potentials, EPSPs
and IPSPs, are considered to arrive in a sequence of time steps of length δ, with
each EPSP and IPSP contributing normalized voltages of +1 and -1, respectively,
and with the probability of EPSP and IPSP being p and 1 − p, where p > 1 − p
creates the upward “drift” toward positive voltages. Let Xt, . . . be the post-synaptic
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Figure 5.5: Example of an integrate-and-fire neuron. At each time step there is either
an EPSP or an IPSP, with probabilities p and 1 − p. For p > 1 − p this creates a
stochastic upward “drift” of the voltage (as the inputs are summed or “integrated”)
until it crosses the threshold and the neuron fires. The neuron then resets to its
baseline voltage. The resulting interspike interval (ISI) distribution is approximately
inverse Gaussian.

potential at time t with t = 1, 2, . . . and let Sn = X1 +X2 + · · ·+Xn. The variable
Sn is said to follow a random walk and an action potential occurs when Sn exceeds
a particular threshold value a. The behavior of an integrate-and-fire neuron based
on such a random walk process is illustrated in Figure 5.5. The continuous-time
stochastic process known as Brownian motion with drift (and thus the inverse Gaus-
sian distribution of the interspike intervals (ISI)s) results from taking δ → 0 and
n→∞, while also constraining the mean and variance in the form E(Sn)→ m and
V (Sn)→ v, for some m and v.

Figure 5.6 gives an example of an inverse Gaussian pdf, with a Gamma pdf for
comparison. Note in particular that when x is near 0 the inverse Gaussian pdf is very
small. This gives it the ability to model, approximately, neuronal interspike intervals
in the presence of a refractory period, i.e., a period at the beginning of the interspike
interval (immediately following the previous spike) during which the neuron doesn’t
fire, or has a very small probability of firing.
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0 2 4 6 8 10

Figure 5.6: Inverse Gaussian pdf plotted together with a Gamma(2, 1) pdf. The
inverse Gaussian (dashed line) has the same mean and variance as the gamma (solid
line). Note the convexity of the inverse Gaussian near 0.

5.4.7 The t and F distributions are defined from normal and

chi-squared distributions.

Two distributions are used very frequently in statistical hypothesis testing. The first
is the t distribution.

If X ∼ N(0, 1) and Y ∼ χ2
ν , independently, then

T =
X
√

Y
ν

is said to have a t distribution on ν degrees of freedom, which we write as T ∼ tν .
This form of the T ratio arises in “t tests” and related procedures.

Note that T would be N(0, 1) if the denominator were equal to 1. The denomina-
tor is actually very close to one when ν is large: if Y ∼ χ2

ν we have E(Y/ν) = 1 while
V (Y/ν) = 2ν/ν2 which becomes very close to zero for large ν. That is, the random
variable Y/ν has a very small standard deviation and thus takes values mostly very



150 CHAPTER 5. IMPORTANT PROBABILITY DISTRIBUTIONS

close to its expectation of 1. Therefore, for large ν, the tν distribution is very close
to a N(0, 1) distribution. One rule of thumb is that for ν > 12, when computing
probabilities in the middle of the distribution, the tν distribution may be considered
essentially the same as N(0, 1). For small ν, however, the probability of large positive
and negative values becomes much greater than that for the normal. For example, if
X ∼ N(0, 1) then P (X > 3) = .0014 whereas if T ∼ t3 then P (T > 3) = .029, about
20 times the magnitude. To describe this phenomenon we say that the t3 distribution
has much heavier tails (or thicker tails) than the normal.

The t distribution was first derived by William Gosset under the pen name “A.
Student.” It is therefore often called Student’s t distribution.

If X ∼ χ2
ν1

and Y ∼ χ2
ν2

, independently, then

F =
X/ν1

Y/ν2

is said to have an F distribution on ν1 and ν2 degrees of freedom, which are usually
referred to as the numerator and denominator degrees of freedom. We may write
this as F ∼ Fν1,ν2. This distribution arises in regression and analysis of variance,
where ratios of sums of squares are computed and each sum of squares has (under
suitable assumptions) a chi-squared distribution.

When ν1 = 1 the numerator is the square of a normal and F = T 2, where T is the
ratio of a N(0, 1) and the square-root of a χ2

ν2
. That is, the square of a tν distributed

random variable has an F1,ν distribution. Also, analagously to the situation with the
tν distribution, when ν2 gets large the denominator Y/ν2 is a random variable that
takes values mostly very close to 1 and Fν1,ν2 becomes close to a χ2

ν1
.

5.5 Multivariate Normal Distributions

5.5.1 A random vector is multivariate normal if linear com-

binations of its components are univariate normal.

We now generalize the bivariate normal distribution, which we discussed in Sec-
tion 4.2.2. We say that an m-dimensional random vector X has an m-dimensional
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multivariate normal distribution if every nonzero linear combination of its compo-
nents is normally distributed. If µ and Σ are the mean vector and variance matrix
of X we write this as X ∼ Nm(µ,Σ). Using (4.22) and (4.23) we thus characterize
X ∼ Nm(µ,Σ) by saying that for every nonzero m-dimensional vector w we have
wTX ∼ N(wTµ, wTΣw).

Notice that, just as the univariate normal distribution is completely character-
ized by its mean and variance, and the bivariate normal distribution is characterized
by means, variances, and a correlation, the multivariate normal distribution is com-
pletely characterized by its mean vector and variance matrix. In many cases the
components of a multivariate normal random vector are treated separately, with
each diagonal element of the covariance matrix furnishing a variance, and the off-
diagonal elements being ignored. In some situations, however, the joint distribution,
and thus all the elements of the variance matrix, are important.

If X has an m-dimensional multivariate normal distribution then each of its
components has a univariate normal distribution. The following theorem extends
this to the various components of X.

Theorem If X has an m-dimensional multivariate normal distribution and Y con-
sists of the first k components of X, then Y has a k-dimensional multivariate normal
distribution.

Proof: Let w be a non-zero k-dimensional vector. We must show that wTY is
univariate normal. Define v(w) to be the m-dimensional vector consisting of the
components of w followed by m−k zeroes. Then wTY = v(w)TX and, by definition,
v(w)TX is univariate normal; thus, wTY is univariate normal. 2

Example 4.1 (continued from page 88) It is convenient to assume that the
voltage amplitudes in Figure 4.1 are 4-dimensional multivariate normal. According
to the theorem above, this would imply that every pair of voltage amplitudes is bi-
variate normal. The 6 =

(
4
2

)
bivariate data plots in panel B of Figure 4.1 indicate,

very roughly, shapes consistent with bivariate normality, as indicated by the overlaid
elliptical contours. Univariate histograms with normal pdfs and normal Q-Q plots
are also given in that figure. The Q-Q plots clearly indicate some departure from
normality, due to heavy tails in the first three channels. For many statistical anal-
yses this degree of departure from normality would be unlikely to produce severe
inferential problems, but the extent to which it is a cause for concern depends on
the question being asked and the procedure used to answer it. 2
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The multivariate normal distribution is even more prominent in multivariate data
analysis than the normal distribution is for univariate data analysis. The main reason
is that specifying only the first two moments, mean vector and variance matrix, is
a huge simplification. In addition, there is a generalization of the Central Limit
Theorem, which we give in Section 6.3.2.

5.5.2 The multivariate normal pdf has elliptical contours,
with probability density declining according to a χ2

pdf.

The definition given above, in Section 5.5.1, does not require Σ to be positive definite.
In discussing the bivariate normal pdf for (X, Y ) we had to assume σX > 0, σY > 0,
and −1 < ρ < 1. This is equivalent to saying that the variance matrix of the (X, Y )
vector is positive definite. When we work with the multivariate normal distribution
we usually assume the variance matrix is positive definite. If X is m-dimensional
multivariate normal, having mean vector µ and positive definite covariance matrix
Σ, then its pdf is given by

f(x) =
1

√

(2π)m|Σ|
e−

1
2
Q(x) (5.9)

where
Q(x) = (x− µX)T Σ−1(x− µX)

with |Σ| being the determinant of Σ. We have labeled the exponent by Q(x) to
emphasize that it gives a quadratic in the components of x, so that Equation (5.9)
generalizes Equation (4.14). The positive definiteness of Σ implies that |Σ| > 0, so
that the pdf is well defined. It also implies that the contours of Q(x) and, therefore,
of f(x) are multidimensional ellipses (see Section A.8 of the Appendix), generalizing
remarks we made about the bivariate normal on page 100.

Using simple matrix multiplication arguments, it is not hard to show that if
X ∼ Nm(µ,Σ), and Σ is positive definite, then Q(X) has a chi-squared distribution
with m degrees of freedom.

Details: Let Z bem-dimensional multivariate normal with the zero vector
as its mean vector and the m-dimensional identity matrix as its variance
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matrix. The components of Z follow Z ∼ N(0, 1), independently. Thus,
from the definition of the chi-squared distribution in Section 5.4.4, ZTZ ∼
χ2

m. Now, if X ∼ Nn(µ,Σ) then, by the theorem on page 109, Y =
Σ−1/2(X − µ) satisfies Y TY ∼ χ2

m. But Y TY = Q(X). 2

Taken together these results imply that, for c > 0, each contour {x : Q(x) = c}
of the multivariate normal pdf is elliptical and encloses a region {x : Q(x) ≤ c} that
has probability given by the χ2

m distribution function.

The remarks we have just made about elliptical contours apply when Σ is positive
definite, so that we may write the pdf in (5.9). Occasionally, however, one must deal
with the non-positive definite case. This arises, for example, when one wants to
model the joint variation of m variables by assuming it is concentrated in fewer than
m dimensions (analogously to the bivariate case with ρ = 1). If X ∼ Nm(µ,Σ) and Σ
is not positive definite but instead has rank k where k < m, we may use the spectral
decomposition to find a k-dimensional subspace in which the distribution may be
represented by a pdf with elliptical contours. This arises in some applications of
multivariate analysis. See Chapter 17.

Details: If there are k positive eigenvalues of Σ we may write

Σ = PDP T

where the first k diagonal elements of D are the positive eigenvalues. Let
P1 be the m × k matrix consisting of the first k columns of P , which
are the eigenvectors corresponding to the positive eigenvalues. These
k eigenvectors span a k-dimensional subspace V . Let vj = colj(P ) for
j = 1, . . . , k, so that every vector x ∈ V may be written in the form

x =
k∑

j=1

uj(x)vj

so that the n-dimensional vector x may instead be represented as a k-
dimensional vector u(x) = (u1(x), . . . , uk(x)) = P T

1 x. The distribution
of X then lies in V in the sense that (i) P (X ∈ V ) = 1 and (ii) for all
non-zero x ∈ V ,

xT Σx = u(x)TDλu(x) > 0,

where Dλ is the k × k diagonal matrix with (i, i) element equal to the
positive eigenvalue Dii; in other words, Dλ is the k × k matrix formed



154 CHAPTER 5. IMPORTANT PROBABILITY DISTRIBUTIONS

by eliminating all the zero column and row vectors of D. Furthermore,
setting U = u(X) it may be shown that U ∼ Nk(µU , Dλ), where µU =
P1µ, and U has pdf

fU(u) =
1

√

(2π)k|Dλ|
e−

1
2
(u−µU )T D−1

λ
(u−µU ).
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Figure 5.7: Decoding accuracy from cursor controlled by overt wrist movement (A)
and imagined wrist movement (B). Time t = 0 is onset of movement of the cursor.
Thin gray lines show decoding accuracy using a Bayes classifier for each of 5 subjects
across 150 time intervals. Thick black lines are accuracies averaged across subjects.

Here is an example in which multivariate methods were used to project the data
to a lower-dimensional subspace.

Example 5.7 Decoding intended movement using MEG We introduced MEG
neuroimaging in Example 1.2. One of its attractive features is that it is non-invasive
while being potentially capable of supplying movement-related information with high
temporal resolution, much like that obtained with highly invasive electrophysiolog-
ical methods. Wang et al. (2010) (Wang, W., Sudre, G.P., Xu, Y., Kass, R.E.,
Collinger, J.L., Degenhart, A.D., Bagic, A.I., and Weber, D.J. (2010) Decoding and
cortical source localization for intended movement direction with MEG, J. Neu-
rophysiol., 104: 2451–2461.) studied MEG signals from 9 subjects both during a
wrist movement task and during imagined wrist movement. The idea was that there
might be substantial information about intended wrist movement even when the
wrist was not actually moving—this would be analogous to the situation in which a
user was severely disabled. One purpose of this methodology would be to localize
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the movement-related information in order to help guide surgical implant of a more
invasive device.

In the case of wrist movement, each subject had to move a joystick-controlled
cursor, which was viewed on a projection of a computer screen. After one of 4
directional targets (up,down, left, right) was illuminated the subject then had to hit
the target with the cursor. In the imagined movement case, each subject was told to
imagine moving the wrist. For each of the experimental conditions, the data consisted
of 120 successful recordings in each direction at 1 KHz from each of 87 MEG sensors
located above the sensorimotor areas during the movement and imagined movement
tasks. For some of the results, a 1.5 second window surrounding movement onset
was used for analysis. The data were averaged across time within 10 ms intervals.
Because there are 150 10 ms intervals within the 1.5 second window, the data then
consisted of 120×150 vectors of length 87. Wang et al. reduced these 87 dimensions
down to 4 dimensions using a method called linear discriminant analysis, discussed in
Chapter 17. They assumed that, for each of the 150 time intervals, the resulting 120
4-dimensional data vectors were a sample from a 4-dimensional multivariate normal
distribution; they then applied a Bayes classifier (see Section 4.3.4) to see how much
information about target direction could be gleaned from the data. (To measure
classification accuracy Wang et al. used leave-one-out cross-validation, discussed in
Chapter 12.) The results for 5 subjects are shown in Figure 5.7. Chance classification
accuracy would be 25%. It may be seen that for every subject, during both movement
and imagined movement, the classification accuracy rose sharply above chance. In
the imagined movement case (panel B of Figure 5.7) the peak classification accuracy
ranged across subjects from about 50% to about 90%, with a mean of over 60%. 2

5.5.3 If X and Y are jointly multivariate normal then the

conditional distribution of Y given X is multivariate
normal.

In Section 4.2.2 we introduced the bivariate normal distribution for a pair of random
variables X and Y and in Section 4.2.4 we discussed the conditional expectation
E(Y |X = x), which is the regression function. We now generalize this to the case
in which X and Y are random vectors. Let us suppose X and Y are, respectively,
m1-dimensional and m2-dimensional; they are m1 × 1 and m2 × 1 vectors. Let us
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define U to be the concatenation of these two vectors,

U =

(
X

Y

)

with mean µ = E(U). Let us partition the components of µ so that they correspond
to E(X) and E(Y ), and let us use subscripts a and b to indicate this partitioning:

µ =

(
µa

µb

)

so that µa = E(X) and µb = E(Y ). In this subsection we will partition matrices in
the same way, separating the first m1 rows and columns from the last m2 rows and
columns based on these subscripts. Thus, we write the variance matrix Σ = V (U)
as

Σ =

(
Σaa Σab

Σba Σbb

)

(5.10)

so that V (X) = Σaa and V (Y ) = Σbb.

The generalization of the normal regression results in Section 4.2.4 is the follow-
ing.

Theorem With the definitions above, if X and Y are jointly m-dimensional mul-
tivariate normal, then Y |X = x is m2-dimensional multivariate normal with mean
vector and variance matrix given by

µb|a = µb − ΣbaΣ
−1
aa (x− µa) (5.11)

Σb|a = Σbb − ΣbaΣ
−1
aa Σab. (5.12)

Outline of Proof: The theorem is proved by writing the quadratic expo-
nent in the multivariate normal pdf of U , breaking it into pieces corre-
sponding to the a and b components in the partitioning above, using the
definition of conditional density, and then simplifying while applying the
following matrix identity:

(
A B
C D

)−1

=

(
E −EBD−1

−D−1CE F

)

where
E = (A− BD−1C)−1



5.5. MULTIVARIATE NORMAL DISTRIBUTIONS 157

and

F = D−1 +D−1CEBD−1.

2

In carrying out calculations such as those used in proving the theorem above it
is helpful to define the precision matrix,

Γ = Σ−1,

which is partitioned as

Γ =

(
Γaa Γab

Γba Γbb

)

.

It is not generally true that Γbb = Σ−1
bb . Instead we have

Γbb =
(
Σbb − ΣbaΣ

−1
aa Σab

)−1

Γba = −
(
Σbb − ΣbaΣ

−1
aa Σab

)−1
ΣbaΣ

−1
aa

and by reversing the subscripts a and b we get the corresponding expressions for Γaa

and Γab.

Now suppose X and Y are random variables, U is a random vector, and (U,X, Y )
is multivariate normal. Then, putting V (U) = Σaa and V (X, Y ) = Σbb and applying
the theorem, we write the components of the 2× 2 matrix Σb|a as

σXX|U = Σb|a,11

σY Y |U = Σb|a,22

σXY |U = Σb|a,12.

We may then define the partial correlation of X and Y given U to be

ρXY |U =
σXY |U√

σXX|U · σY Y |U
. (5.13)

The partial correlation ρXY |U measures the remaining linear dependence of X and
Y after conditioning on U . The sample partial correlation is the analogous quantity
based on the sample covariance matrix S. That is, if we define the sample covariance
matrix S as in (4.21) based on samples x1, . . . , xn, y1, . . . , yn and u1, . . . , un (where
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u is the vector sample analogue of U), and we then partition S as we partitioned Σ
in (5.10), we write

sXX|U = Sb|a,11

sY Y |U = Sb|a,22

sXY |U = Sb|a,12

and then the sample partial correlation of x and y given u is8

ρ̂XY |U =
sXY |U√

sXX|U · sY Y |U
. (5.14)

The sample partial correlation in (5.14) is an estimate of the partial correlation9 in
(5.13).

Example 5.8 Network models from fMRI Many investigations have sought to
describe large-scale network activity across the brain based on fMRI, particularly
during a task-free “resting state.” Suppose many regions of interest (ROIs) are
defined, and let xt be the sum of the fMRI signals across all voxels in one particular
ROI at time t, for t = 1, . . . , T . Let us call this ROI1. Similarly, let yt be the sum
of the fMRI signals across all voxels in another ROI at time t, and let us call this
ROI2. Then the sample correlation ρ̂XY of the vectors (x1, . . . , xT ) and (y1, . . . , yT )
may be used to define a “network connection” between ROI1 and ROI2. However,
this measure suffers from the defect that any association between activity at these
ROIs, represented by random variables Xt and Yt, could be due to their correlated
activity with other ROIs, which could be represented by a random vector Ut. That
is, the other ROIs could be connected to both ROI1 and ROI2, and then Xt and
Yt would be correlated even if there were no connection between ROI1 and ROI2.
An alternative is to use the sample partial correlations ρ̂XY |U to define each network
connection. Smith et al. (2011) conducted a large simulation study of fMRI network
activity and found that partial correlation could be effective at identifying connected
network nodes defined by ROIs. (Smith, S.M., Miller, K.L., Salimi-Khorshidi, G.,
Webster, M., Beckmann, C.F., Nichols, T.E., Ramsey, J.D., and Woolrich, M.W.
(2011) Network modeling methods for fMRI. Neuroimage, 54: 875-891.) 2

8It may be shown that ρ̂XY |U is equal to the correlation between the pair of residual vectors
found from the multiple regressions (see Chapter 12) of x on u and y on u.

9In fact, ρ̂XY |U is the maximum likelihood estimate; maximum likelihood estimation is discussed
in Chapter 8.



Chapter 6

Sequences of Random Variables
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One of the great ideas in data analysis is to base probability statements on large-
sample approximations, which are often easy to obtain either analytically or numer-
ically. This short chapter contains the two fundamental results that produce most
of the methodology, the Law of Large Numbers (LLN) and the Central Limit The-
orem (CLT). Both concern the behavior of the sample mean X̄ =

∑n
i=1Xi. These

theorems form a foundation for much data analytic theory because many statistical
functions may be either rewritten or approximated in terms of sample means.

While sample means are important, the power of the LLN and CLT reaches far
beyond means themselves to other summaries of the data. In general a numerical
summary of the data is called a statistic. That is, a statistic is scalar or vector-valued
function defined on the set of possible data values. For example, a regression coeffi-
cient, i.e., the slope of a least-squares fitted line, is a statistic. Many statistics may
be written, at least approximately, as some function of a sample mean. This often
produces approximate normality of the statistic which, as we will see in Chapters 7
and 8, becomes the basis for statistical inferences, such as confidence intervals and
significance tests.

159
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6.1 Random Sequences and the Sample Mean

We need a crucial piece of preliminary terminology: if X1, X2, . . . , Xn are drawn
independently from the same distribution, then X1, X2, . . . , Xn is said to form a
random sample from that distribution, and the random variables Xi are said to be in-
dependent and identically distributed (i.i.d.). This section is about means computed
from random samples (sets of i.i.d. random variables). Let µ = E(Xi). The LLN
says that X̄ gets arbitrarily close to µ as n increases indefinitely. The CLT says that
the distribution of X̄ becomes arbitrarily close to a normal distribution as n increases
indefinitely. Similar results hold for many other data summaries, as well (because
they may be written in terms of sample means). They are extremely important be-
cause they allow calculations based on normality, such as those in Section 5.3.1, to
be applied, producing simple and useful probability statements.

In analyzing the behavior of the sample mean, the first point to recognize is
that drawing a new sample would produce a new value of the sample mean, so that
if we were to repeat the process of drawing a new sample many times, we would
observe variability in the sample mean. On page 138, for example, we described
some data on re-learning time from Ebbinghaus (1885), and noted that he examined
84 means, each of which was obtained by averaging the re-learning time across 6 lists
of trigrams. Each mean was slightly different: they exhibited variation. The second
point is that, typically1, the variation in the sample mean is smaller than that in the
original data, and it decreases with increasing sample size.

Example 3.4 (continued from page 58) Figure 3.2 displays a histogram of
60 spike counts from a motor cortical neuron during a reaching task. The mean
among these 60 counts is 13.6 spikes. (The time interval was 600 milliseconds, so
this neuron’s mean firing rate was 22 spikes per second.) Imagine drawing one spike
count at random from among the 60, and doing this repeatedly. The histogram gives
a sense of the variability we would see in these repeated random draws. Now suppose
instead we were to draw 4 spike counts at random, and compute its mean, and then
repeat this process many times. Because it would be likely that some of the 4 values
would be bigger than 13.6, and some would be less, a mean of these 4 values would
tend to be closer to 13.6 than any single random value would be—in other words, the
mean of 4 observations would tend to exhibit less variability than did the original

1There are exceptions to this rule if the expectation does not exist, which can occur when the
tails of the pdf fall to zero very slowly. An example is the Cauchy distribution, which is the t
distribution on 1 degree of freedom.
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observations themselves. We can see this by considering the first 12 of the spike
counts:

16 12 14 9 9 4 12 14 13 13 17 16

The mean count among these 12 is 12.4 spikes and the standard deviation is 3.7
spikes. Now consider the remaining 48 spike counts:

21 16 16 10 12 15 11 11 8 26 12 12
18 13 13 12 8 16 14 12 7 13 12 14
14 16 10 11 7 17 15 14 16 10 13 13
14 10 14 15 16 17 12 18 32 11 19 13

The data have been arranged in 12 columns of length 4 in order to consider the
column means. In this case, the mean of these 12 means is 13.9 spikes and the
standard deviation is 1.8 spikes: we find that the variation among the 12 means (the
standard deviation of 1.8) is smaller than the variation among the 12 raw counts
(the standard deviation of 3.7). 2

The points illustrated by these motor cortical spike counts in Example 3.4 are
(i) if we calculate the mean of a set of observations (a set of 4 trials) repeatedly for
new data (12 repetitions of the sets of 4) we observe variation among the means,
and (ii) the variation among the means (the standard deviation of 1.8) is smaller
than the variation we would typically see among the raw spike counts (the standard
deviation of 3.7). However, this illustration was intended only to set the stage for
an entirely theoretical discussion. In this section we consider the random variable
X̄. Its variation may be quantified by its standard deviation σX̄ . Notice that this
is not the same thing as the standard deviation σX of the original data. In fact, σX̄

decreases as the sample size increases; qualitatively, the larger the sample size, the
less variation in the sample mean. Specifically, we have σX̄ = σX/

√
n. After giving

this result in Section 6.1.1 we present the law of large numbers in Section 6.2.1 and
the Central Limit Theorem in Section 6.3.1. These theorems require the use of some
mathematics for dealing with sequences of random variables, which is the topic of
Section 6.1.2.

6.1.1 The standard deviation of the sample mean decreases
as 1/

√
n.

If we repeatedly draw random samples X1, . . . , Xn, and from them repeatedly com-
pute X̄, the value of X̄ will fluctuate: it will be a random variable. The dominant
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features of the distribution of X̄ are captured by its mean and variance, which may
be computed easily from the formulas (4.1) and (4.5).

Theorem If X1, X2, . . . , Xn form a random sample from a distribution
having mean µX and standard deviation σX then

(i) E(X̄) = µX , and

(ii) σX̄ = σX/
√
n.

Proof: The expectation E(X̄) is immediate from (4.1). For the variance, in
formula (4.5) plug in V (Xi) = σ2

X to get V (X1 +X2 + · · ·+Xn) = nσ2
X . Then take

square-roots and, remembering that X̄ = (X1 +X2 + · · ·+Xn)/n, apply (3.4). 2

The statement that E(X̄) = µX says that the average amount by which X̄ exceeds
µ is equal to the average amount by which µ exceeds X̄. The statement σX̄ = σX/

√
n

quantifies how rapidly the fluctuations in X̄ diminish as a function of sample size.
It is sometimes called “the square-root of n law.” A consequence of diminishing
fluctuations is that X̄ must tend to get closer and closer to µX . This is the LLN,
given in Section 6.2.1.

These results may be illustrated in the case of Bernoulli trials, where Xi is either
0 or 1. If p = P (Xi = 1) = .4 and n = 4 the sum

∑n
i=1Xi takes possible values

of 0,1,2,3,4, with binomial probabilities .0625,.25,.375,.25,.0625. Thus, the mean X̄
takes possible values of 0,.25,.5,.75,1, also with probabilities .0625,.25,.375,.25,.0625.
The pdf is plotted in Figure 6.1. The pdfs when n = 10, 25 and 100 are also shown
there. For n = 4 the distribution is relatively wide, but as n increases it gets more
concentrated. Note that in the case of the binomial we may write Y =

∑n
i=1Xi, so

that Y ∼ B(n, p) and then X̄ = Y/n. Using the binomial formula V (Y ) = np(1− p)
(see page 125) together with the general formula V (aY ) = a2V (Y ) (see Equation
(3.7)) we get σX̄ =

√

p(1− p)/n.

For the square-root of n law to hold, the assumption of independence among the
random variables X1, . . . , Xn is crucial. Suppose instead that Cor(Xi, Xj) = ρ, with
ρ > 0, for i 6= j and let σ2 = V (Xi) for all i. A straightforward calculation shows
that

V (X̄) =
σ2

n
+
n− 1

n
ρσ2 (6.1)
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Figure 6.1: The pdf of the binomial mean X̄ when p = .4 for four different values of
n. As n increases the distribution becomes concentrated (σX̄ becomes small), with
the center of the distribution getting close to µX = .4 (the LLN). In addition, the
distribution becomes approximately normal (the CLT).

so that the variance does not vanish but instead reaches an asymptote: as n → ∞
we have

V (X̄)→ ρσ2. (6.2)

Thus, even a small positive correlation among the variables destroys the result.

Details: For i 6= j we have Cov(Xi, Xj) = ρσ2 and then

V (X̄) =
1

n

[
n∑

i=1

V (Xi) + 2
∑

i<j

Cov(Xi, Xj)

]

=
σ2

n
+
n− 1

n
ρσ2.

2

Example 6.1 Neural spike count correlation could limit fidelity Shadlen
and Newsome (1998) noted that common input to neurons can produce small, posi-
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tive correlations in spike counts, and that this has been observed in recordings from
primate cortex. As a consequence, they suggested, the information transmitted by
groups of neurons acting together may be severely limited. The idea is that, ac-
cording to the conception of integrate-and-fire neural transmission, an ensemble of
neurons might transmit information to a downstream neuron based on their average
spike count over small time intervals. In recordings from the MT area of visual cortex
correlations were estimated to be, on average, approximately ρ = .12. Shadlen and
Newsome used the formula (6.2), stating that the asymptote in mean spike counts
would be reached, approximately, by about 50-100 neurons. They concluded that
“50-100 neurons might constitute a minimal signalling unit in cortex.”

Details: Let R = V (X̄)/σ2 and suppose we want to have the variance
V (X̄) be within 10% of its asymptotic value. Letting ǫ = 1/10 we set
R = ρ(1 + ǫ) and solve for n. From (6.1) we have

R =
1− ρ
n

+ ρ

and solving for n we get

n =
1− ρ
R− ρ.

We now insert R− ρ = ρǫ to get

n =
1− ρ
ρ

1

ǫ
.

With ρ = .12 and ǫ = .1 this gives n ≈ 73, supporting the observation
made by Shadlen and Newsome.

2

Various rebuttals to the argument in Example 6.1 have appeared in the liter-
ature, the most convincing being simply that neural computations could be more
complicated than simple summation (averaging of spike counts), and more compli-
cated combinations of inputs need not suffer from this difficulty. In any case, it
is important to recognize the fundamental fact that small correlations can severely
limit the information in a mean.
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6.1.2 Random sequences may converge according to several
distinct criteria.

In discussing the large-n behavior of a sequence of random variablesX1, X2, . . . , Xn, . . .
we need a formalism for two kinds of statements. First, we want to be able to say
that the distribution of Xn is approximately of a particular form. We do this by
examining the cdfs. Suppose that the variables X1, X2, . . . , Xn, . . . have correspond-
ing cdfs F1(x), F2(x), . . . , Fn(x), . . . and suppose further that the particular distri-
bution that we want to consider an approximating distribution has cdf F (x). We
may then formalize the approximation by giving a precise meaning to the expression
Fn(x) ≈ F (x) for n large, meaning that Fn(x) is approximately equal to F (x) for n
large. We make this precise using limits. Recall that a sequence of numbers xn, for
n = 1, 2, . . ., converges to x if for every ǫ > 0 we have |xn − x| < ǫ for all sufficiently
large n. This is written limn→∞ xn = x.

Definition Suppose X1, X2, . . . , is a sequence of random variables and Fn is the
cdf of Xn. We say that Xn converges in distribution to a continuous random variable
X with cdf F if

lim
n→∞

Fn(x) = F (x)

for all x. More generally, Xn converges in distribution to a random variable X with
cdf F (which may or may not be continuous) if

lim
n→∞

Fn(x) = F (x)

for all x at which F is continuous. We often write this as

Xn
D→ X.

In cases in which X follows a particular well-known distribution we put the distri-
bution on the right-hand side; e.g., if X ∼ N(0, 1) we write

Xn
D→ N(0, 1).

The second kind of statement we want to make has to do with the case in which
the sequence of random variables X1, X2, . . . , Xn, . . . gets progressively closer to a
number, i.e., a fixed constant c rather than having some probability distribution.
This is needed for the LLN. We may think of the constant as a probability distribution
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that has collapsed down to a point: we say that a random variable X is degenerate,
meaning that it is identically equal to a constant c, when P (Y = c) = 1. In this
situation the cdf of X is F (x) = 0 for x < c and F (x) = 1 for x ≥ c.

Definition Suppose X1, X2, . . . , is a sequence of random variables and Fn is the
cdf of Xn. We say thatXn converges in probability to c if Xn converges in distribution
to the degenerate random variable X for which P (X = c) = 1. We often write this
as

Xn
P→ c.

The notion of convergence in probability is more general than the defintion above
indicates, but we do not need the general definition. There are also two stronger
notions of convergence, convergence in quadratic mean and convergence with prob-
ability one—but again we do not need these here.

Details: In applying convergence in probability, the criterion that is used
is the following.

Theorem A sequence X1, X2, . . . converges in probability to c if and only
if for every ǫ > 0, P (|Xn − c| > ǫ)→ 0 as n→∞.

Proof: This involves straightforward manipulations using the definition.
The details are omitted. 2

6.2 The Law of Large Numbers

6.2.1 As the sample size n increases, the sample mean con-
verges to the theoretical mean.

The LLN is an accessible result, in the sense that its statement may be understood
without advanced mathematics. The proof is not especially difficult, and we include
it here, but we will regard it as an inessential detail.
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Theorem: The Law of Large Numbers If X1, X2, . . . is a sequence
of i.i.d. random variables having a distribution with mean µX and
standard deviation σX , then X̄ converges in probability to µX , i.e.,

Xn
P→ µX .

The form of the LLN given here is sometimes called the “weak” law of large
numbers. The strong law instead says that convergence occurs with probability
1. However, considerably more machinery is needed in order to say this in precise
mathematical terms. Intuitively, “with probability 1” means that the convergence is
certain to occur.

Details: The proof will require the following lemma.

Lemma (Markov’s Inequality) Let Y be a positive random variable
on (A,B) with µY = E(x) <∞. Then for any positive α,

P (Y > α) <
µY

α
.

Proof of Lemma: Let us assume that Y is continuous. We have

P (Y > α) =

∫ B

α

fY (x)dy

and

α

∫ B

α

fY (x)dy ≤
∫ B

α

yfY (x)dy.

Combining these, and continuing, we then have

αP (Y > α) ≤
∫ B

α

yfY (x)dy

≤
∫ α

A

yfY (x)dy +

∫ B

α

yfY (x)dy

=

∫ B

A

yfY (x)dy = E(x).
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The case in which Y is not continuous may be handled by an analogous
argument. 2

Proof of Theorem: We need to show that for any positive ǫ we may find
n sufficiently large that P (|X̄ − µX | > ǫ) becomes arbitrarily close to 0.
We have P (|X̄ − µX | > ǫ) = P ((X̄ − µX)2 > ǫ2). Let Y = (X̄ − µX)2,
note that E(Y ) = σ2

X/n, and apply the Lemma to get

P (|X̄ − µX | > ǫ) <
σ2

ǫ2n
.

This shows that for sufficiently large n, P (|X̄ − µX | > ǫ) becomes arbi-
trarily close to 0. 2

6.2.2 The empirical cdf converges to the theoretical cdf.

We introduced the empirical cdf F̂n(x) in Section 3.3 and noted there that, for large
n, it approximates the cdf FX(x) and illustrated the phenomenon in Figure 3.8. We
now relate this behavior to the LLN.

In the proof we need the following definition: for a random variable X, we let
the indicator variable I{X≤x} be 1 if X ≤ x and 0 otherwise.

Theorem If X1, X2, . . . is a sequence of i.i.d. random variables then, for every
x, F̂n(x) converges in probability to F (x).

Proof: Another way to think about F̂n(x) is that it counts the number of
random variables Xi in the random sample X1, . . . , Xn for which Xi ≤ x,
and then divides by n. This is the same thing as adding 1/n for each
of the Xi variables that are less than x. Mathematically, we express
this counting operation using indicator variables. Consider a sequence
X1, X2, . . . of i.i.d. random variables with cdf F (x). We may write the
empirical cdf in the form

F̂n(x) =
1

n

n∑

i=1

I{Xi≤x}.
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We now use

E(I{Xi≤x}) = 1 · P (Xi ≤ x) + 0 · P (Xi > x)

= P (Xi ≤ x) = F (x)

and apply the LLN. 2

In addition to supplying the theoretical foundation for P-P and Q-Q plots, as
discussed in Chapter 3, this result is also the starting point2 for the bootstrap method
of statistical inference, which we cover in Chapter 9.

6.3 The Central Limit Theorem

6.3.1 For large n, the sample mean is approximately nor-
mally distributed.

The LLN concerns only the large-sample tendency of X̄ to get arbitrarily close to
µX . The CLT describes the large-sample probability distribution of X̄. Actually,
we are speaking a bit loosely here: the LLN says that the distribution of X̄ be-
comes degenerate at µX ; to get fluctuations that are described, approximately, by a
normal distribution we have introduce rescaling. Instead of X̄, the CLT describes
the behavior of the random sequence of variables Zn, in which X̄ is standardized
by subtracting its mean and standard deviation (the standard deviation of X̄ being
σX/
√
n).

2Actually, a stronger result is needed: the convergence is uniform in the sense that

sup
x

|F̂n(x) − F (x)| → 0

where supx is the supremum (least upper bound) over x. This holds when F (x) is a continuous
cdf, and in many other cases.
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The Central Limit Theorem: Suppose X1, X2, . . . is an i.i.d. se-
quence of random variables having mean µX and standard deviation
σX , and let Zn =

√
n(X̄ − µX)/σX . Then Zn converges in distribution

to a normal random variable having mean 0 and variance 1, i.e.,

Zn
D→ N(0, 1).

Proof Outline: The CLT may be proved using the Fourier transform.
The Fourier transform of a pdf is called the characteristic function of
the distribution. If X1, X2, . . . , Xn, . . . is a sequence of random variables
with characteristic functions φn(t), for n = 1, 2, . . . and φn(t) → φ(t)
with φ(t) being a characteristic function of the distribution of a random
variable X, then Xn converges in distribution to X; this basic result is
a version of the continuity theorem. Let us take φn(t) to be sequence
of characteristic functions of the distributions of the normalized sample
means Zn. Calculations show that φn(t) converges to the characteristic
function of a N(0, 1) distribution; therefore, by the continuity theorem,
Zn converges in distribution to a N(0, 1) random variable. 2

The effects of the LLN and CLT are illustrated in Figure 6.1. For n = 4 the
distribution of X̄ does not look very close to normal. However, as n increases the
distribution of X̄ gets more tightly concentrated near the mean µX = .4 (a conse-
quence of the LLN) and it looks more and more normal (the CLT).

What we’ve just done is looked at the distribution of X̄ for Bernoulli trials for
several values of n with p = .4. The distribution of nX̄ is binomial and the picture
of its distribution would look just like the pictures we had for the distribution of X̄
except that the x-axis would be multiplied by n. In particular, as n gets large we
see that the distribution looks normal. This effect of the CLT may be considered an
explanation for the normal approximation to the binomial.

In fact, there are much more general versions of the CLT. It is worth stating one
of these in a somewhat vague form.
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Roughly speaking, if X1, X2, . . . , Xn are independent random variables,
possibly having different distributions but with no individualXi making
a dominant contribution to the mean X̄, then for n sufficiently large,
the distribution of X̄ is approximately normal with mean E(X̄) and

standard deviation
√

V (X̄).

The “no dominant contribution” phrase may be made precise as the Lindeberg
condition, and the CLT then follows. (See Section 27 of Billingsley, 1995.) This
version of the CLT helps to explain why the normal distribution arises so often in
statistical theory, and also why it seems to fit, at least crudely, so many observed
phenomena. It says that whenever we average a large number of small independent
effects, the result will be approximately normally distributed.

A detail: Another way to interpret the CLT uses entropy, as defined in
Equation (4.29). Among all distributions having mean µ and standard
deviation σ, the N(µ, σ2) distribution is the most disorderly possible, in
the sense of having maximal entropy. The CLT says that as the sample
size gets very large the distribution of the sample mean becomes as dis-
orderly as possible. This characterization provides an alternative way to
understand and prove the CLT. See Madiman and Barron (2007). (Madi-
man, M. and Barron, A.R. (2007) Generalized entropy power inequalities
and monotonicity properties of information, IEEE Trans. Information
Theory 53: 2317–2329.)

There are also versions of the CLT for non-independent variables, though they
are considerably more complicated. Those results typically require the sequence to
be stationary, as defined on page 515 of Chapter 18, and further limit the dependence
among the random variables Xi and Xj within the sequence as j − i increases. See
Billingsley (1995, Theorem 27.4) and also Francq and Zakoiän (2005). (Billingsley,
P. (1995) Probability and Measure, Third Ed., Wiley. Francq, C. and Zakoiän, J.-
M. (2005) A central limit theorem for mixing triangular arrays of variables whose
dependence is allowed to grow with the sample size. Econometric Theory, 21: 1165–
1171.)
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6.3.2 For large n, the multivariate sample mean is approxi-
mately multivariate normal.

The multivariate version of the CLT is analogous to the univariate CLT. We begin
with a set of multidimensional samples of size n: on the first variable we have a sample
X11, X12, . . . , X1n, on the second, X21, X22, . . . , X2n, and so on. In this notation, Xij

is the jth observation on the ith variable. Suppose there are m variables in all, and
suppose further that E(Xij) = µi, V (Xij) = σ2

i , and Cor(Xij, Xik) = ρjk for all
i = 1, . . . , m, j = 1, . . . , m, and k = 1, . . . , m. As before, let us collect the means
into a vector µ and the variances and covariances into a matrix Σ. We assume, as
usual, that the variables across different samples are independent. Here this means
Xij and Xhk are independent whenever i 6= h. The sample means

X̄1 =
1

n

n∑

j=1

X1j

X̄2 =
1

n

n∑

j=1

X2j

...

X̄m =
1

n

n∑

j=1

Xmj

may be collected in a vector

X̄ =








X̄1

X̄2
...
X̄m







.

Multivariate Central Limit Theorem: Suppose X̄1, X̄2, . . . , X̄m are
means from a set of m random samples of size n, as defined above, with
the covariance matrix Σ being positive definite. For any m-dimensional
vector w define

Zn(w) =
√
nwTΣ− 1

2 (X̄ − µ). (6.3)

Then for every nonzero m-dimensional vector w, Zn(w) converges in
distribution to a normal random variable having mean 0 and variance
1.
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More loosely, the multivariate CLT says that X̄ is approximately multivariate
normal with mean µ and variance matrix 1

n
Σ. As in the univariate case, there are

much more general versions of the multivariate CLT.





Chapter 7

Estimation and Uncertainty

c©2010 SPRINGER SCIENCE+BUSINESS MEDIA, LLC. All rights reserved. No
part of this work may be reproduced in any form without the written permission of
SPRINGER SCIENCE+BUSINESS MEDIA, LLC.

7.1 Fitting Statistical Models

The examples in previous chapters, involving experimental settings ranging from
human and animal behavior, to neuroimaging, EEG and EMG, neural spike trains,
and in vitro recording, have illustrated the way statistical models describe regularity
and variability of neural data. All of these models involve free parameters. In
Example 1.5, on page 13, we reviewed the use of least squares in demonstrating an
approximately linear relationship between conduction velocity and nerve diameter.
Least squares is easy to understand and often works well for models of the form

Yi = f(xi) + ǫi.

But what about other situations? In Figure 3.7 of Example 3.5, on page 73, we
displayed fits of Gamma(α, β) distributions to histograms of ion-channel opening
durations, but we did not say how the parameters α and β were chosen. A näive
approach to the problem of using the data to determine suitable values of parameters
might propose a particular method and argue for it on intuitive grounds. Accord-
ing to the doctrine of statistics, however, principles may be introduced and used in

175
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analyzing the performance of alternative methods. By demonstrating the proper-
ties of solutions under general conditions, statistical theory brings coherence to an
otherwise bewildering array of disparate problems. In this chapter, together with
Chapters 8 and 9, we present the key ideas.

We start with a traditional, though somewhat artificial, separation of two as-
pects of the fitting problem that are intimately connected in practice: estimation of
parameters and assessment of uncertainty. In Section 7.2 we formalize the process
of estimation and then give two alternative methods, the method of moments and
maximum likelihood (ML). In the 1920s Ronald Fisher proposed maximum likelihood
and demonstrated that it is optimal quite generally for large sample sizes. Fisher
also showed how uncertainty about the answer can be assessed, and an alternative
perspective was provided at about the same time by Harold Jeffreys using Bayes’
Theorem. It took roughly 50 more years to refine the early concepts to its full-
fledged modern incarnation and, in fact, new variants of algorithms continue to be
developed so that it may be applied to ever more complicated situations. In con-
texts where finitely-many parameter values completely specify1 the statistical model,
implementation of ML estimation is conceptually straightforward while, from a the-
oretical perspective, ML estimation is also provably unbeatable—no other method
offers better performance, for large samples. ML estimation has, therefore, become
the dominant approach to parameter estimation. We will review basic properties
and uses of ML estimation in Chapter 8.

In Section 7.3 we discuss confidence intervals. In Chapter 1, on page 16, we
described the use of a confidence interval to assess the uncertainty associated with
responses of patient P.S. when forced repeatedly to choose between pictures of burn-
ing and non-burning houses; we noted that an approximate 95% confidence interval
for her propensity to choose the non-burning house was (.64,1.0) and we concluded
it was not very likely that she was choosing them with equal probabilities (a propen-
sity of .5); instead, she apparently saw the two complete pictures without conscious
awareness of processing their left ends, which is where the fire appeared. As a data-
analytic tool, confidence intervals have become straightfoward to use in many, varied
situations. We treat several simple yet important problems in Section 7.3 and sup-
plement with more general methods in Chapters 8 and 9. As one thinks harder
about interpretation, the subject gets somewhat more subtle. We review the issues
in Sections 7.3.8 and 7.3.9. On the other hand, confidence intervals are fundamental

1From the point of view of the mathematical theory, a nonparametric method does not eliminate
the parameters but rather makes them infinite dimensional.
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to statistical practice and, from a contemporary standpoint, they seem very natural.
Seen in historical context, the introduction of confidence intervals by Jerzy Neyman
in the 1930s was quite ingenious, and a giant leap forward.

One of the ways confidence intervals are found in conjunction with maximum
likelihood is to apply the bootstrap, which is discussed in Chapter 9. As additional
motivation for the discussion in this and subsequent chapters, here is a concrete
example where these methods have been used in fitting a statistical model of mental
processes.

Figure 7.1: Data from three subjects, together with fits of a model for probability of
letter identification as a function of exposure duration. From Bundesen (1998).

Example 7.1 A Model of Visual Attention Visual attention model Experiments
on visual attention often study the ability of subjects to see and remember multiple
objects that are exposed to them for a very short time. Following Sperling (1967),



178 CHAPTER 7. ESTIMATION AND UNCERTAINTY

Bundesen and colleagues developed a quantitative theory of visual attention (Bun-
desen, 1998) (Bundesen, C. (1998) A computational theory of visual attention, Phil.
Trans. Royal Soc. London, B, 353: 1271–1281.) according to which, objects in the
visual field are compared with representations in visual memory, and if the compari-
son is completed prior to the end of visual exposure, the object is recognized. In this
theory the time taken to process and store an object identity is a random variable.
For object i call this random variable Xi. The processing is considered to begin after
a latency of length t0, so that if t is the total time an object is displayed then the ith
object is recognized if Xi ≤ t− t0. Bundesen assumed Xi ∼ Exp(λi). Letting fi(x)
and Fi(x) be the Exp(λi) pdf and cdf, for exposure of length x = t − t0, Fi(t − t0)
is the probability of object recognition success and 1 − Fi(t − t0) is the probability
of object recognition failure. Suppose S is the stimulus set and let R denote some
particular subset of objects that are recognized. If the subject’s memory capacity
is not exceeded, and if recognition of object i is independent of recognition of all
other objects (and this is true for every i), then the probability that the subject
will recognize all objects in R, and fail to recognize all objects not in R (i.e., fail to
recognize those in the complement, which may be written S − R), is given by

PS(R) =
∏

i∈R

Fi(t− t0)
∏

j∈S−R

(1− Fj(t− t0)). (7.1)

This model has several unknown parameters (the encoding rates λi, the latency
t0, and the memory capacity) which must be determined in order to compute the
probabilities and compare them to data. Figure 7.1 displays fits of the model to data
from three subjects. The model fitting was performed by the method of maximum
likelihood, and uncertainties associated with each of the parameters of interest may
be obtained by bootstrap methods. See Kullingsbaek (2006). (Kullingsbaek, S.
(2006) Modeling visual attention. Behavioral Research Methods, 38: 123–133.) 2

7.2 The Problem of Estimation

In order to fit a model to data, a parameter or set of parameters needs to be de-
termined. Following a convention in the statistical literature, we use θ to denote a
generic parameter. In much of our initial discussion we will focus on the case of a
single, scalar parameter, but in most real-world problems θ becomes a vector. For ex-
ample, in fitting a Gamma(α, β) model we would be taking θ = (α, β) and we would
speak of “the parameter” θ in place of “the parameters” α and β. The problem of
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estimation is to determine a method of estimating θ from the data. To constitute a
well-defined method we must have an explicit procedure, that is, a formula or a rule
by which a set of data values x1, x2, . . . , xn produces an estimate. We consider an
estimator to have the form T = T (X1, X2, . . . , Xn), i.e., the estimator is a random
variable derived from the random sample. The properties of an estimator may be
described in terms of its probabilistic behavior.

Before presenting the method of moments and maximum likelihood, we need to
make two comments on notation. First, when we write T = T (X1, . . . , Xn) we are
using capital letters to indicate clearly that we are considering the estimator to be
a random variable, and the terminology distinguishes the random “estimator” from
an “estimate,” the latter being a value the estimator takes. Nonetheless, neither
we nor others in the literature are systematically careful in making this distinction;
it is important conceptually, but some sloppiness is tolerable. Second, we often
write θ∗ or θ̂ for the value of an estimator, so we would have, say, T = θ̂. The
latter notation, using θ̂ to denote an estimate, or an estimator, is very common in
the statistical literature. Sometimes, however, θ̂ refers specifically to the maximum
likelihood estimator (MLE). This is another potential source of confusion, which the
context should clarify.

7.2.1 The method of moments uses the sample mean and

variance to estimate the theoretical mean and vari-
ance.

We have already indicated that ML is the dominant approach to estimating a pa-
rameter vector θ. For various reasons, however, other methods are sometimes used.
In this section we present one of these other methods, the method of moments, which
preceded the development of ML and is still used for some purposes. The idea is
simple: to fit a probability distribution to a set of data we equate the theoretical
mean and variance to the sample mean and variance and then solve for the unknown
parameters.
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Illustration: Fitting a gamma distribution On page 145 we noted that the
mean and variance of a Gamma(α, β) random variable are

µ =
α

β

σ2 =
α

β2
.

We may solve these for β and α: dividing the first equation by the second we get

β =
µ

σ2
;

squaring the first and dividing by the second we get

α =
µ2

σ2
.

We then substitute x̄ and s2 for µ and σ2 to obtain the method of moments estimator:

β∗ =
x̄

s2

α∗ =
x̄2

s2
.

2

The method of moments is, in some cases, like the gamma, quite easy to apply.
In principle, higher-order moments could be used (e.g., E(

∑
(Xi − µ)3) could be

equated to the sample analogue), though this is rare in practice.

7.2.2 The method of maximum likelihood maximizes the
likelihood function, which is defined up to a multi-

plicative constant.

To introduce maximum likelihood estimation, let us begin by framing the estimation
problem concretely, using the binomial, and let us write the binomial pdf in the form

f(x|θ) =

(
n

x

)

θx(1− θ)n−x
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which was previously denoted by f(x) = P (X = x), with p replacing θ. Here the
notation f(x|θ) is used to imply that we are examining the pdf of X given the value
of θ. The binomial pdf describes the probabilities to be attached to varying possible
values X = x for a given fixed value of θ. That is, once we plug in a value of θ we
have completely determined the pdf for all values of x. The problem of estimation,
however, attempts to find a sensible guess at θ given that X = x has been observed.
It thus reverses the situation: instead of assuming a value for θ and finding values of
x, we must assume a value of X = x and come up with a value of θ. In this sense,
it is involves an inverse or inductive form of reasoning. The method of maximum
likelihood chooses the value θ̂ of θ that assigns to the observed data x the highest
possible probability:

f(x|θ̂) = max
θ
f(x|θ).

In the binomial problem we will, below, show that θ̂ = x/n. In other words, maxi-
mum likelihood estimates the theoretical proportion (or propensity) θ by the observed
proportion x/n.

A detail: Why do we call θ a theoretical proportion? We have that X/n
is the mean of n Bernoulli trials, each having probability θ of being 1. By
the law of large numbers

X

n

P→ θ

so that θ is, roughly speaking, the proportion of 1s observed in infinitely
many trials. In this sense we can say that θ is a theoretical proportion.
2

To understand the maximum likelihood idea better we consider what the pdf
f(x|θ) tells us about the various possible values of θ. To do this we invert its
functionality by thinking of f(x|θ) as a function of θ rather than of x. That is,
having observed X = x, we fix x in the pdf f(x|θ) and then consider how each
different choice of θ produces a different probability f(x|θ). We do not regard this as
an intuitively obvious thing to do. It becomes much more intuitive from a Bayesian
point of view, as we mention in Section 7.3.8. For now we ask the reader to bear
with us and make sure to understand what we mean.

The distinction we are trying to draw here, between f(x|θ) as a function of x and
f(x|θ) as a function of θ is illustrated in Figure 7.2, which displays the binomial pdf
viewed both ways when n = 4: first (on the left) as a function of x when θ = .5 and
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Figure 7.2: Comparison of pdf f(x|θ) when viewed as a function of x with θ fixed at
θ = .5 (on left) or of θ with x fixed at x = 1 (on right). On the right-hand side, the
pdf is evaluated for 99 equally-spaced values of θ from .01 to .99.

then (on the right) as a function of θ when x = 1. First, when θ = .5, the pdf is
evaluated for 5 possible values of x: 0, 1, 2, 3, 4. These are all the possible values
of x. (When n = 4, these are all the possible values of x regardless of the value
of θ, as long as it is a permissible value, i.e., it is between 0 and 1, which is often
written θ ∈ (0, 1).) When x = 1 and the pdf is regarded as a function of θ there is a
whole continuum of possible values of θ in (0,1). In the second part of the figure we
set x = 1 and the pdf is evaluated for 99 values of θ, among all the possibilities for
θ ∈ (0, 1). There is nothing of interest about the contrast between the picture on the
left and the picture on the right except that the two representations are conceptually
different.

When the pdf is considered as a function of the parameter θ rather than the values
x of the random variable, it is called the likelihood function. We will denote it by
L(θ). (Other notations are variations on this; all authors use some form of the letter
“L.”) The maximum likelihood estimator (MLE) is the value of θ that maximizes
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L(θ). We will denote it2 by θ̂.

So far, we have discussed the pdf and likelihood based on a single (scalar) ran-
dom variable. The concept generalizes immediately to vectors. In fact, one would
typically have a vector of observed data x = (x1, . . . , xn) that has a joint pdf
f(x|θ) = f(x1, . . . , xn|θ). In the subsequent parts of this chapter we will take x
to be a vector, often corresponding to a sample of data, and regard as a special case
any application when it becomes a scalar.

Note that the value of θ maximizing L(θ) is the same as the value of θ maximizing
c · L(θ) for any positive constant c. We therefore always understand the likelihood
function to be defined only up to a positive constant. Thus, we may write L(θ) in
proportionality form

L(θ) ∝ f(x|θ)
and choose the constant for arithmetic convenience.

Illustration: Binomial likelihood We may write the binomial likelihood
function as

L(θ) = θx(1− θ)n−x.

Here, in going from the pdf to the likelihood function we have omitted the factor
(

n
x

)

because it does not involve θ. 2

From the second part of Figure 7.2 it is apparent that when x = 1 the MLE is
θ̂ = .25, which is an instance of the formula θ̂ = x/n. To find the maximum, more
generally, some combination of analytic (calculus-based) and numerical methods may
be used. In the simplest problems, analytic methods suffice. In either case, however,
it is easiest to begin by taking logs, because the value maximizing logL(θ) is the
same as the value maximizing L(θ), and because the pdf typically has a product
form which is thereby converted to a sum. Suitably enough, the log of the likelihood
function is called the loglikelihood function. We denote it here by ℓ(θ):

ℓ(θ) = logL(θ).

Note that in writing a formula for ℓ(θ) we may omit any additive terms that do not
involve θ, because these become multiplicative constants in L(θ) and do not affect
the maximization.

2There is some potential for confusion because, as we said on page 179, in the literature the
“hat” sometimes denotes a generic estimator and sometimes specifies the MLE.
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Illustration: Binomial MLE. To derive the general form θ̂ = x/n for the
MLE we begin with the loglikelihood function

ℓ(θ) = x log θ + (n− x) log(1− θ)

where we have omitted the term log
(

n
x

)
because it does not involve θ. To maximize

this function we set its derivative equal to zero and solve:

0 = ℓ′(θ) =
x

θ
− n− x

1− θ
so that

x(1− θ) = (n− x)θ
which gives the solution

θ̂ =
x

n
.

It is also easy to check that ℓ′′(θ̂) < 0, which verifies that θ̂ is a maximum. 2

Illustration: Normal MLE. Suppose we have a sample x1, . . . , xn from a
N(θ, σ2) distribution, where σ is known and the problem is to estimate θ. The ith
normal density has pdf

f(xi|θ) =
1√
2πσ

exp(−(xi − θ)2

2σ2
)

and the random variables X1, . . . , Xn are independent, so the joint pdf is

f(x1, . . . , xn|θ) =
n∏

i=1

f(xi|θ)

=
n∏

i=1

1√
2πσ

exp(−(xi − θ)2

2σ2
).

From this, the loglikelihood function is

ℓ(θ) = −
n∑

i=1

(xi − θ)2

2σ2

= − 1

2σ2

n∑

i=1

x2
i − 2xiθ + θ2

= − n

2σ2
(θ2 − 2x̄θ) + R
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where R is a term that does not involve θ. Because the loglikelihood function is
defined only up to an additive constant, we have

ℓ(θ) = − n

2σ2
(θ2 − 2x̄θ). (7.2)

Setting its derivative equal to 0 we obtain

0 =
n

2σ2
(θ − x̄)

so that θ̂ = x̄. 2

7.3 Confidence Intervals

7.3.1 For scientific inference, estimates are useless without

some notion of precision.

In Example 1.4 P.S. preferred the non-burning house about 80% of the time. How-
ever, this information by itself is not enough to say anything useful about her pref-
erences: 4 out of 5 trials would also provide a preference for the non-burning house
80% of the time, as would 80 out of 100 trials. But 4 out of 5 is far different than 80
out of 100. With 100 trials we could say pretty accurately what her preference rate
is, while with 4 out of 5 it would not be clear that this is different than guessing.
In scientific contexts, an estimate is useless unless we have some idea how accurate
it is. One need not always drag around a standard error or confidence interval, and
it is common to speak in terms of estimates without stating uncertainty; however,
this convention assumes the uncertainty to be small relative to the size of the effects
under discussion. It is important to include a statement of uncertainty whenever the
uncertainty is non-negligible. In our judgment, inclusion of uncertainty should be
considered the rule rather than the exception. We keep returning to Example 1.4
precisely because 14/17 is intermediate between the obvious situations where one
doesn’t need uncertainty (80/100) and where the estimate is hopelessly uncertain
(4/5). Even a trained statistician might have some trouble saying correctly where
14/17 falls in this continuum without doing some calculations. So let us look at
14/17 = .82 and ask, “How much error is there in this estimate?”

At first glance it appears impossible to answer this question: if we knew θ then
the error in estimating it with θ̂ would be θ̂ − θ; but we don’t know θ, which is
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why we are trying to estimate it. Nonetheless, even though we can not say precisely
how big the error is, we can use probability and say something about the likely
magnitude of error. This is usually quantified with the standard error. The idea
begins with the recognition that every estimator T = T (X1, X2, . . . , Xn) exhibits
variation. That is, if we were to examine T across many different samples we would
get many different values. Because X1, . . . , Xn are random variables having some
probability distribution, T is a random variable. A simple summary of the magnitude
of the variation of T is its standard deviation

σT =
√

V (T ). (7.3)

This is almost, but not quite, the standard error of T . The problem with formula
(7.3) is that V (T ) is typically not known and so itself must be estimated from the
data. We illustrate in the context of Example 1.4.

Example 1.4 (Continued, see page 16) Let Y ∼ B(n, p) and note that the
usual estimator of p is sample proportion T = p̂ = Y/n. Because V (Y ) = np(1− p)
we have V (T ) = p(1− p)/n. Thus, we have the formula

σT =

√

p(1− p)
n

. (7.4)

The formula in Equation (7.4) quantifies the variation we can associate with the
observed proportion p̂ = 14/17 = .824. However, we can not compute a numerical
value for σT from Equation (7.4) because we do not know what value of p to use.
The obvious solution is to substitute p̂ for p in Equation (7.4). When we do this we
obtain the standard error for the binomial proportion

SE(p̂) =

√

p̂(1− p̂)
n

. (7.5)

Applying this to the data from P.S. we get

SE =

√

14
17

(1− 14
17

)

17
= .092.

We then typically write the estimate in the form .824± .092, with the ± indicating
that the likely variability in the estimate is .092. When, instead, we write p̂± 2SE
we get the confidence interval (.64, 1.0), reported on page 16. 2

The general procedure for computing the standard error is, in essence, the same
as in the binomial case. To emphasize the substitution of the estimated parameter
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for the unknown paramater we define the standard error of an estimator T to be of
the form

SE(T ) =

√

V̂ (T ) (7.6)

with the hat on V indicating that we have estimated the variance. In fact, definition
(7.6) is very general in the sense that it does not specify how we estimate the variance.
As we will see in Chapters 8 and 9, several different methods are used to obtain
variance estimates. We have used T in (7.6) to emphasize that it is a random
variable, but in an alternative notation we use more often we may rewrite (7.6) as

SE(θ̂) =

√

V̂ (θ̂).

One note on terminology: the term “standard error” is sometimes used to refer to
the standard error of the mean, as in Equation (7.17), which is a special case of (7.6).

It is very common practice to report an estimate together with its standard error
in the form

θ̂ ± SE(θ̂).

This gives a simple, rough sense of how accurate the estimate is. A more refined
statement comes from the use of a confidence interval. In general terms, a 95%
confidence interval (CI) for a parameter θ is an interval of the form (L,U) (L for
lower, U for upper), where L = L(X1, . . . , Xn) and U = U(X1, . . . , Xn) are random
variables derived from the data and

P (L < θ < U) = .95. (7.7)

This rather abstract definition becomes clear by examining particular problems, as
we do below. In words, Equation (7.7) says that if θ were the value of the unknown
parameter, the probability that the interval would include this unknown value is 95%.
The probability .95 is the level of confidence associated with the interval (L,U).

In many applications an estimator θ̂ follows an approximately normal distribution
(because estimators may often, at least approximately, be written in the form of the
mean of some random variables). This is a tremendous simplification because it
gives a simple method for finding L and U in (7.7). According to the 2/3–95% rule
(page 138), from the approximate normality of θ̂ we may get an approximate 95%
confidence interval (L,U) by taking L = θ̂ − 2SE(θ̂) and U = θ̂ + 2SE(θ̂), that is,

approx. 95% CI = (θ̂ − 2SE(θ̂), θ̂ + 2SE(θ̂)). (7.8)
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The ingeniously simple construction that drives confidence intervals is most easily
understood in the case of estimating the mean of a normal distribution, which we
consider in Section 7.3.2. We then give some justification for the more general form
in (7.8) on page 195.

7.3.2 Estimation of a normal mean is a paradigm case.

Suppose X1, . . . , Xn is a random sample from a N(µ, σ2) distribution with the value
of σ known. Here, for notational ease, we drop the subscript X from µ and σ. Note
that µmay be estimated by the sample mean X̄ and in this special case V (X̄) = σ2/n
so that the standard error is

SE(X̄) =
σ√
n
. (7.9)

Theorem If X1, . . . , Xn is a random sample from a N(µ, σ2) distribution, with
the value of σ known, then

X̄ ∼ N(µ, (SE(X̄))2) (7.10)

where SE(X̄) is given by (7.9).

Proof: Let 1vec be the n-dimensional vector with all components equal to 1. Ac-
cording to the definition of a random sample, the random variables in the sample are
independent. Because X1, . . . , Xn is a random sample from a N(µ, σ2) distribution,
the vector X = (X1, . . . , Xn) is, therefore, multivariate normal with mean µ1vec and
variance matrix σ2In where In is the n× n identity matrix. Note that

X̄ =
1

n
1T

vecX (7.11)

From the definition of multivariate normality on page 151 (which used Equations
(4.22) and (4.23)) we have that 1T

vecX is normally distributed with mean 1T
vecµ1vec =

nµ and variance σ21T
vecIn1vec = nσ2. Multiplying by 1/n and using (3.6) and (3.7),

with a = 1/n and b = 0, we have

1

n
1T

vecX ∼ N(µ,
σ2

n
). (7.12)

Combining (7.12) with (7.11) gives

X̄ ∼ N(µ,
σ2

n
) (7.13)
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which is (7.9). 2

Theorem If X1, . . . , Xn is a random sample from a N(µ, σ2) distribution, with
the value of σ known, then the interval (X̄ − 2 · SE(X̄), X̄ + 2 · SE(X̄)) is a 95% CI
for µ, where SE(X̄) is given by (7.9).

Proof: We must show that

P (X̄ − 2 · SE(X̄) ≤ µ ≤ X̄ + 2 · SE(X̄)) = .95. (7.14)

From (7.13) we have

P (µ− 2
σ√
n
≤ X̄ ≤ µ+ 2

σ√
n

) = .95. (7.15)

We observe

µ− 2
σ√
n
≤ X̄ ≤ µ+ 2

σ√
n
⇐⇒ |X̄ − µ

σ/
√
n
| ≤ 2

⇐⇒ X̄ − 2
σ√
n
≤ µ ≤ X̄ + 2

σ√
n
.

Therefore, (7.15) gives (7.14). 2

The beauty of confidence lies in the simple manipulations, given above, that allow
us to reason from (7.15) to (7.14). We take the description of variation given in (7.13)
and convert it to a quantitative inference about the value of the unknown parameter
µ.

7.3.3 For non-normal observations the Central Limit Theo-
rem may be invoked.

Now supposeX1, . . . , Xn form a sample from a distribution with mean µ and standard
deviation σ, with the distribution not necessarily normal. For simplicity, suppose
again that σ is known.

By the CLT we have √
n(X̄ − µ)

σ

D→ N(0, 1).
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We now apply the same manipulations used in deriving (7.15). We have

P (|X̄ − µ
σ/
√
n
| ≤ 2) ≈ .95

and, in turn, this is equivalent to

P (X̄ − 2
σ√
n
≤ µ ≤ X̄ + 2

σ√
n

) ≈ .95. (7.16)

Therefore, for n sufficiently large, Equation (7.16) provides an approximate 95% CI.
Written slightly differently, an approximate 95% CI is given by X̄±2 ·SE(X̄), where
SE(X̄) = σ/

√
n. The important point here is that we do not require the distribution

of the data to be normal, yet we still get a quantitative inference based on asymptotic
normality of the mean because of the CLT.

7.3.4 A large-sample confidence interval for µ is obtained
using the standard error s/

√
n.

In Sections 7.3.2 and 7.3.3 we assumed σ was known. This was for purely pedagogical
purposes. In practice, σ is almost always unknown and, as a consequence, we don’t
have a value to plug in when we want to calculate SE = σ/

√
n. The way to proceed,

however, is pretty clear. As in the binomial standard error formula (7.5), we simply
replace σ with an estimate, the obvious estimate being the sample standard deviation
s. In the scenario envisioned in Section 7.3.3, with σ unknown we replace it with s
in σ/

√
n to get the standard error of the mean,

SE(x̄) =
s√
n

(7.17)

and from this we obtain a more practical version of (7.16) for our approximate 95%
CI. Because we state the result in terms of probability, we replace the observed value
s with its random-variable counterpart S.
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Result If X1, . . . , Xn is a random sample from a distribution
having mean µ and standard deviation σ, and n is sufficiently
large, then an approximate 95% CI for µ is given by x̄±2·SE(x̄),
where SE(x̄) is given by (7.17), i.e., for n sufficiently large,

P (X̄ − 2
S√
n
< µ < X̄ + 2

S√
n

) ≈ .95. (7.18)

This result follows from manipulations similar to those used in deriving (7.14) and
(7.16). In establishing (7.16) we applied the CLT. The following theorem modifies
the CLT used in Section 7.3.3 by replacing σ with S.

Theorem Suppose X1, . . . , Xn is a random sample from a distribution having
mean µ and standard deviation σ. Assume E ((Xi − µ)4) <∞, let Sn be the sample
standard deviation calculated from X1, . . . , Xn, and let Yn =

√
n(X̄ − µ)/Sn. Then,

as n→∞, we have

Yn
D→ N(0, 1).

Details: In order to prove the theorem we first need two lemmas.

Lemma 1 LetX1, . . . , Xn, . . . be i.i.d. sequence for which E ((Xi − µ)4) <
∞ and let Sn be the standard deviation calculated fromX1, . . . , Xn. Then
we have

Sn
P→ σ. (7.19)

Proof: Let Yi = (Xi− µ)2, so that Ȳ = 1
n

∑n
i=1 Yi. Note that E(Yi) = σ2

X

and, from (3.8), V (Yi) = E ((Xi − µ)4)−σ4
X which shows that V (Yi) <∞

so that the law of large numbers may be applied. By the law of large
numbers we have that Ȳ converges to σ2

X . Because n/(n − 1) → 1, we
also have that n

n−1
Ȳ converges to σ in probability. But Sn = n

n−1
Ȳ . 2

Lemma 2 (Slutsky’s Theorem) If Un converges to c in probability
and Vn converges to Y in distribution, then UnVn converges to cY in
distribution.

Proof: The proof of this result, while straightforward, involves quite a bit
of detailed manipulation. We omit it. (See Bickel and Doksum (2001),
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Theorem A.14.9. Bickel, Peter J. and Doksum, Kjell A. (2001) Mathemat-
ical Statistics: Basic Ideas and Selected Topics, Vol. 1, Prentice-Hall.)
2

Proof of Theorem: By the CLT Zn =
√
n(X̄ − µ)/σ converges in distri-

bution to N(0, 1). Applying Lemma 1 we have that Sn converges to σ in
probability or, equivalently, σ/Sn converges to 1 in probability. Writing
Un = σ/Sn and Vn = Zn, and noting that Yn defined in the statement of
the theorem satisfies Yn = UnVn, we may apply Lemma 2 to obtain the
desired convergence in distribution. 2

Example 3.4 (continued from page 160) Motor cortical neuron spike counts
On page 160 we considered spike counts from a motor cortical neuron across 60

trials, each spike count being recorded during a 600 millisecond interval. The mean
spike count across the 60 trials was 13.63 spikes. Converting the counts to firing
rates (by dividing by .6 seconds), we get a mean of 22.72 spikes per second and a
standard deviation of 7.17 spikes per second. This gives a standard error of

SE =
7.17√

60
= .93.

We might then report the firing rate of this neuron, under the particular experimental
condition, to be 22.72 (±.93) spikes per second. An approximate 95% confidence
interval for the firing rate is then (20.8, 24.6) spikes per second. 2

The result is tremendously important in practice. However, it leaves open the
question of how large the sample must be in order for the approximation to be good,
i.e., for the probability of coverage (the probability the interval will cover µ) to be
nearly .95. There is no universal answer to this question. Because we have the exact
result in (7.14), this approximation tends to be good for moderate-size samples when
the data are nearly normal. It may not be very good in moderate-size samples with
strongly non-normal data. This is why it is important to check normality. The
small-sample case is more problematic. We mention it again in Section 7.3.10.
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7.3.5 Standard errors lead immediately to confidence inter-
vals.

We now return to the general form for an approximate 95% CI given by (7.8) and
derive it. First we consider the special case of the binomial probability p. Recall
that if X1, . . . , Xn are Bernoulli trials with probability p, and if Y =

∑n
i=1Xi, then

Y ∼ B(n, p). We have Y/n = X̄, E(Xi) = p and V (Xi) = p(1− p) so the CLT gives

√
n(X̄ − p)
√

p(1− p)
D→ N(0, 1). (7.20)

By the 2
3
–95% rule (page 138) this implies

P (−2 ≤
√
n(X̄ − p)
√

p(1− p)
≤ 2) ≈ .95

and, multiplying through the inequalities by
√

p(1−p)
n

, we have

P (X̄ − 2 ·
√

p(1− p)
n

≤ p ≤ X̄ + 2 ·
√

p(1− p)
n

) ≈ .95.

Here p is unknown. Using X̄ as an estimator of p we replace p by X̄ and get

P (X̄ − 2 ·
√

X̄(1− X̄)

n
≤ p ≤ X̄ + 2 ·

√

X̄(1− X̄)

n
) ≈ .95 (7.21)

which is (7.8) for the binomial case, where the standard error is given by (7.5). The
replacement of p with p̂ in the standard error formula is analogous to the replacement
of σ with s in Section 7.3.4. The binomial case is sufficiently important that we state
it formally, rewriting (7.21) in terms of p̂, where p̂ = X̄ so that the standard error is

SE(p̂) =
√

p̂(1−p̂)
n

.
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Result If Y ∼ B(n, p) then p may be estimated by p̂ = Y/n

with standard error SE(p̂) =
√

p̂(1−p̂)
n

. For large n, an approxi-

mate 95% CI is given by

p̂± 2 · SE(p̂),

meaning that for n sufficiently large we have

P (p̂− 2 · SE(p̂) ≤ p ≤ p̂+ 2 · SE(p̂)) ≈ .95. (7.22)

Details: To justify the replacement of p with p̂ we first note that the LLN
gives us

X̄
P→ p.

Then, by Slutsky’s Theorem (page 191), X̄(1− X̄) converges to p(1− p)
in probability and, from (7.20), we have

√
n(X̄ − p)

√

X̄(1− X̄)

D→ N(0, 1)

which gives (7.21).

To generalize this argument we consider the problem of estimating a parameter
vector θ in some probability model using an estimator Tn = T (X1, . . . , Xn). We
have written the subscript n on T to indicate that we are examining its behavior
as n → ∞. Two things drove the derivation of (7.22) above. First, the CLT was
invoked to produce the approximate normality of X̄ according to (7.20) and, second,

in the standard deviation
√

p(1−p)
n

, p was replaced by p̂ (which was justified by the

convergence of X̄ to p in probability). If we assume these two phenomena apply then
we obtain (7.8) according to the following theorem.

Theorem If Tn is an asymptotically normal estimator of θ satisfying

(Tn − θ)
σTn

D→ N(0, 1)

and σ̂Tn satisfies
σ̂Tn

σTn

P→ 1
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then we have
(Tn − θ)
σ̂Tn

D→ N(0, 1).

Proof: This follows by Slutsky’s theorem (page 191), as in the binomial case. 2

We now re-state the theorem as a “result,” by putting it in a form that is less
precise mathematically but more useful in practice.

Result If Tn is an asymptotically normal estimator of θ satis-
fying

(Tn − θ)
σTn

D→ N(0, 1) (7.23)

and σ̂Tn provides the standard error of Tn in the sense that

σ̂Tn

σTn

P→ 1

then
approx. 95% CI = (Tn − 2σ̂Tn , Tn + 2σ̂Tn)

which may also be written, equivalently, in the form (7.8), i.e.,

approx. 95% CI = (θ̂ − 2SE(θ̂), θ̂ + 2SE(θ̂)).

The method given by (7.8) is widely applicable because (i) lots of estimators are
approximately normally distributed, as in the first assumption of the theorem, and
(ii) there are good ways to get standard errors, as in the second assumption of the
theorem. The useful “result” is imprecise because of the approximation. The precise
statement is in the theorem. This degree of imprecision, and the unclear relevance
of arguments that treat the sample size n as sufficiently large, or essentially infinite,
are core components of the bond between theory and practice in data analysis.

A Detail: An additional consequence of (7.23) returns us to the char-
acterization, on page 186 of the standard error. After saying that the
standard error represents the likely magnitude of error T −θ we then dis-
cussed standard error as estimating the standard deviation of T , which
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is not the same thing. It is in principle possible for the estimator T to
be systematically wrong (being close to, say, θ+ 10 instead of θ) and yet
have a small variance; in this case the standard error would not represent
the likely magnitude of error. When (7.23) holds all is well: it says that
T − θ is approximately normally distributed with mean 0 and approxi-
mate standard deviation σTn , so that σTn is indeed the likely magnitude
of error. This notion of standard error is justified because (7.23) holds in
a variety of commonly-found cases.

An important kind of application of (7.8) arises when we have two parameters
φ1 and φ2 and we are interested in the magnitude of their difference θ = φ1 − φ2. If
we have two independent estimators T1 and T2 (we could write T1,n1 and T2,n2 but
are suppressing the dependence on the sample sizes n1 and n2) with standard errors
SE1 and SE2 then

V (Tj) = SE2
j

for j = 1, 2 and, by independence (see Equation (4.4)),

V (T1 − T2) = SE2
1 + SE2

2 ,

and we get

SE(T1 − T2) =
√

SE2
1 + SE2

2 . (7.24)

This expression provides the standard error needed to produce a confidence interval
for the difference θ = φ1 − φ2, according to (7.8).

Example 7.2 Test-enhanced learning Tests are used to assess whether students
have learned subject-matter material. A line of research has emphasized the addi-
tional value of testing as a way to enhance learning (Karpicke and Roediger, 2008).
(Karpicke, J.D., and Roediger, H.L. (2008) The critical importance of retrieval for
learning, Science, 319: 966–968.) The idea is that when students are tested, they
recall information and thereby reinforce memory of it. In one study, Roediger and
Karpicke (2006) (Roediger, H.L., and Karpicke, J.D. (2006) Test-enhanced learning,
Psychological Science, 17: 249–255.) had subjects read a short passage and then get
tested on it after a delay period during which they would forget some of the material.
Let us call this test the assessment test. After reading but before the assessment
test there was an experimental manipulation: some subjects were asked to restudy
the text, while other subjects were instead given a learning test, identical to the as-
sessment test. These tests simply asked the subjects to write down everything they
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Figure 7.3: Histograms of test-enhanced learning data. Data are assessment scores
(number of recalled idea units, out of a maximum of 30) for 30 subjects under the
SSSS condition (TOP) and the SSST condition (BOTTOM). Data courtesy of J.D.
Karpicke.

could remember about the passages. The tests were scored according to the number
of “idea units” correctly recalled. A key part of the study focused on retention of the
material following a delay period of 1 week, asking whether the learning-test group
retained the material better than in the restudying group.

After finding strong evidence of a benefit from testing, the authors did a second
experiment, using four study or testing sessions. In one condition, labelled SSSS,
there were 4 study sessions, and in another, labelled SSST, there were 3 study sessions
followed by a testing session. The assessment administered following a delay of 1 week
had a maximal score of 30 idea units. Data from 60 subjects, 30 in each of the SSSS
and SSST groups are displayed in Figure 7.3.
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For the data displayed in Figure 7.3 the means were 11.9 and 16.7 idea units,
with medians 12 and 16 idea units, and lower and upper quartiles (8.25, 15) and
(11.25, 21) idea units. It appears that the SSST scores tend to be higher than the
SSSS scores. To formalize the comparison, we consider the population mean scores
under these two conditions. If we let X1i be the score of the ith subject in the SSSS
condition and X2i be the score of the ith subject in the SSST condition and if µ1 and
µ2 are the mean scores within these two conditions, we may estimate the difference
θ = µ1 = µ2. Applying (7.8) with (7.24) we first used (7.17) to obtain SE1 and SE2,
and then (7.24) gave

SE(X̄1 − X̄2) = 1.5

idea units. We then found the approximate 95% confidence interval to be

11.9− 16.7± 2(1.5) = −4.8± 3.0

which produced the interval (1.8, 7.8) as the estimated mean number of additional
idea units recalled in the SSST condition, compared with the SSSS condition. 2

7.3.6 Estimates and standard errors should be reported to
two digits in the standard error.

We recommend rounding standard errors to two leading (nonzero) digits, and then
rounding the estimate to match the standard error. For example, if we found an
estimate to be 5.582 and the standard error to be .207 we would report the result as
5.58 ±.21. Our reasoning is as follows. On the one hand, it is generally good to avoid
too many digits both because numbers with many digits become hard to read, and
also because extra digits may imply more accuracy than is present in the results. In
this illustration, because the standard error is .21, the second digit in the estimate is
already very uncertain: the 95% CI is (5.1,6.0) so we really don’t know much about
that second digit. We could report only a single digit in the standard error, but
we prefer to report two because a standard error of .249 is quite a bit larger than
a standard error of .151, yet to single-digit accuracy both would be rounded to .2.
No rule is perfect, but it seems to us that reporting standard errors to two digits,
but not more, is a good idea. Thus, in Example 1.4 on page 186 we reported the
estimate p̂ of the propensity p to be .824 ±.092, and in Example 3.4 on page 192 we
reported the firing rate of the M1 neuron to be 22.72 ±.93 spikes per second.
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7.3.7 Appropriate sample sizes may be determined from de-
sired size of standard error.

In Example 1.4, based on the confidence interval reported on page 16, the results
seemed conclusive but, in some situations, we would like even stronger evidence. A
natural question is then, How much data would we need to achieve a decisive result?
By assuming preliminary data give us a good idea of what to expect, we can answer
this question. In the case of Example 1.4, we found p̂ = .824 with SE = .092. If
we assume p is, in fact, somewhere around p̂, the way we would obtain stronger
evidence is by decreasing the standard error. In general terms we proceed in two
steps. First, we determine how small we want the standard error to be. Writing our
current standard error as SE1 and our desired standard error as SE2, we then write
an expression that tells us how big a sample size we would need in order to reduce
SE1 to SE2.

The key extra assumption is that the standard error tends to decrease as
√
n.

This holds for many estimators, including MLEs (which follows from the discussion
in Section 8.4.3). Let us suppose that SE1 is based on a sample of size n1 and we
wish to determine the sample size n2 that would give us SE2. Because we want the
standard error SE1 to decrease by a factor SE1/SE2 (e.g., if we want SE2 to be half
the size of SE1 we want to decrease SE1 by a factor of 2), we write

SE1

SE2
=

√
n2

n1

and solve for n2, which gives

n2 = n1

(
SE1

SE2

)2

. (7.25)

If, for instance, we wanted to decrease the standard error by a factor of 2 we would
have to multiply our current sample size by a factor of 4. This is just a restatement
of the

√
n decrease in the standard error, with (7.25) providing the explicit formula

we would use to compute n2 in practice.

Using confidence intervals, the simple rule3 in Equation (7.25) is about as far as we
can go. An investigator may wonder about step one, the choice of the “desired” SE2.

3More complicated formulas exist; however, the uncertainties involved in replicating results when
collecting more data are often much larger than any extra precision one might gain from a more
detailed calculation.



200 CHAPTER 7. ESTIMATION AND UNCERTAINTY

The selection of SE2 must be determined by careful thinking about the scientific
issues involved in the particular case at hand. The desired size of the standard
error in Example 3.4, page 192, for instance, depends on the way the information
about spike counts will be used as part of the overall project. In Example 3.4 a
relatively large number of trials were collected because the experiment was part of
a comparative study in which relatively small differences across conditions appeared
possible—yet still would have been of interest. According to the standard error on
page 192, the firing rate was determined within about ±1 spike per second. If 15
trials had been used instead of 60, according to the

√
n law and (7.25) we would

expect an accuracy of only about ±16 spikes per second, and for a mean rate of
around 20 spikes per second this seems to be a rather large uncertainty unless the
neural response was drastically changed under the alternative condition. On the other
hand, such statistical consideration always must be balanced against experimental
constraints.

7.3.8 Confidence assigns probability indirectly, making its
interpretation subtle.

Here are two interpretations of the confidence interval found for the propensity p of
P.S. to choose the non-burning house:

Interpretation A: If p were the true value, then the probability that the
interval given by (7.22) would contain p is approximately 95%. Based on
the data from P.S., the approximate 95% CI is (.64,1.0).

Interpretation B: Based on the data from P.S., the probability that (.64,1.0)
contains p is approximately 95%.

It may seem that interpretation B is an immediate consequence of interpretation
A. After all, once we apply interpretation A to all values of p, then, regardless
of the data we observe, the CI will cover p with approximately 95% probability;
we need only apply this to the data we actually did observe to get interpretation B.
Unfortunately, to the shock and dismay of many students of statistical inference, this
simple logic is fallacious. Interpretation B is a famously incorrect interpretation of a
confidence interval. The correct interpretation of confidence, in interpretation A, can
not be translated into interpretation B because interpretation A involves the random
variables L and U that specify the lower and upper endpoints of the CI; probability
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concerns random variables, not constants; and in interpretation B, .64 and 1.0 are
constants, they are not random variables. Once the data have been observed, the
probability formalism at the foundation of (7.22) no longer speaks. So it is incorrect
to think that the confidence interval (.64,1.0) tells us there is a very large probability
that p is in the range (.64,1.0). The math involved in deriving confidence intervals
is clear, neat and clean. If we want to provide a linguistic interpretation of the
confidence interval, however, we must revert to the somewhat clumsy and indirect
interpretation A. On page 205 we give a more careful re-statement of interpretations
A and B.

To highlight the meaning of CIs let us consider the blindsight example further.

Example 1.4 (continued, see page 16) The first three columns of the table
below gives possible CIs using (7.22) when X ∼ B(17, p). For example, when X = 11
we find L = .415 and U = .879 so that the CI becomes (.42,.88).

x L U cover
7 .173 .650 N
8 .228 .713 N
9 .287 .772 N
10 .350 .827 Y
11 .415 .879 Y
12 .485 .927 Y
13 .559 .970 Y
14 .639 .008 Y
15 .726 .039 Y
16 .827 1.055 N
17 1 1 N

Now suppose the true value of p were .8. We would find that the CI would contain or
“cover” p for some of the values of x but not others, as indicated in the fourth column
of the table (“Y” for yes, the interval (L,U) covers .8, “N” for no it does not). The
table shows that (L,U) covers .8 when 10 ≤ x ≤ 15. To find the level of confidence
associated with (L,U) we would compute P (10 ≤ X ≤ 15) when X ∼ B(17, .8). We
will return to this below. 2

There is another way to look at confidence intervals. Suppose we draw N random
samples, independently, and compute CIs (L,U) for each. Let Yi = 1 if (L,U)
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contains p for the ith random sample and Yi = 0 if not, so that P (L ≤ p ≤ U) =
P (Yi = 1). Then Ȳ is the fraction of random samples for which (L,U) contains p.
By the LLN,

Ȳ
P→ P (Yi = 1)

that is,

Ȳ
P→ P (L ≤ p ≤ U).

We may therefore consider the confidence level P (L ≤ p ≤ U) to be the long-run
limit of the fraction of confidence intervals that contain p.

Interpretation C: If we were to obtain CIs using (7.22) repeatedly, indefi-
nitely many times, then, in the long run, approximately 95% of those CIs
would contain p. Based on the data from P.S., the CI is (.64,1.0).

More generally, the level of confidence is usually considered to be the long-run
frequency with which the CI covers the true value.

The big achievement of confidence intervals is the conversion of probability as a
description of variation (the distributionX ∼ B(n, p)) into a statement of knowledge.
But this achievement comes at a cost: the statement of knowledge is very weak. We
might prefer interpretation B, which is analogous to saying “I am 90% sure the
capital of Louisiana is Baton Rouge,” but confidence intervals do not have such
a direct meaning. An alternative approach, based on Bayes’ Theorem, does allow
interpretation B, but it has its own cost. See Section 7.3.9.

7.3.9 Bayes’ Theorem may be used to assess uncertainty.

Recall Bayes’ Theorem for random variables and vectors: for continuous random
variables or vectors U and V we have

fU |V (u|v) =
fV |U(v|u)fU(u)

∫
fV |U(v|u)fU(u)du

. (7.26)

Let us apply this to the problem of estimating the binomial parameter p. In this
section we replace p by θ, so we suppose X ∼ B(n, θ). To apply (7.26) we take U = θ
and V = X to get

fθ|x(θ|x) =
fX|θ(x|θ)fθ(θ)

∫
fX|θ(x|θ)fθ(θ)dθ

.
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(We use θ for both capital and lower case theta.) Ordinarily we would take θ as a
known constant. Here, however, we take θ to be a random variable. The interpreta-
tion is that we do not know the value of θ so we assign it a probability distribution.
We take fθ(θ) to be the pdf representing our knowledge before seeing the data. It
is the pdf corresponding to the prior distribution. Ordinarily, because θ is a known
constant it is implicitly part of the binomial pdf, so we would write the binomial pdf
as fX(x). Here, however, the binomial pdf must be determined conditionally on a
value of θ, so it is written fX|θ(x|θ). The pdf that summarizes our knowledge after
observing the data X = x is fθ|X(θ|x). This is the pdf corresponding to the posterior
distribution. It is common to write the prior pdf as π(θ) = fθ(θ) (this special nota-
tion makes it clear where the prior appears in various equations) and, because the
likelihood function is L(θ) ∝ fX|θ(x|θ), the posterior pdf may be written

fθ|x(θ|x) =
L(θ)π(θ)

∫
L(θ)π(θ)dθ

.

In order to do computations we must assign a specific probability distribution as
the prior distribution. Assuming we know very little about the value of θ a priori, a
natural choice is to use the uniform distribution, θ ∼ U(0, 1), i.e., fθ(θ) = 1. With
this prior pdf we obtain

f(θ|x) =

(
n
x

)
θx(1− θ)n−x · 1

∫ (
n
x

)
θx(1− θ)n−x · 1dθ

which reduces to

f(θ|x) =
θx(1− θ)n−x

∫
θx(1− θ)n−xdθ

. (7.27)

This formula is a special case of a beta distribution introduced briefly in Chapter 5:
in general, the Beta(α, β) density is

f(w) =
Γ(α + β)

Γ(α)Γ(β)
wα−1(1− w)β−1. (7.28)

Therefore, the posterior distribution of θ is Beta(x + 1, n− x + 1) which has mean
and standard deviation

µθ|x =
x+ 1

n+ 2

σθ|x =

√

(x+ 1)(n− x+ 1)

(n+ 2)2(n + 3)
.



204 CHAPTER 7. ESTIMATION AND UNCERTAINTY

Example 1.4 (continued see page 16) Let us apply this to the data from
patient P.S. We find the posterior distribution based on n = 17 and x = 14 is
Beta(15, 4) and the posterior mean and standard deviation are µθ|x = .79 and σθ|x =
.091. Thus, roughly speaking, these data lead us to conclude that the frequency with
which P.S. will prefer the non-burning house is approximately .79 and our uncertainty
may be summarized by saying that the average amount by which this guess misses
the truth is approximately .091. These numbers are similar to those obtained earlier,
but here they have a different interpretation. Before giving this interpretation let
us press on. We may obtain an interval having 95% posterior probability from the
.025 and .975 percentiles of the Beta(15, 4) distribution, which gives (.59,.94). That
is, P (θ < .59|y) = P (θ > .94|y) = .025 so that P (.59 < θ < .94|x) = .95. The
posterior interval (.59,.94), sometimes called a credible interval to distinguish it from
a confidence interval, is a succinct summary of what we know about θ based on the
data. 2

It is now legitimate to say what the posterior interval means, using words that
are in essence just like interpretation B of Section 7.3.8.

Bayesian interpretation: Based on the data from P.S., together with the uniform
prior, the probability that (.59,.94) contains θ is 95%.

The use of Bayes’ Theorem has thus bought us a highly intuitive interpretation of
the credible interval. Like confidence intervals, credible intervals convert probability
as a description of variation (the distribution X ∼ B(n, p)) into a statement of
knowledge. In this case, unlike the indirect situation with confidence intervals, the
Bayesian statement is very much analogous to saying “I am 90% sure the capital of
Louisiana is Baton Rouge.”

The straightforward Bayesian interpretation is very appealing. We issue two notes
of caution. First, as we said at the end of Section 7.3.8, Bayes’ Theorem requires
the additional assumption of a particular form for the prior distribution. For this
problem it makes a good deal of sense to use the U(0, 1) distribution for θ a priori.. In
many settings, however, it is not clear what prior distribution should be used. Many
proposals for rules to select prior distributions have been made over the years. The
review by Kass and Wasserman (1996), for example, lists over 200 references. (Kass,
R.E. and Wasserman, L. (1996) The selection of prior distributions by formal rules,
J. Amer. Statist. Assoc., 91: 1343–1370.) In practice, in a particular data analytical
context it may take considerable effort to determine how much the choice matters.
Secondly, while confidence is undeniably less direct than posterior probability, we



7.3. CONFIDENCE INTERVALS 205

must keep in mind the fundamental distinction between the theoretical world of
random variables and formal inferences, and the real world of data. There remains
a degree of indirectness in the Bayesian statements as well, because they always say
it is as if the data were to arise as random variables following the probability model
(e.g., the binomial distribution). There is an inescapable divide between theoretical
inferences and real-world conclusions; they are not quite the same thing, no matter
what approach we take. Thus, the following elaborations to interpretations A and
B on page 200 would be more complete:

Interpretation A: If we were to draw a random sample of n = 17 Bernoulli
trials with parameter p, then the probability that the interval given by
(7.22) would contain p is approximately 95%. This is a theoretical state-
ment. Assuming the theoretical and real worlds are aligned well, “the
approximate 95% CI is (.64,1.0)” is a useful statement of knowledge.

Interpretation B: If we were to draw a random sample of n = 17 Bernoulli
trials with parameter p, and if we were to obtain p̂ = 14/17, then the
probability that (.64,1.0) contained p would be approximately 95%. This
is a theoretical statement. Assuming the theoretical and real worlds are
aligned well, “the probability that (.64,1.0) contains p is approximately
95%” is a useful statement of knowledge.

Both Bayesian and non-Bayesian methods have been applied in a wide range of
data analysis problems. The form of the problem and the predilections of the prac-
titioner dictate which approach is taken and, sometimes, both approaches appear
within a single scientific article. There are many important theoretical results con-
cerning posterior distributions. In particular, the approximate CIs given by (7.22)
have a Bayesian justification, making valid interpretation B of Section 7.3.8, which
is re-phrased above. We return to Bayesian methods in Chapter 16.

7.3.10 For small samples it is customary to use the t distri-
bution instead of the normal.

When the sample size is small, the approximation (7.16) may not be accurate. An
alternative is to derive an “exact” confidence interval analagous to (7.14) that cor-
rects for the substitution of s for σ. This leads to an adjustment of the multiplier
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put in front of the standard error. Recall from Chapter 5 that if U ∼ N(0, 1) and
V ∼ χ2

ν independently then

W =
U
√

V
n

has a t distribution on ν degrees of freedom. The adjustment to the small-sample CI
uses the t distribution: writing the .975 quantile as t.975,ν , i.e., P (W ≤ t.975,ν) = .975,
the value t.975,ν multiplies the standard error instead of 2 in the formula (7.16), with
t.975,ν being somewhat larger than 2 (or, strictly speaking, t.975,ν is somewhat larger
than the more precise value 1.96 that most books use instead of 2). The letter
ν denotes the degrees of freedom of the t distribution. Here, ν = n − 1. The
distributional result that makes this work is the following.

Theorem If X1, . . . , Xn is a sample from a N(µ, σ2) distribution, then X̄ and S2

are independent random variables with

√
n(X̄ − µ)

σ
∼ N(0, 1)

and
S2

σ2
∼ χ2

ν

with ν = n− 1.

Proof: We omit the proof of this theorem (which follows, with some effort, by
manipulation of the joint pdf). 2

Theorem If X1, . . . , Xn is a sample from a N(µ, σ2) distribu-
tion, then a 95% CI is given by x̄±t.975,ν ·SE(x̄), where ν = n−1
and SE(x̄) is given by (7.17), meaning

P (X̄ − t.975,n−1 ·
S√
n
≤ µ ≤ X̄ + t.975,n−1 ·

S√
n

) = .95. (7.29)

Proof: Let us write √
n(X̄ − µ)

S
=

√
n(X̄−µ)

σ
√

S2

σ2

.
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The previous theorem then gives the required t distribution of
√

n(X̄−µ)
S

. 2

Formula (7.29) is the standard method used by most statistical software to provide
a confidence interval for an unknown mean µ. When the sample size is large, say,
n ≥ 12, then t.975,ν ≈ 2 and (7.29) agrees with (7.16). Customary terminology refers
to the CI in (7.29) as based on t (because the t distribution is used) while the CI in
(7.16) is based on z (because the standard normal distribution is used). One would
not need to bother with the distinction between these two formulas unless n < 12,
except that as a matter of convention (found in many journals, for example), there
tends to be a preference for procedures based on a t, such as (7.29). In other words,
it is worth being aware that many people say they are reporting t-based intervals
as in (7.29) even when n is large and they might just as well say they are reporting
(7.16)—there is in that case no practical distinction between the two.

Example 3.4 (continued from page 192.) Let us now consider the first 12
trials of counts from the motor cortical neuron, examined on page 192. We get a
mean firing rate of 24.31 spikes per second, and a standard deviation of 5.20 spikes
per second, giving a standard error of

SE =
5.20√

12
= 1.50

spikes per second. The tν-based CI uses ν = 12− 1 = 11 and we find t.975,11 = 2.20.
For the 95% CI we take L = 24.31− 2.20(1.5) = 21.0 and U = 24.31 + 2.20(1.5) =
27.6, giving us the CI (21.0,27.6) spikes per second. 2

It is also worth emphasizing a fundamental difficulty with this approach. The
cases in which (7.29) differs from (7.16) are those in which n is small. But in such
situations it is quite hard to tell whether the sample is really close to being normal.
Application of (7.29) based on small samples should be considered only rough guides
to evaluation of uncertainty.





Chapter 8

Estimation in Theory and Practice
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In Section 7.2.1 we showed how the method of moments may be used to estimate
the parameters of a Gamma(α, β) distribution, and we immediately stated that the
method of maximum likelihood provides a better solution. How do we know this? In
general, how should alternative methods of estimation be compared? In this chapter
we lay out a series of principles that serve as guides to practice. The main ideas
came from Fisher (1922); they were modified and made more precise by J. Neyman
(1937), and have been refined and incorporated into textbooks on statistical theory
ever since, beginning notably with Cramér (1945).

Suppose we have a family of probability distributions that depends on a parame-
ter θ, which must be estimated, and we have an estimator T . For now let us assume
that θ is a scalar. If we were to say that T is a good estimator of θ, what might
we mean? In particular, what might we mean when we say that maximum likeli-
hood produces a good estimator? Clearly, for T to be a good estimator it must be
“close” to θ, but because T is a random variable the notion of closeness must be
stated probabilistically. For example, if we consider the mean X̄ of a random sample
X1, . . . , Xn from a N(θ, 1) distribution, we might want to say that the mean X̄ is
close to θ when |X̄ − θ| < .1. Because X̄ ∼ N(θ, 1/n), even if n is large it is possible
that |X̄−θ| > .1. We can not say that |X̄−θ| < .1. All we can say is the probabilty

209
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that |X̄ − θ| < .1 is large, meaning close to 1 or, equivalently, the probability that
|X̄ − θ| > .1 is small, meaning close to 0.

For a general estimator T we can use the same approach and say that T is a
good estimator of θ when it is highly probable that T is close to θ. Specifically, we
introduce a tolerance ǫ, understanding that ǫ will be some small positive number, and
then we require that P (|X̄ − θ| < ǫ) is close to one or, equivalently, P (|X̄ − θ| > ǫ)
is close to zero. It is, in general, rather difficult to provide guarantees on the size
of P (|X̄ − θ| > ǫ) for fixed sample sizes. In most realistically complicated problems
computer simulation studies must be used (as in Section 8.1.2) and they are based on
specific cases so they do not provide general assurances. On the other hand, general
results may be obtained asymptotically, letting the sample size grow indefinitely
large. To take a concrete case, because the mean X̄ of a random sample from a
N(θ, 1) distribution follows a N(θ, 1/n) distribution, if we take n = 10, 000, from the
normal cdf we find P (|X̄ − θ| > .1) = 1.5 · 10−23. Indeed, no matter how small we
take ǫ we have P (|X̄ − θ| > ǫ) → 0 as n → ∞. This is simply a restatement of the
law of large numbers (page 167)

X̄
P→ θ.

We discuss asymptotic results in Sections 8.2.1–8.3.1.

When we examine what happens as n → ∞ it is helpful to write the generic
estimator in the form Tn = T (X1, . . . , Xn) to emphasize its dependence on n as we
did in Section 7.3.5. One of the most important of the large-sample findings considers
estimators that are asymptotically normal, as in Equation (7.23),

Tn − θ
σTn

D→ N(0, 1). (8.1)

For such estimators, in large samples, the probabilistic closeness of Tn to θ depends
entirely on σTn and we seek estimators that make σTn as small as possible. In
Sections 8.2.2—8.3.1 we go over the remarkable discovery by Fisher that σTn can
be minimized, and the minimum is obtained by the MLE. There has been quite a
lot of theoretical work on the general subject of large-sample optimality, all of which
leads to the conclusion that in well-behaved parametric problems, the method of
maximum likelihood is essentially unbeatable. Fisher’s insight seems to have been
based on geometrical intuitions, which were elaborated in a mathematically rigorous
framework by Bradley Efron in the 1970s and early 1980s. For details and references
on the asymptotic arguments and their geometrical origins see Kass and Vos (1997).
For a rigorous treatment in a more general context see van der Vaart (1998). (Kass,
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R.E., and Vos, P.W. (1997) Geometrical Foundations of Asymptotic Inference, Wiley;
van der Vaart, A.W. (1997) Asymptotic Statistics, Cambridge.))

While asymptotic results are important, they have an inherent weakness: they
apply when the sample size is large, but they do not say what “large” means in
practice. In some cases n = 20 is more than adequate while in others n = 20, 000 is
not large enough. One approach to coping with this problem is to evaluate a measure
of likely deviation for specific cases, with specified sample sizes. The most common
assessment of deviation of T from θ is the mean squared error (MSE) defined by

MSE(T ) = E((T − θ)2). (8.2)

In Chapter 4, pages 97 and 107, we considered the mean squared error in predicting
one random variable from another. We discuss mean squared error in estimation
in Section 8.1. In Section 8.4 we describe some of the practical considerations in
applying ML estimation.

The most important points about ML estimation are the following:

• ML estimation is applicable when the statistical model depends on an unknown
parameter vector.1 See Sections 7.2.2 and 8.4.1.

• Together with ML estimates it is possible to get large-sample confidence inter-
vals (Sections 8.2.2, 8.3.2, and 8.4.3).

• In large samples, ML estimation is optimal (Section 8.3.1).

• In large samples ML estimation agrees with Bayesian estimation (Section 8.3.3).

8.1 Mean Squared Error

The mean squared error criterion defined in (8.2) uses the squared magnitude of the
deviation T −θ rather than its absolute value |T −θ| because it is easier to work with
mathematically, and because it has a very nice decomposition given in Section 8.1.1.

1The parameter must be finite-dimensional; in nonparametric inference the parameter is, instead,
infinite-dimensional. Also, there are regularity conditions that make ML estimation work properly.
See Bickel and Doksum (2001).
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Intuitively, because MSE(T ) is an average of the values (T − θ)2, when MSE(T ) is
small, large values of (T − θ)2 (and thus also large values of |T − θ|) must be highly
improbable. In fact, even more is true: we have

P (|T − θ| > ǫ) <
E((T − θ)2)

ǫ2
. (8.3)

Thus, we can make sure it is highly probable for T to be close to θ by instead making
sure that MSE(T ) is small.

Details: We can use Markov’s inequality, which appeared as a lemma in
Section 6.2.1, to guarantee that P (|T − θ| > ǫ) will be small if MSE(T )
is small. First, we have

P (|T − θ| > ǫ) = P ((T − θ)2 > ǫ2).

Now, assuming E((T − θ)2) <∞, Markov’s inequality gives (8.3). 2

In some cases MSE(T ) may be evaluated by analytical calculation, but in most
practical situations computer simulation studies are used. We give two examples of
such studies in Section 8.1.2.

8.1.1 Mean squared error is bias squared plus variance.

Two ways an estimator can perform poorly need to be distinguished. The first
involves the systematic tendency for the estimator T to miss its target value θ. An
estimator’s bias is Bias(T) = E(T) − θ. When the bias is large, T will not be close
to θ on average. The second is the variance V (T ). If V (T ) is large then T will rarely
be close to θ. Figure 8.1 illustrates, by analogy with shooting at a bullseye target,
the situations in which the bias is large, the variance is large, both are large (the
worst case) and, finally, both are small (the best case). Part of the appeal of mean
squared error is that it combines bias and variance in a beautifully simple way.

Theorem Suppose E((T − θ)2) <∞. Then

E((T − θ)2) = (E(T − θ))2 + V (T ).

That is,
MSE(T ) = Bias(T)2 + Variance(T).
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high bias

low variance

low bias

high variance
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Figure 8.1: Drawing of shots aimed at a target to illustrate the way estimates can miss
their “target.” They may be systematically biased, or they may have high variability,
or both. The best situation, of course, is when there is little systematic bias and little
variability.

Proof: Let us write µT = E(T ) and T − θ = (T − µT ) + (µT − θ), and
then square both sides to get

(T − θ)2 = (T − µT )2 + 2(T − µT )(µT − θ) + (µT − θ)2.

Now consider taking the expectation of the cross-product term on the
right-hand side. The quantity µT − θ is a constant (it is not a random
variable), while because E(T ) = µT , we have E(T − µT ) = 0 and, there-
fore, E(2(T − µT )(µT − θ)) = 0. Thus, we have

E((T − θ)2) = E((T − µT )2) + (E(µT − θ))2

and, since V (T ) = E((T − µT )2), we have proven the theorem. 2

Before we present an illustration of a MSE calculation, let us mention a property
of the sample mean and sample variance. Assuming they are computed from a
random sample X1, . . . , Xn, we have E(X̄) = µX which may be written

E(X̄)− µX = 0.
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This says that, as an estimator of the theoretical mean, the sample mean has zero
bias. When an estimator has zero bias it is called unbiased. If an estimator T is
unbiased we have MSE(T ) = V (T ) so that consideration of its performance may be
based on a study of its variance.

In addition to the sample mean being unbiased as an esimator of the theoretical
mean, it also happens that the sample variance is unbiased as an estimator of the
theoretical variance:

E(S2) = σ2
X . (8.4)

Details: We wish to evaluate

E(S2) = E

(

1

n− 1

n∑

i=1

(Xi − X̄)2

)

=
1

n− 1
E

(
n∑

i=1

(Xi − X̄)2

)

.

We write Xi − X̄ = (Xi − µX) + (µX − X̄) and expand the square

n∑

i=1

(Xi − X̄)2 =

n∑

i=1

(
(Xi − µX) + (µX − X̄)

)2

=
n∑

i=1

(Xi − µX)2 +
n∑

i=1

2(Xi − µX)(µX − X̄) +
n∑

i=1

(µX − X̄)2.

We now rewrite the three terms in the last expression above. Because
E(Xi−µX) = σ2

X , and the expectation of a sum is the sum of the expec-
tations, the first term has expectation

E

(
n∑

i=1

(Xi − µX)2

)

= nσ2
X . (8.5)

Next, the second term may be rewritten

n∑

i=1

2(Xi − µX)(µX − X̄) = 2(µX − X̄)

n∑

i=1

(Xi − µX)

= −2(X̄ − µX)

n∑

i=1

(Xi − µX)

= −2n(X̄ − µX)2,
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where the last equality uses
∑n

i=1(Xi − µX) = n(X̄ − µX), and then,
because E((X̄ − µX)2) = V (X̄) = σ2

X/n, the expectation of the second
term becomes

E

(
n∑

i=1

2(Xi − µX)(µX − X̄)

)

= −2σ2
X . (8.6)

Finally, because again, E((X̄ − µX)2) = σ2
X/n, the expectation of the

third term is

E

(
n∑

i=1

(µX − X̄)2)

)

= σ2
X (8.7)

and, combining (8.5), (8.6), and (8.7) we get

E

(
n∑

i=1

(Xi − X̄)2

)

= (n− 1)σ2
X

which gives (8.4). 2

We use the unbaisedness of the sample mean and sample variance in the following
illustration of the way two estimators may be compared theoretically.

Illustration: Poisson Spike Counts We previously considered 60 spike counts
from a motor cortical neuron, and found an approximate 95% CI for the resulting
firing rate using the sample mean. The justification for that approximate CI involved
the CLT, and the practical implication was that as long as the sample size is fairly
large, and the distribution not too far from normal, the CI would have approximately
.95 probability of covering the theoretical mean. In this case, the spike counts do,
indeed, appear not too far from normal. Sometimes they are assumed to be Poisson
distributed. This is questionable because careful examination of spike trains almost
always indicates some deparature from the Poisson. On the other hand, the departure
is sometimes not large enough to make a practical difference to results. In any case,
for the sake of illustrating the MSE calculation, let us now assume the counts follow
a Poisson distribution with mean λ. The sample mean X̄ is a reasonable estimator
of λ, but one might dream up alternatives. For example, a property of the Poisson
distribution is that its variance is also equal to λ; therefore, the sample variance S2

could also be used to estimate the theoretical variance λ. This may seem odd, and
potentially inferior, on intuitive grounds because the whole point is to estimate the
mean firing rate, not the variance of the firing rate. On the other hand, once we
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take the Poisson model seriously the theoretical mean and variance become equal
and, from a statistical point of view, it is reasonable to ask whether it is better to
estimate one rather than the other from their sample analogues. Our purpose here is
to present a simple analysis that demonstrates the inferiority of the sample variance
compared with the sample mean as an estimator of the Poisson mean λ. We are
going through this exercise so that we can draw an analogy to it later on.

X

4 6 8 10 12 14 16

S2

4 6 8 10 12 14 16

Figure 8.2: Histograms displaying distributions of X̄ and S2 based on 1000 randomly-
generated samples of size n = 100 from a Poisson distribution with mean parameter
µ = 10. In these repeated samples both X̄ and S2 have distributions that are
approximately normal (represented by the overlaid curves). Both distributions are
centered at 10 (both estimators are unbiased) but the values of S2 fluctuate much
more than do the values of X̄.

Now, because, as we mentioned immediately before beginning this illustration, X̄
and S2 are unbiased for the theoretical mean and variance they are, in this case, both
unbiased as estimators of λ. As a consquence, MSE(T ) = V (T ) for both T = X̄
and T = S2. Analytical calculation of the variance of these estimators (which we
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omit here) gives

V (X̄) =
λ

n

V (S2) =
λ

n
+

2λ2

n− 1

where n is the number of counts (the number of trials). Therefore, the MSE of S2

is always larger than that of X̄ so that S2 tends to be further from the correct value
of λ than X̄. For example, if we take n = 100 trials and λ = 10, we find V (X̄) = .10
while V (S2) = 2.12. The estimator S2 has about 21 times the variability as X̄, so
that estimating λ using S2 would require about 2100 trials of data to gain the same
accuracy as using X̄ with 100 trials. Figure 8.2 shows a pair of histograms of X̄ and
S2 values calculated from 1000 randomly-generated samples of size n = 100 when
the true Poisson mean was λ = 10. The distribution represented by the histogram
on the right is much wider. 2

This illustration nicely shows how one method of estimation can be very much
better than another, but it is admittedly somewhat artificial; because the distribution
of real spike counts may well depart from Poisson, a careful comparison of X̄ versus
S2 should consider their behavior also under alternative assumptions. In this regard,
the sample mean remains a reasonably good estimator of the theoretical mean in
large samples regardless of the probability distribution of the spike counts. The
sample variance, on the other hand, does so only if the theoretical variance is truly
equal to the theoretical mean; otherwise, as the sample size increases it will converge
to the wrong value. This is likely to be an important consideration. However, even
if one were convinced that counts truly followed a Poisson distribution, the analysis
above would be compelling. It would be crazy to use S2 instead of X̄ in estimating
λ.

Another thing to notice in Figure 8.2 is the approximately normal shape of the
two histograms. Asymptotic normality of estimators is very common, and we have
already relied on it in Section 7.3.5.
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8.1.2 Mean squared error may be evaluated by computer
simulation of pseudo-data.

In the Poisson spike count illustration on page 215 we were able to compute the
MSE exactly. In more complicated situations this is often impossible. Instead we
rely on either large-sample arguments, such as those in Section 8.2.2, or numerical
simulations. The numerical method uses computer-generated pseudo-data, by which
we mean numbers or vectors that are generated from known probability distributions
in order to mimic the behavior of data. Because the distribution is known, there is
a known correct value of θ to which T may be compared.

Suppose we wish to compute MSE(T ) in estimating θ under the assumption that
a random sample comes from a particular probability distribution having cdf F (x).
Assuming we know how to generate random samples from F (x) on the computer, we
may use this algorithm:

1. Take G to be a large integer (such as 1,000) and for g = 1, . . . , G do the
following:

(i) Generate a random sample X
(g)
1 , . . . , X

(g)
n from F (x).

(ii) Compute T (g) = T (X
(1)
1 , . . . , X

(g)
n ), which is the value of the estimator T

based on the gth random sample.

(iii) Let Yg = (T (g) − θ)2.

2. Compute

Ȳ =
1

G

G∑

g=1

Yg. (8.8)

By the LLN, we have that Ȳ converges to the desired MSE = E((T − θ)2) in
probability. Thus, we take Ȳ as our MSE.

This kind of computation is used in the following illustration. It involves the
statistical efficiency of smoothing, a topic we take up in Chapter 15. In presenting
this now we omit details about the method.

Example 1.1 (continued, see page 3) In Chapter 1 we discussed a study by
Olson et al. (2000), in which neuronal spike trains were recorded from the supple-
mentary eye field (SEF) under two different experimental conditions. As is usually
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Figure 8.3: Time of maximal firing rate. Part (A) displays a raster plot and Peri-
Stimulus Time Histogram (PSTH). As explained in Chapter 1, the PSTH represents
the firing rate as a function of time. Part (B) displays the time at which the maximal
firing rate occurs, estimated (i) using the PSTH and (ii) using instead a smooth curve.
From Kass, Ventura, and Cai (2003). (Kass, R.E., Ventura, V., and Cai, C. (2003)
Statistical smoothing of neural data, Network: Computat. Neural Sys., 14: 5–15.)



220 CHAPTER 8. ESTIMATION IN THEORY AND PRACTICE

the case in stimulus-response studies, the neuronal response—in this case, the firing
rate—varied as a function time. For a particular neuron in one of the conditions,
the PSTH in Figure 8.3 displays the way the firing rate changes across time. The
data analytic challenge in the Olson et al. study was to characterize the distinctions
between the firing rate functions under the two experimental conditions. One of the
distinctions, evident in some of the plots, was that the maximal firing rate occurred
somewhat later in one condition than in the other. How should this time of maximal
firing rate be computed? One possibility is to use the PSTH, by finding the time
bin for which the PSTH is maximized. Panel B of Figure 8.3 displays the resulting
solution: according to the PSTH shown there, the maximal firing rate of about 133
spikes per second occurs at a time marked by the arrow on the left along the time
axis. However, this is clearly a noisy estimate. Slight variations in location of time
bin, or width, would change this, as would consideration of new data from the same
neuron. On the other hand, a second method based on first fitting a smooth curve
to the PSTH and then finding its maximum, yields a different answer: the maximum
firing rate of about 75 spikes per second occurs at a time indicated by the arrow on
the right along the time axis. This value is less subject to fluctuations in the data.
If we assume that the theoretical firing rate is, in fact, slowly varying in time, then
the smooth curve should provide a better estimate. Kass, Ventura, and Cai (2003)
used MSE to evaluate the extent to which smoothing improves estimation.

Kass, Ventura, and Cai evaluated MSE for the true firing rate function shown in
part A of Figure 8.4. To do so, they simulated, repeatedly, 16 trials of pseudo-data
and then constructed histograms and also fit smooth curves (there are 16 trials in the
SEF data shown in Figure 8.3). The PSTH and smooth curve from one sample of 16
trials of pseudo-data are shown in part B of Figure 8.4. The smoothing method Kass,
Ventura, and Cai involves regression splines, which are discussed in Chapter 14. Note
that the smooth curve (“estimated rate”) is close to the true rate from the simulation,
but it misses by a small amount due to the small number of trials we used in the
simulation.

To quantify the deviation of both the PSTH and the smooth curve at any one
point in time t the MSE could be used. That is, we would regard the true firing rate
at time t as the value θ = θt to be estimated, and we would compute MSE(T ) =
MSEt(T ) when T is based on the PSTH and when T is based on the smooth curve.
Here subscript t is a reminder that we have chosen a particular time point. If
MSEt(T ) is evaluated for every time value t the total of all the mean squared errors
may be found by integrating across time. This defines what is integrated mean
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Figure 8.4: (A) True rate from which 16 trials are simulated; their PSTH is shown in (B),
with true and estimated firing rates overlaid. (C) shows the true rate and 95% simulation
bands obtained from smoothed and unsmoothed PSTHs. (D) shows the same curves as
(C), as well as 95% simulation bands obtained from unsmoothed PSTHs with 16×14 trials
instead of 16.

squared error or mean integrated squared error (MISE),

MISE(T ) =

∫

MSEt(T )dt

where the integration is performed over the time interval of interest. The integral
may be evaluated easily simply by calculating the MSE along a grid of time values
separated by some increment ∆t

∫

MSEt(T )dt ≈ ∆t
∑

t

MSEt(T ).

In order to compute the MSE at each time value t Kass, Ventura, and Cai used
computer simulation: They generated data repeatedly, each time finding both the
PSTH and the smooth curve. They simulated 1000 data sets, each involving 16
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randomly-generated spike trains based on the true firing rate curve shown in Part
A of Figure 8.4, and from these 1000 data sets we computed the MISE. They also
computed 95% bands, within which fall 95% of the estimated curves. Part C of
Figure 8.4 shows the two pairs of bands, now labeled with the two values of MISE:
the spline-based estimate has a MISE of .34 (in spikes per second squared) while
the PSTH has a MISE of 4.68, which is 14 times larger. This means that when the
PSTH is used to estimate firing rate, 14 times as much data are needed to achieve
the same level of accuracy. Similarly, the 95% bands for the PSTH are much further
from the true firing-rate curve than the bands for the spline-based estimate. Part D
of Figure 8.4 includes a pair of 95% bands obtained from the PSTH when 224 trials
are used rather than 16 (because 224 = 14 × 16). This is another way of showing
that the accuracy in estimating the firing rate using spline smoothing based on 16
trials is the same as the accuracy using the PSTH based on 224 trials. Clearly it is
very much better to use smoothing when estimating the instantaneous firing rate. 2

A Detail: One issue that arises in numerical simulation is the accuracy
of the computational results, because the value Ȳ in (8.8) is itself an
estimate of the MSE. However, if G is large, the standard error of Ȳ
will be small. Furthermore, because Ȳ is a sample mean, we can apply
the method of Section 7.3.4 and use s/

√
G as its standard error, where

s2 = 1
G−1

∑G
g=1(Yg − Ȳ )2. The standard error lets us determine whether

G is adequately large. For instance, if we wish the MSE to be computed
with accuracy δ, we can take G big enough to satisfy

s√
G
<
δ

2
.

By the result in Section 7.3.4, an approximate 95% confidence interval
for MSE would be (θ − δ, θ + δ). Thus, we would have 95% confidence
that the desired accuracy was obtained.



8.1. MEAN SQUARED ERROR 223

8.1.3 In estimating a theoretical mean from observations
having differing variances a weighted mean should be

used, with weights inversely proportional to the vari-
ances.

In the illustration on Poisson spike counts, page 215, we used the MSE criterion
to evaluate alternative estimators, based on an analytical expression. In that case
both estimators were unbiased and the comparison was based on variance. Another
illustration of this type arises when data are considered collectively across many sim-
ilarly measured objects, such as neurons or subjects, with the observations from the
different individuals contributing varying amounts of information; specifically, with
the individual observations having different variances. In combining such discrepant
observations, it is preferable not to use the sample mean, but instead to weight each
observation according to the amount of information it contributes. Here we provide
a theoretical analysis of this problem, and give the basic result.

Suppose we have two independent random variables Xi for i = 1, 2, with E(X1) =
E(X2) = µ but V (X1) = σ2

1 and V (X2) = σ2
2, with the two variances possibly being

different. After analyzing the two-observation case, we will present analogous results
for n observations. Let us assume that σ1 and σ2 are known and ask how best to
combine X1 and X2 linearly in order to estimate µ. We write a general weighted
combination as

Yw = w1 ·X1 + w2 ·X2 (8.9)

where w1 + w2 = 1. It turns out that the optimal special case is

X̄w = w1 ·X1 + w2 ·X2 (8.10)

where

wi =

1
σ2

i

1
σ2
1

+ 1
σ2
2

(8.11)

for i = 1, 2.

Theorem Suppose X1 and X2 are independent random variables with E(X1) =
E(X2) = µ and V (X1) = σ2

1 and V (X2) = σ2
2 , and let Yw be defined as in (8.9).

Then Yw is unbiased, so that MSE(Yw) = V (Yw), and this quantity is minimized
among possible weighting pairs by taking Yw = X̄w, i.e.,

V (X̄w) ≤ V (Yw)
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or, equivalently,
MSE(X̄w) ≤ MSE(Yw)

with equality holding in both cases only if Yw = X̄w defined by (8.10) and (8.11).

Proof of Theorem: First, we have

E(Yw) = w1 · µ+ w2 · µ
= (w1 + w2)µ

= µ.

Thus, Yw is unbiased and MSE(Yw) = V (Yw). To derive the variance
result we start with

V (w1 ·X1 + w2 ·X2) = w2
1 · σ2

1 + w2
2 · σ2

2.

Now we use w1 + w2 = 1 and replace w2 with 1− w1 to get

V (w1 ·X1 + w2 ·X2) = w2
1 · σ2

1 + (1− w1)
2 · σ2

2

= σ2
1w

2
1 + σ2

2 − 2σ2
2w1 + σ2

2w
2
1

= (σ2
1 + σ2

2)w
2
1 − 2σ2

2w1 + σ2
2 .

We now minimize this quantity by differentiating with respect to w1, and
setting the derivative equal to zero. We get

0 = 2(σ2
1 + σ2

2)w1 − 2σ2
2

and therefore

w1 =
σ2

2

σ2
1 + σ2

2

.

Dividing the numerator and denominator of this fraction by σ2
1σ

2
2 gives

w1 =

σ2
2

σ2
1σ2

2

σ2
1+σ2

2

σ2
1σ2

2

=

1
σ2
1

1
σ2
1

+ 1
σ2
2

which is the desired result. 2

As an example, suppose we had 100 independent observations Ui ∼ N(µ, σ2),
i = 1, . . . , 100, and grouped them unequally defining, say, X1 = 1

10

∑10
i=1 Ui and
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X2 = 1
90

∑100
i=11 Ui. It would seem strange to use 1

2
(X1 + X2) in this situation and

the intuitive thing to do would be to use the weighted mean: here the weights are
w1 = 10/100 and w2 = 90/100 (because σ2

1 = σ2/10 and σ2
2 = σ2/90) so we get

X̄w = Ū .

One way to interpret this is to say that using X̄ instead of X̄w is like throwing
away a fraction of the data. For example, suppose X1 and X2 both represent means
of counts from n trials. If σ1 is half the size of σ2 then, from the formula above,
the ratio of variances is 1.56. This means that to achieve the same accuracy in the
estimator, n would have to be 56% larger if we used the sample mean instead of the
weighted mean. When σ1 is one-third the size of σ2 we would have to increase n by a
factor of 2.78 (instead of 50 trials, say, we would need 139). In these cases we might
say that the weighted mean is, respectively, 1.56 and 2.78 times more efficient than
the ordinary sample mean.

Example 8.1 Optimal integration of sensory information Ernst and Banks
(2002) considered whether humans might combine two kinds of sensory input opti-
mally, according to (8.10) and (8.11). (Ernst, M.O. and Banks, M.S. (2002) Humans
integrate visual and haptic information in a statistically optimal fashion. Nature,
415: 429–433.) Subjects were presented with raised bars either visually or by touch
(known as haptic input) and had to judge the height of each bars in comparison
with a “standard” bar. The experimental apparatus was set up to allow visual or
haptic noise to be added to the height of each bar. Subjects were also presented
with both visual and haptic input simultaneously. The authors reported evidence
that when presented with the simultaneous visual and haptic input, subjects judged
heights by combining the two sensory modalities consistently with (8.10) and (8.11).
In other words, this was evidence that humans can integrate distinct sensory inputs
optimally. 2

Here is the result for combining n observations. We have also included here the
formula for the standard error of the weighted mean.

Theorem Suppose X1, . . . , Xn are independent random variables with E(X1) =
E(X2) = · · · = E(Xn) = µ and V (Xi) = σ2

i for i = 1, . . . , n, and define

Yw =

n∑

i=1

wi ·Xi
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with
∑n

i=1wi = 1 and

X̄w =

n∑

i=1

wi ·Xi (8.12)

where, in (8.12),

wi =

1
σ2

i
∑

1
σ2

i

.

Then
V (X̄w) ≤ V (Yw)

with equality holding if and only if Yw = X̄w. Furthermore we have

SE(X̄w) =
√

V (X̄w) (8.13)

where

V (X̄w) =

(
n∑

i=1

1

σ2

)−1

.

Proof: The proof is analogous to that for the case n = 2. 2

Example 8.2 Action potential width and the preceding inter-spike inter-
val As part of a study on the effects of seizure-induced neural activity (Shruti et
al., 2008), (Shruti, S., Clem, R.L., and Barth, A.L. (2008) A seizure-induced gain-
of-function in BK channel is associated with elevated firing activity in neocortical
pyramidal neurons. Neurobiol. Disease, 30: 323-30.) spike trains were recorded from
barrel cortex neurons in slice preparation. One of the interesting findings2 involved
the relationship between the width of each action potential (spike) and its preceding
ISI. As is well known, when a spike follows closely on a preceding spike, so that the
ISI is relatively short, then the second spike will tend to be wider than the first. If,
however, the ISI is sufficiently long, there will not be any effect of the first spike on
the second, and the spike widths should be roughly equal. See Figure 8.6. How long
is “sufficiently long?” This turns out to be dependent on previous neuronal activity.

Let Y be the spike width and x the preceding ISI length, and let us assume there
is an ISI length τ such that, on average, Y is constant for all x > τ . Among neurons

2The results here were obtained by Judy Xi.
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Figure 8.5: When an action potential follows closely a previous action potential (with
small ISI), the second action potential is broader than the first. When a long ISI
intervenes, however, the second action potential is very similar to the first.

taken from animals that had seizures, τ tended to be smaller than its value among
control animals. Figure 8.6 displays some of the data, together with a fitted curve.
The statistical model used for this curve assumes that, on average, Y decreases with
x for x < τ but remains constant for x ≥ τ . In statistical jargon, τ is called a change
point, because the relationship between Y and x changes at x = τ . The relationship
between y and x was assumed to be quadratic for x < τ (see Section 12.5.4) and con-
stant for x ≥ τ . The model was fit using nonlinear least squares. Additional details
are given on page 461 in Section 14.2.1. The parametric bootstrap (Section 9.2.2)
was then applied to obtain the SE(τ̂). The method was repeated for neurons from
seizure and control animals to see whether there were systematic differences across
the two treatment conditions. Figure 8.7 shows results for both groups. Note the
very different standard errors across neurons. This suggests that in comparing the
two groups it is advisable to use weighted means, as in Equation (8.12), together
with standard errors given by Equation (8.13). The results were that the control
group had weighted mean change point of 190(±32) milliseconds and the seizure
group reset earlier, with weighted mean change point 108(±.012) milliseconds. 2

Example 8.3 Neural response to selective perturbation of a brain-machine
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Figure 8.6: Action potential width varies as function of previous ISI. The data are
from many action potentials recorded for a single neuron. A fitted curve with a
change point is also shown, the change point being indicated as a large dot.

interface n order to study learning-related changes in a network of neurons, Jarosiewicz
et al. (2008) (PNAS, 105: 19486–19491) introduced a paradigm in which the output
of a cortical network can be perturbed directly and the neural basis of the compen-
satory changes studied in detail. Using a brain-computer interface (BCI), dozens of
simultaneously recorded neurons in the motor cortex of awake, behaving monkeys
were used to control the movement of a cursor in a three-dimensional virtual-reality
environment. This device creates a precise, well-defined mapping between the firing
of the recorded neurons and an expressed behavior (cursor movement). In a series of
experiments, they forced the animal to relearn the association between neural firing
and cursor movement in a subset of neurons and assess how the network changes to
compensate. Their main finding was that changes in neural activity reflect not only
an alteration of behavioral strategy but also the relative contributions of individual
neurons to the population error signal. As part of their study the authors compared
firing rate modulation among neurons whose BCI signals had been artificially per-
turbed with that among neurons whose BCI signals remained as determined from
their control responses. Because the uncertainties varied substantially across neu-
rons, these comparisons among groups of neurons were carried out using weighted
means. 2
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Figure 8.7: Change points and SEs for neurons of both seizure and control groups.
The results for the seizure group appear above those for the control group. The
seizure group have change points that occur earlier and they tend to be less variable.

8.1.4 Decision theory uses mean squared error to represent
risk.

At the end of Section 4.3.4, on page 121, we mentioned that optimal classification
may be considered a problem in decision theory where, in general, the expected loss
or risk is minimized. In the context of estimation we may consider a decision rule d
to be a mapping from each possible vector of observations to a parameter value: we
may write d(X1, . . . , Xn) = T . If we use squared-error loss defined by

L(d(x1, . . . , xn), θ) = (d(x1, . . . , xn)− θ)2 ,

then MSE is the risk function

MSE(T ) = E (L(d(X1, . . . , Xn), θ)) .

This terminology, viewing MSE as “risk under squared-error loss,” is quite common.
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8.2 Estimation in Large Samples

8.2.1 In large samples, an estimator should be very likely to

be close to its estimand.

In the introduction to this chapter we offered the reminder that the sample mean
satisfies P (|X̄ − θ| > ǫ) → 0, which is the law of large numbers. Suppose Tn is an
estimator of θ. If for every positive ǫ, as n→∞ we have

P (|Tn − θ| > ǫ)→ 0 (8.14)

then Tn is said to be a consistent estimator of θ. This may also be written

Tn
P→ θ.

Note that, by (8.3), if MSE(Tn) → 0 then Tn is consistent. Also, if Tn satisfies
(8.1) and σTn → 0 then Tn is consistent.

Details: Multiplying the left-hand side of (8.1) by σTn and applying

Slutzky’s theorem we have Tn− θ P→ 0, which is equivalent to Tn
P→ θ. 2

In words, to say that an estimator is consistent is to say that, for sufficiently
large samples, it will be very likely to be close to the quantity it is estimating. This
is clearly a desirable property. When Tn satisfies (8.1) and σTn → 0 we will call Tn

consistent and asymptotically normal.

8.2.2 In large samples, the precision with which a parameter

may be estimated is bounded by Fisher information.

Let us consider all estimators of θ that are consistent and asymptotically normal
in the sense of Section 8.2.1. For such an estimator T = Tn we may say that its
distribution is approximately normal, and we write

T
·∼ N(θ, σ2

T ), (8.15)
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where the symbol
·∼ means “is approximately distributed as.” The expression (8.15)

is a convenient way to think of the more explicit Equation (8.1). From (8.15), σT

may be considered3 the standard error of T , and an approximate 95% CI for θ based
on T would be (T − 2σT , T + 2σT ).

Now, suppose we had two such estimators TA and TB that both satisfy (8.15).
We would say that TA is asymptotically more accurate than TB if σT A < σT B . An
extreme case of this was displayed in Figure 8.2, where TA = X̄ and TB = S2, with
both histograms being approximately normal in shape and σT B being more than 4
times larger than σT A . In general, we would prefer to use an estimator with a small
σT because it would tend to be closer to θ than an estimator with a larger value
of σT . In addition, a small σT would produce comparatively narrow CIs, indicating
improved knowledge about θ. Ideally, we would like to find an estimator T for which
σT would be as small as possible. Fisher (1922) discovered that this is a soluble
problem: there is a minimum value of σT and, furthermore, this minimum value is
achieved by the method of maximum likelihood.

To understand how this works, we may use some rough heuristics4 based on the
normality in (8.15) to get an expression for σT . Let us first note an important fact
about normal distributions. Suppose X ∼ N(µ, σ2) with σ known, and consider the
loglikelihood function

ℓ(µ) = log fX(x|µ).

We have

fX(x|µ) =
1√
2πσ

exp

(

−(x− µ)2

2σ2

)

so that

ℓ(µ) = −(x− µ)2

2σ2
, (8.16)

and when we differentiate twice we get

ℓ′(µ) =
x− µ
σ2

and

ℓ′′(µ) = − 1

σ2

3In practice, σT may depend on the value of θ, which is unknown, so that a data-based version
σ̂T would have to be substituted in forming a confidence interval.

4For a rigorous treatment along the lines of the argument here see Kass and Vos (1997), Chapter
2. See also Bickel and Doksum (2001), Chapter 5.
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which gives

σ2 =
1

−ℓ′′(µ)
. (8.17)

That is, the standard deviation of a normal pdf is determined by the second derivative
of the loglikelihood function ℓ(µ).

The result (8.17) suggests that when a pdf of an estimator is approximately
normal, its standard error may be found in terms of the second derivative of the
corresponding loglikelihood function. We now apply this idea to the approximate
normal pdf based on (8.15). We write the pdf of the estimator T as fT (t|θ) and
define its loglikelihood function to be

ℓT (θ) = log fT (t|θ). (8.18)

Using the approximate normality in (8.15) and applying (8.17) we get

σ2
T =

1

−ℓ′′T (θ)
. (8.19)

Equation (8.19) implies that minimizing σT is the same as maximizing −ℓ′′T (θ). How-
ever, there is an important distinction between (8.19) and (8.17). In (8.17), ℓ′′(µ) is
a constant whereas, because T is a random variable, −ℓ′′T (θ) is also random (it does
not reduce to a constant except when T is exactly normally distributed, so that its
loglikelihood becomes exactly quadratic). Thus, regardless of how we were to choose
the estimator T , we could not guarantee that −ℓ′′T (θ) would be large because there
would be some probability that it might be small. We therefore work with its average
value, i.e., its expectation, for which we use the following notation:

IT (θ) = E

(

− d2

dθ2
log fT (t|θ)

)

. (8.20)

If we replace −ℓ′′T (θ) in (8.19) by its expectation, using (8.20), we get

σ2
T =

1

IT (θ)
. (8.21)

The quantity IT (θ) is called the information about θ contained in the estimator T .
Thus, an optimal estimator would be one that makes the information as large as
possible.

How large can the information IT (θ) be? Fisher’s insight was that the informa-
tion in the estimator can not exceed the analogous quantity derived from the whole
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sample, which is now known as the Fisher information. For a parametric family of
distributions having pdf f(x|θ) the Fisher information is given by

IF (θ) = E

(

− d2

dθ2
log f(X|θ)

)

.

To be clear, for a continuous random variable on (A,B) this expectation is

IF (θ) = −
∫ B

A

(
d2

dθ2
log f(x|θ)

)

f(x|θ)dx.

For a random sample drawn from this distribution the Fisher information is given
by5

I(θ) = E

(

− d2

dθ2
log

n∏

i=1

f(Xi|θ)
)

= E

(

− d2

dθ2

n∑

i=1

log f(Xi|θ)
)

=

n∑

i=1

E

(

− d2

dθ2
log f(Xi|θ)

)

and, because the sample involves identically distributed random variables, all of the
expected values in this final expression are the same, and equal to IF (θ). Therefore,
we have

I(θ) = nIF (θ).

Result Under certain general conditions, the information in an esti-
mator T satisfies

IT (θ) ≤ I(θ). (8.22)

Therefore, the large-sample variance σ2
T of a consistent and asymptot-

ically normal estimator satisfies

σ2
T ≥

1

I(θ)
. (8.23)

5Because the expectation is used in defining I(θ), it is often called the expected information to
distinguish it from the observed information which we discuss in Section 8.3.2.
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In words, (8.22) says that the information in an estimator can not exceed the in-
formation in the whole sample. In Section 8.3.1 we add that the MLE attains this
upper bound asymptotically, as n → ∞ and, therefore, has the smallest possible
asymptotic variance.

A detail: It is possible for an estimator T to achieve the information
bound exactly, in finite samples, i.e.,

IT (θ) = I(θ)

for all n. When this happens the estimator contains all of the information
about θ that is available in the data, and it is called a sufficient statistic.
For instance, if we have a sample from a N(µ, σ2) distribution with σ
known, then the sample mean x̄ is sufficient for estimating µ. Sufficiency
may be characterized in many ways. If T is a sufficient statistic, then the
likelihood function based on T is the same as the likelihood function based
on the entire sample. This property is sometimes known as Bayesian
sufficiency (see Bickel and Doksum, 2001). In addition, if θ is given a
prior distribution as in Section 7.3.9, then T is sufficient when the mutual
information between θ and T is equal to the mutual information between
θ and the whole sample (see Cover and Thomas, 1991). Parametrized
families of distributions for which it is possible to find a sufficient statistic
with the same dimension as the parameter vector are called exponential
families. See Section 14.1.6. 2

A related result is the following. If we let ψ(θ) = E(T ), where the expectation is
based on a random sample from the distribution with pdf f(x|θ), it may be shown6

that

V (T ) ≥ ψ′(θ)

I(θ)
.

Therefore, if T is an unbiased estimator of θ based on a random sample from the
distribution with pdf f(x|θ) we have ψ′(θ) = 1 and

V (T ) ≥ 1

I(θ)
. (8.24)

This is usually called the Cramér-Rao lower bound. Although Equation (8.24) is
of much less practical importance than the asymptotic result (8.23), authors often
speak of the bound in (8.23) as a Cramér-Rao lower bound.

6See Bickel and Doksum (2001), Chapter 3.



8.2. ESTIMATION IN LARGE SAMPLES 235

Fisher information also arises in theoretical neuroscience, particularly in discus-
sion of neural decoding and optimal properties of tuning curves (see Dayan and
Abbott, 2001). (Dayan, P. and Abbott, L.F. (2001) Theoretical Neuroscience, MIT
Press.)

8.2.3 Estimators that minimize large-sample variance are

called efficient.

A consistent and asymptotically normal estimator T satisfies (8.1) and it also satisfies
(8.22). In (8.1) we suppressed the dependence of T and σT on n. The information
IT (θ) also depends on n, as does I(θ). We now consider what happens as n→∞.

Suppose we have a consistent and asymptotically normal estimator T which, by
definition, satisfies (8.1). If we find a sequence of numbers c1, c2, . . . , cn, . . . such that

σTn

cn
→ 1 (8.25)

then we have
Tn − θ
cn

D→ N(0, 1). (8.26)

Details: We write
Tn − θ
cn

=
Tn − θ
σTn

σTn

cn

and apply Slutsky’s Theorem (page 191) using (8.25). 2

Equation (8.26) says that cn can also serve as the large-sample standard error of
T . If we have two consistent and asymptotically normal estimators TA and TB what
matters is the limiting ratio η defined by

σT A

σT B

→ η

as n → ∞. If η < 1 then, in large samples, TA is more accurate than TB, while if
η = 1 the two estimators are equally accurate. This, together with (8.22), leads us
to conclude that the large-sample value of σT is minimized if

IT (θ)

I(θ)
→ 1 (8.27)



236 CHAPTER 8. ESTIMATION IN THEORY AND PRACTICE

n→∞. In this case we also have
√

I(θ)(T − θ) D→ N(0, 1). (8.28)

When an estimator attains (8.27), and therefore (8.28), it is said to be efficient.

Details: In general, if a1, . . . , an, . . . and b1, . . . , bn, . . . are positive se-
quences that satisfy

an

bn
→ 1

then √
an

bn
→ 1.

Applying this to (8.27) we get
√

IT (θ)

I(θ)
→ 1. (8.29)

as n→∞. Let us rewrite 1/σT as

1

σT
=
√

IT (θ) =

√

IT (θ)

I(θ)

√

I(θ). (8.30)

Putting (8.30) in (8.1) we get
√

IT (θ)

I(θ)

√

I(θ)(Tn − θ) D→ N(0, 1). (8.31)

Therefore, by Slutsky’s Theorem (page 191), if (8.27) holds for some
estimator T then (8.28) also holds. 2

Fisher (1922) described efficient estimators by saying they contain the maximal
amount of information supplied by the data about the value of a parameter, and there
are rigorous mathematical results that justify Fisher’s use of these words. Roughly
speaking, the information in the data pertaining to the parameter value may be
used well (or poorly) to make an estimator more (or less) accurate; in using as
much information about the parameter as is possible, an efficient estimator uses the
data most efficiently and reduces to a minimum the uncertainty attached to it. Other
definitions of efficiency are sometimes used in statistical theory, but the one based on
Fisher information remains most immediately relevant to data analysis, and supports
Fisher’s observations about maximum likelihood.
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8.3 Properties of ML Estimators

8.3.1 In large samples, ML estimation is optimal.

We now state Fisher’s main discovery about ML estimation.

Result Under certain general conditions, if T is the MLE then (8.27)
and (8.28) hold. That is, ML estimators are consistent, asymptotically
normal, and efficient:

√

I(θ)(θ̂ − θ) D→ N(0, 1). (8.32)

In other words, when we consider what happens as n → ∞, among all those
“nice” estimators that are consistent and asymptotically normal, ML estimators are
the best in the sense of having the smallest possible limiting standard deviation.

Results may also be derived7 in terms of MSE. Under certain conditions, an
estimator Tn must satisfy

I(θ) ·MSE(Tn)→ c

where c ≥ 1 and for the MLE, where T = θ̂, we have

I(θ) ·MSE(θ̂)→ 1.

This is a different way of saying that, for large samples, ML estimation is as accurate
as possible.

8.3.2 The standard error of the MLE is obtained from the

second derivative of the loglikelihood function.

Although we have emphasized the theoretical importance of Equation (8.28), to
be useful for data analysis it must be modified: the quantity I(θ) depends on the
unknown parameter θ, so we must replace I(θ) with an estimate of it. In other

7See the discussion and references in Kass and Vos (1997).
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words, when we apply maximum likelihood and want to use (8.32) we must modify
it to obtain a confidence interval. One possible such modification is fairly obvious,
based on the way we modified initial asymptotic normality results in our discussion
of confidence intervals in Section 7.3: we replace θ with the MLE θ̂. Under certain
conditions we have √

I(θ̂)(θ̂ − θ) D→ N(0, 1). (8.33)

Details: Because θ̂ → θ in probability (i.e., the MLE is consistent), it

may be shown that we also have

√

I(θ̂)/I(θ) → 1 in probability, so we

can again apply Slutsky’s Theorem together with (8.28) to get (8.33).

It turns out that there is a more convenient version of the result. The difficulty
with (8.33) is that in some problems it is hard to compute I(θ) analytically because
of the required expectation. Instead, as a general rule, we replace I(θ) with the
observed information given by

IOBS(θ̂) = −ℓ′′(θ̂). (8.34)

In other words, instead of the expected information evaluated at θ̂ in (8.33), we
use the negative second derivative of the loglikelihood, evaluated at θ̂, without any
expectation. (For the special class of models known as exponential families, which
are used with the generalized linear models discussed in Chapter 14, we have I(θ̂) =
IOBS(θ̂) (see, e.g., Kass and Vos, 1997) but this is not true in general.) Again, under
certain conditions, we have

√

IOBS(θ̂)(θ̂ − θ) D→ N(0, 1). (8.35)

Details: Note that

−1

n
ℓ′′(θ) = −1

n

n∑

i=1

d2

dθ2
log f(xi|θ)

and that the expectation of the right-hand side is IF (θ). From the LLN
we therefore have

−1

n
ℓ′′(θ)

P→ IF (θ),

and it may also be shown that
√

IOBS(θ̂)

I(θ̂)

P→ 1,
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which, again by Slutzky’s Theorem, gives (8.35). 2.

Equation (8.35) provides large-sample standard errors and confidence intervals
based on ML estimation, given in the following result.

Result For large samples, under certain general conditions, the MLE
θ̂ satisfies (8.35), so that its standard error is given by

SE =
1

√

−ℓ′′(θ̂)
(8.36)

and an approximate 95% CI for θ is given by (θ̂ − 2SE, θ̂ + 2SE).

Additional insight about the observed information can be gained by returning to
the derivation of (8.17) and applying it, instead, to the likelihood function based on
a sample x1, . . . , xn from a N(µ, σ2) distribution with σ known, as in Section 7.3.2.
There, we found the loglikelihood function to be

ℓ(θ) = −
n∑

i=1

(xi − θ)2

2σ2

which simplified to Equation (7.2),

ℓ(θ) = − n

2σ2
(θ2 − 2x̄θ).

Differentiating this twice we get

ℓ′′(θ) = − n

σ2
,

so that
σ√
n

=
1

√

−ℓ′′(θ)
. (8.37)

In other words, 1/
√

−ℓ′′(θ) gives the standard error of the mean in that case.

Quite generally, for large samples, the likelihood function has an approximately
normal form and there is a strong analogy with this paradagm case. Specifically,
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a quadratic approximation to the loglikelihood function (using a second-order Tay-

lor expansion) produces a normal likelihood having 1/

√

−ℓ′′(θ̂)−1 as its standard

deviation. This heuristic helps explain (8.36).

We now consider two simple examples.

Illustration: Exponential distribution SupposeXi ∼ Exp(λ) for i = 1, . . . , n,
independently. The likelihood function is

L(λ) =

n∏

i=1

λe−λxi

= λne−λ
P

xi

= λne−λnx̄

and the loglikelihood function is

ℓ(λ) = n log λ− nλx̄.

Differentiating this and setting equal to zero gives

0 = n(
1

λ
− x̄)

and solving this for λ yields the MLE

λ̂ =
1

x̄
.

Continuing, we compute the observed information:

−ℓ′′(λ̂) =
n

λ̂2

= nx̄2

which gives us the large-sample standard error

SE(λ̂) =
1

x̄
√
n
.

2
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Illustration: Binomial For a B(n, p) random variable it is straightfoward to
obtain the observed information

−ℓ′′(p̂) =
n

p̂(1− p̂) .

This gives

SE(p̂) =

√

p̂(1− p̂)
n

,

which is the same as the SE found in Section 7.3.5. 2

8.3.3 In large samples, ML estimation is approximately Bayesian.

In Section 7.3.9 we said that Bayes’ theorem may be used to provide a form of
estimation based on the posterior distribution

f(θ|y) =
f(y|θ)π(θ)

∫
f(y|θ)π(θ)dθ

.

One of the most important results in theoretical statistics is the approximate large-
sample equivalence of inference based on ML and inference using Bayes’ theorem.

Result For large samples, under certain general conditions, the poste-
rior distribution of θ is approximately normal with mean θ̂ and standard
deviation given by the standard error formula (8.36).

Illustration: Binomial distribution Suppose Y ∼ B(n, θ) with n = 100 and
we observe y = 60. As we said in Section 7.3.9, if take the prior distribution on
θ to be U(0, 1), which is also the Beta(1, 1) distribution, we obtain a Beta(61, 41)
posterior. The observed proportion is the MLE θ̂ = x/n = .6. The usual standard

error then becomes SE =

√

θ̂(1− θ̂)/n = .049. As shown in Figure 8.8 the normal

distribution with mean θ̂ and standard deviation

√

θ̂(1− θ̂)/n is a remarkably good
approximation to the posterior. 2

For the data from subject P.S. in Example 1.4, which involves a small sample,
we already noted that the usual approximate 95% confidence interval (.64, 1.0) dif-
fered by only a modest amount from the exact 95% posterior probability interval we
obtained earlier, which was (.59,.94).
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Figure 8.8: Normal approximation N(.6, (.049)2) to beta posterior Beta(61, 41).

8.3.4 MLEs transform along with parameters.

It sometimes happens that we wish to consider an alternative parameterization of a
pdf, say γ rather than θ, and then want find the MLE of γ. If γ = g(θ) for a trans-
formation function g having nonzero derivative, then the MLE of the transformation
equals the transformation of the MLE:

γ̂ = g(θ̂).

This is often called invariance or equivariance. The derivation of invariance of ML
is perhaps most easily followed in a concrete example. The argument given next for
the exponential distribution could be applied to any parametric family.

Illustration: Exponential distribution (continued from page 240) Sup-
pose we parameterize the Exp(λ) distribution in terms of the mean µ = 1/λ so that
its pdf becomes

f(x) =
1

µ
e−x/µ.

Previously (see page 240) we found that the MLE of λ based on a sample from
Exp(λ) is λ̂ = 1/x̄. The invariance property of ML says that

µ̂ = 1/λ̂ = x̄.
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To see why this works for the exponential distribution, let us use a subscript on
the likelihood function to indicate its argument, Lλ(λ) vs. Lµ(µ). We find Lµ(µ) by
starting with

Lλ(λ) = λne−λnx̄

and writing

Lµ(µ) = Lλ(
1

µ
) =

1

µn
e−nx̄/µ.

Thus, when we maximize Lµ(µ) over µ, we are maximizing Lλ(1/µ) over µ which is

the same thing as maximizing Lλ(λ) over λ. We therefore must have µ̂ = 1/λ̂. More
generally, the same argument shows that when γ = g(θ) we must have γ̂ = g(θ̂). 2

Invariance is by no means a trivial property: some methods of estimation are not
invariant to transformations of the parameter.

8.3.5 Under normality, ML produces the weighted mean.

We now return to choosing the weights for a weighted mean, discussed in Sec-
tion 8.1.3. Previously (page 223) we found the weights that minimized MSE. A
different way to solve the problem is to introduce a statistical model, and then apply
the method of maximum likelihood. Let us do this.

To apply ML, we assume that X1 and X2 are both normally distributed. The
loglikelihood is

ℓ(µ) = −(x1 − µ)2

2σ2
1

− (x2 − µ)2

2σ2
2

and setting its derivative equal to zero gives

0 = −x1 − µ
σ2

1

− x2 − µ
σ2

2

= −x1

σ2
1

− x2

σ2
2

+ µ

(
1

σ2
1

+
1

σ2
2

)

.

Therefore, multiplying through by 1
σ2
1

+ 1
σ2
2
, the MLE is

µ̂ = w1 ·X1 + w2 ·X2,
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where

wi =

1
σ2

i

1
σ2
1

+ 1
σ2
2

for i = 1, 2. This is Equation (8.10).

8.4 Multiparameter Maximum Likelihood

The method of ML estimation was defined for the case of a scalar parameter θ in
Section 7.2.2, together with Equations (8.35) and (8.36). More generally, when θ
is a vector, the definitions of the likelihood function, loglikelihood function, and
MLE remain unchanged. The observed information instead becomes a matrix, and
the approximate normal distribution mentioned in conjunction with Equation (8.36)
instead becomes an approximate multivariate normal distribution.

8.4.1 The MLE solves a set of partial differential equations.

In Section 7.2.2 we computed the MLE by solving the differential equation

0 = ℓ′(θ) (8.38)

when θ was a scalar. To obtain the MLE of an m-dimensional vector parameter, we
must solve precisely the same equation, except that now the derivative in Equation
(8.38) is the vector

ℓ′(θ) =








∂ℓ
∂θ1
∂ℓ
∂θ2
...
∂ℓ

∂θm







.

This means that Equation (8.38) is really a set of m equations, often called the
likelihood equations, which need to be solved simultaneously.

Illustration: Normal MLE Let us return to finding the MLE for a sample
x1, . . . , xn from a N(µ, σ2) distribution. Previously we assumed σ was known, but
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now we consider the joint estimation of µ and σ. The loglikelihood function now
must include a term previously omitted that involves σ. The joint pdf is

f(x1, . . . , xn|µ, σ) =
n∏

i=1

1√
2πσ

exp(−(xi − µ)2

2σ2
)

and the loglikelihood function is

ℓ(µ, σ) = −n log σ −
n∑

i=1

(xi − µ)2

2σ2
.

The partial derivatives are

∂ℓ

∂µ
=

1

σ2

n∑

i=1

(xi − µ)

∂ℓ

∂σ
= −n

σ
+ σ−3

n∑

i=1

(xi − µ)2

Setting the first equation equal to 0 we obtain

µ̂ = x̄.

Setting the second equation equal to 0 and substituting µ̂ = x̄ gives

σ̂ =

√
√
√
√

1

n

n∑

i=1

(xi − x̄)2.

The MLE is thus slightly different than the usual sample standard deviation s, which
is defined with the denominator n− 1 so that the sample variance becomes unbiased
as an estimator of σ2, as in (8.4). We have

σ̂ =

√

n− 1

n
· s.

Clearly the distinction is unimportant for substantial sample sizes.8 2

8We may obtain σ̂ = s if we instead integrate out µ from the likelihood and then maximize the
resulting function; this function is sometimes called an integrated or marginal likelihood, and in
some situations maximizing the integrated likelihood yields a preferable estimator.
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Illustration: Gamma MLE Let us rewrite the gamma loglikelihood function:

ℓ(α, β) = nα log β + (α− 1)
n∑

i=1

log xi − β
n∑

i=1

xi − n log Γ(α).

The partial derivatives are

∂ℓ

∂α
= n log β +

n∑

i=1

log xi − n
Γ′(α)

Γ(α)

∂ℓ

∂β
=

nα

β
−

n∑

i=1

xi

where Γ′(u) is the derivative of the function Γ(u) (sometimes called the “digamma
function”). Setting the second partial derivative equal to zero we obtain

β̂ =
nα̂

∑n
i=1 xi

.

When we set the first equation equal to zero and substitute this expression for β̂, we
get the nonlinear equation

n log α̂− n log x̄+

n∑

i=1

log xi − n
Γ′(α̂)

Γ(α̂)
= 0.

To obtain the MLE (α̂, β̂) we may proceed iteratively: given a value β̂(j) we can
solve the first equation for α̂(j+1) and solve the second equation to obtain β̂(j+1); we
continue until the results converge. The second equation must be solved numerically,
but it is not very difficult to use available software to do so. 2

8.4.2 Least squares may be viewed as a special case of ML

estimation.

In Example 1.5 we discussed data collected by Hursh (1939), indicating the linear
relationship between a neuron’s conduction velocity and its axonal diameter. We
also briefly described the method of least-squares regression, based on the linear
regression model (1.3), which is

Yi = β0 + β1xi + ǫi (8.39)
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where ǫi ∼ N(0, σ2), independently. Least-squares regression is discussed at length
in Chapter 12. Here we show that the method of least squares may be considered a
special case of ML estimation.

Least squares may be derived by assuming that the ǫ error variables in (8.39) are
normally distributed, and that the problem is to estimate the parameter vector θ =
(β0, β1). Specifically, we assume ǫi ∼ N(0, σ2), independently for all i. Calculation
then shows that the ML estimate of θ is the least squares estimate. In other words, in
the simple linear regression problem, ML based on the assumption of normal errors
reproduces the least-squares solution.

Details: In the illustration on page 244 we wrote down the loglikelihood
function for a sample from a N(µ, σ2) distribution,

ℓ(µ, σ) = −n log σ −
n∑

i=1

(xi − µ)2

2σ2

and obtained the MLE µ̂ = x̄. Notice that, as a function of µ, the log-
likelihood is maximized by minimizing the sum of squares

∑n
i=1(xi−µ)2.

Thus, the MLE µ̂ = x̄ is also a least-squares estimator in the one-sample
problem. For the simple linear regression model (8.39) the loglikelihood
function becomes

ℓ(β0, β1, σ) = −n log σ −
n∑

i=1

(yi − β0 − β1xi)
2

2σ2
.

We can maximize ℓ(β0, β1, σ) by first defining (β̂0(σ), β̂1(σ)) to be the
maximum of ℓ(β0, β1, σ) over (β0, β1) for fixed σ, and then maximizing
ℓ(β̂0(σ), β̂1(σ), σ) over σ. However, from inspection of the formula above,
for every σ the solution (β̂0(σ), β̂1(σ)) (the maximum of ℓ(β0, β1, σ)) is
found by minimizing the sum of squares

∑n
i=1(yi − β0 − β1xi)

2. There-

fore, the MLE (β̂0, β̂1, σ̂) has the least-squares estimate as its first two
components. 2
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8.4.3 The observed information is the negative of the ma-
trix of second partial derivatives of the loglikelihood

function, evaluated at θ̂.

In the multiparameter case the second derivative ℓ′′(θ) becomes a matrix,

ℓ′′(θ) =








∂2ℓ
∂θ2

1

∂2ℓ
∂θ1θ2

· · · ∂2ℓ
∂θ1θm

∂2ℓ
∂θ1θ2

∂2ℓ
∂θ2

2
· · · ∂2ℓ

∂θ2θm

· · · · · · · · · · · ·
∂2ℓ

∂θ1θm

∂2ℓ
∂θ2θm

· · · ∂2ℓ
∂θ2

m







.

This second-derivative matrix is often called the Hessian of ℓ(θ). The observed in-
formation matrix is −ℓ′′(θ̂), which generalizes (8.34).

Result For large samples, under certain general conditions, the MLE
θ̂ of the m-dimensional parameter θ is distributed approximately as an
m-dimensional multivariate normal random vector with variance matrix

Σ̂ = −ℓ′′(θ̂)−1, (8.40)

i.e.,

Σ̂−1/2(θ̂ − θ) D→ Nm(0, Im) (8.41)

as n→∞.

Example 5.5 (continued from page 132) In the Hecht et al experiments
on threshold for visual perception of light, the response variable was an indication
of whether or not light was observed by a particular subject (“yes” or “no”), and
the explanatory variable was the intensity of the light (in units of average number
of light quanta per flash). Several different intensities were used, and for each the
experiment was repeated many times. The results for one series of trials in one
subject are plotted in Figure 8.9.

As illustrated in Figure 8.9, the linear regression model (8.39) does not work
very well in this example. The proportions vary between 0 and 1 but a line y =
a+ bx is unrestricted and can not represent the variation accurately, at least not for
proportions that get close to 0 or 1. A solution is to replace the line y = a + bx by
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Figure 8.9: Proportion of trials, out of 50, on which light flashes were perceived by
subject S.S. as a function of log10 intensity, together with fits. Data from Hecht et
al. (first series of trials) are shown as circles. Dashed line is the fit obtained by linear
regression. Solid curve is the fit obtained by logistic regression.



250 CHAPTER 8. ESTIMATION IN THEORY AND PRACTICE

a sigmoidal curve, which goes to zero as the explanatory variable x goes to −∞ and
increases to one as x→∞. The fitted curve in Figure 8.9 is based on the following
statistical model: for the i-th value of light intensity we let Yi be the number of light
flashes on which the subject perceives light and then take

Yi ∼ B(ni, pi) (8.42)

pi =
exp(β0 + β1xi)

1 + exp(β0 + β1xi)
. (8.43)

This is known as the logistic regression model. There are many possible approaches
to estimating the parameter vector θ = (β0, β1) but the usual solution is to apply
maximum likelihood. The observed information matrix is then used to get stan-
dard errors of the coefficients. These calculations are performed by most statistical
software packages. For the data in Figure 8.9 we obtained β̂0 = −20.5 ± 2.4 and
β̂1 = 10.7 ± 1.2. Further discussion of logistic regression, and interpretation of this
result, are given in Section 14.1. 2

8.4.4 When using numerical methods to implement ML es-
timation, some care is needed.

There are three issues surrounding the application of numerical maximization to ML
estimation. The first is that, while loglikelihood functions are usually well behaved
near their maxima, they may be poorly behaved away from the maxima. In partic-
ular, a loglikelihood may have multiple smaller peaks, and numerical methods may
get stuck in a region away from the actual maximum. Except in cases where the
loglikelihood is known to be concave (see Section 14.1.6), it is essential to begin
an iterative algorithm with a good preliminary estimate. Sometimes models may
be altered and simplified in some way to get guesses at the parameter values. In
some cases the method of moments may be used to get initial values for an iterative
maximization algorithm.

Illustration: Gamma distribution On page 180 we found the method of
moments estimator for the Gamma distribution,

β∗ =
x̄

s2

α∗ =
x̄2

s2
.
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In order to obtain the MLE of (α, β) we may use an iterative maximization algorithm
beginning with (α̂(1), β̂(1)) = (α∗, β∗). 2

With good initial values, iterative maximization software usually only needs to
run for a few iterations, after which the estimates don’t change by more than a small
fraction of the statistical uncertainty (represented by standard errors). In fact, it
may be shown, theoretically, that from any consistent estimator for which the MSE
vanishes at the rate 1/n, a single iteration of Newton’s method for maximizing the
loglikelihood function will produce an efficient estimator (see Lehmann, 1983).

A second important implementation issue is that the second derivatives used in
numerical maximization software are often themselves estimated numerically, and
they may be estimated rather poorly (because they do not need to be estimated ac-
curately to obtain the maximum). Thus, for the purpose of finding a variance matrix,
one should either evaluate second derivatives separately (from an analytical formula,
or from special-purpose software), or one should apply the parametric bootstrap (see
Section 9.2).

The third issue is that parameterization can be important. Numerical max-
imization procedures tend to work well when the loglikelihood function is roughly
quadratic, which means that the likelihood function is approximately normal. Trans-
formations of parameters can improve this approximation. For example, before run-
ning maximization software it is often helpful to transform variance parameters by
taking logs.

8.4.5 Maximum likelihood may produce bad estimates.

The method of ML is not universally applicable, nor does it guarantee good statistical
results. The most serious concern with ML is that it is predicated on the description
of the data according to a particular statistical model. If that model is seriously
deficient, the MLE will be misleading. This underscores the essential role of model
assessment, and the iterative nature of model building, emphasized in Chapter 1.

The provably good performance of ML estimation also applies only for large sam-
ples. What constitutes “large” is difficult to specify precisely, though attempts have
been made occasionally. A key observation is that sample size must be judged rela-
tive to the number of parameters being estimated. In problems having large numbers



252 CHAPTER 8. ESTIMATION IN THEORY AND PRACTICE

of parameters and only modest sample sizes, we should expect neither ML estimates,
nor their associated SEs, to be accurate. One standard approach to making progress
in such situations is to build models that effectively reduce the number of param-
eters by restricting them in some way (often by introducing additional probability
distributions). In some cases, however, ML must be abandoned. There is a large
body of methods that are nonparametric, in the sense that they do not posit a sta-
tistical model with a finite number of parameters. There are many situations where
nonparametric methods perform well, and save the difficulty and worry associated
with careful model building.



Chapter 9

Propagation of Uncertainty and
the Bootstrap

c©2010 SPRINGER SCIENCE+BUSINESS MEDIA, LLC. All rights reserved. No
part of this work may be reproduced in any form without the written permission of
SPRINGER SCIENCE+BUSINESS MEDIA, LLC.

At the beginning of this book we said that we wanted to lay out the key features
of what we called, “the statistical paradigm,” which consists of broadly applicable
concepts that guide reasoning from data in diverse contexts. One of its foundations
is the idea that data may be used to express knowledge about unknown values of
parameters, especially through confidence intervals. This was the focus of Chapter 7.
Another is the notion that alternative estimators may be evaluated and compared,
which was the main subject of Chapter 8, together with the large-sample optimality
and utility of ML estimation. We now turn to the third building block of statistical
reasoning, which is a major source of the remarkable reach and flexibility of modern
data analysis, especially in complicated settings. This concerns situations in which
we already have evaluated the uncertainty in a vector x, but we are interested in
some other variable y = f(x) and we wish to quantify the transfer of uncertainty
from x to y. This is the problem of propagation of uncertainty.

Let us be more concrete by assuming we have a variance matrix (or estimated
variance matrix) for a random vector X, furnished perhaps by some statistical soft-
ware, but what we really want is the variance of a function of that vector, i.e., we

253
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want V (Y ), where Y = f(X). For example, if Y were an estimator of some un-
known quantity we might be seaking its standard error SE =

√

V (Y ). Here are two
examples.

Example 5.5 (continued from page 132) We previously displayed data from
Hecht et al (1942), who investigated the threshold for visual perception by exposing
human observers to very weak flashes of light in a darkened room. In the bottom
part of Figure 8.9 we overlaid on the data a sigmoidal curve found from applying
maximum likelihood to the logistic regression model given by the pair of equations
(8.42) and (8.43). We reported the values of the fitted coefficients and their standard
errors.

Those data were from a single subject. What if we wanted to compare results
across subjects? We would get a set of sigmoidal curves with somewhat different
slopes, shifted to some extent to the left or right. One simple way to characterize the
ability of a subject to perceive the dim light is the intensity at which he or she will
perceive it 50% of the time. This number is easy to understand and it corresponds
to the middle of the curve, thus being a nice single-number representation of the
data. Let us label this value of the intensity x50. To find x50 we begin with Equation
(8.43), which without subscripts on xi and pi becomes

p =
exp(β0 + β1x)

1 + exp(β0 + β1x)
. (9.1)

In (9.1) we replace β0 and β1 by their fitted values β̂0 and β̂1 then set p = .5 and
solve for x50. That is, we solve the equation

.5 =
exp(β̂0 + β̂1x50)

1 + exp(β̂0 + β̂1x50)

for x50 to get x̂50 as a function of (β̂0, β̂1). We give details in Section 9.1.2. The
observed information matrix for (β̂0, β̂1), discussed in Section 8.4.3, provides the
approximate variance matrix of (β̂0, β̂1). It is available from the fitting software. We
want to use that variance matrix to express knowledge about x50 in the form of a
standard error SE(x̂50). This is a problem in propagation of uncertainty.

In schematic form we symbolize the propagation of uncertainty process as

variation in (y1, y2, . . . , y6)
propagate−→ uncertainty about x̂50,
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meaning that we propagate the uncertainty that represents the variation in the data
(y1, y2, . . . , y6) to uncertainty about x̂50. It would be more complete to depict this
with an intermediate step involving the uncertainty in the fitted coefficients (β̂0, β̂1),
as follows:

variation in (y1, y2, . . . , y6)
propagate−→ uncertainty about (β̂0, β̂1)

propagate−→ uncertainty about x̂50.
(9.2)

2

The two steps in Equation (9.2) are typical of most applications. The first step,
from data to fitted coefficients, is accomplished during the fitting process and results
in the large-sample normal distribution of the ML estimators with the inverse of the
observed information matrix as variance matrix. This is accomplished by statistical
software. The second step, however, represented by the second arrow above, is
problem-specific: it depends on the quantity an investigator is interested in, which
in Equation (9.2) is x50. We are concerned with cases in which this quantity of interest
is not something the software handles. The second step thus requires some additional
effort, typically in the form of coding a computer implementation. However, as we
will indicate, the algorithms are extremely simple so that the implementation will
involve only a few lines of code. Here is another illustration.

Illustration: Difference index for firing rates In single-unit electrophysio-
logical studies, neural firing rates are often estimated under two experimental con-
ditions. Let us label the conditions A and B, and suppose that for each neuron we
have many trials of recordings under each of the conditions. Averaging across the
trials gives sample mean firing rates, X̄A and X̄B, which may be compared. How-
ever, comparisons are made across many neurons having quite different firing rates.
For this reason, some sort of normalization is usually invoked. One commonly-used
comparative measure is the index

Y =
X̄A − X̄B

X̄A + X̄B

. (9.3)

We provide a specific example from the literature and then continue our discussion
of the index in (9.3). 2

Example 9.1 Example: Neural activity related to reward and motivation
rm Roesch and Olson (2005) compared activity of neurons in the orbitofrontal (OF)
cortex under conditions involving large reward for success in an eye movement task, a



256CHAPTER 9. PROPAGATION OF UNCERTAINTY AND THE BOOTSTRAP

large penalty for failure (a time out for the monkey), or neither (i.e., a small reward
and a small penalty). The authors compared the large reward to the neutral condition
using a measure of the form (9.3), with condition A being large reward and B being
neutral. This would identify neurons that tended to respond to expected reward.

It would be possible for a neuron to respond not specifically to reward but to the
importance of success, which the authors termed “motivation.” Both large reward
and large penalty should increase the subject’s motivation to perform the task. The
authors also compared the large penalty to the neutral condition using a measure of
the form (9.3), with A representing the large penalty condition and B being neutral.
By examining many neurons they concluded that neurons OF cortex tend to fire more
with large expected reward, and tend to fire less with large expected penalty. They
went on to contrast this with premotor cortex where neurons tended to fire more with
both large expected reward and large expected penalty. They characterized the results
as suggesting that OF cortex was involved in reward processing while PM activity
reflected motivation. 2

Illustration: Difference index for firing rates (continued) One of the issues
that arises in using the difference index (9.3) is that different neurons may provide
different amounts of information, partly because they could be based on different
numbers of trials. It would be desirable to have a standard error to go along with
each normalized difference Y in (9.3). It is easy to get standard errors SE(X̄A) and
SE(X̄B) using (7.17). If sA and nA are the sample standard deviation and sample
size under condition A, then we may take SE(X̄A) = sA/

√
nA, and similarly for

condition B. We need a way of using the uncertainties SE(X̄A) and SE(X̄B) to get
SE(Y ).

To put this in the general framework we write X1 = X̄A, X2 = X̄B, X = (X1, X2),
and then

f(x) =
x1 − x2

x1 + x2

.

The problem of finding the standard error of Y defined by (9.3) then becomes a
special case of the general problem of finding the standard error of Y = f(X) when
the uncertainty in X is known. In Example 12.3 we will discuss an application of the
difference index for firing rates where propagation of uncertainty was used to obtain
interesting results. 2
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Propagation of uncertainty is an old concept1(Schultz, H. (1929) Applications of
the theory of error to the interpretation of trends: Discussion, J. Amer. Statist.
Assoc., Supp: Proc. Amer. Statist. Assoc., 24: 86-89. Brunt, D. (1917) The Com-
bination of Observations, Cambridge.) but it was given a new, and profoundly im-
portant twist with the development of bootstrap methods by Bradley Efron (Efron,
1979a). Bootstrap methods for confidence intervals rest on two ideas. First, that
the variability in the data, based on the statistical model, may be estimated rea-
sonably accurately and, second, that this variability may be propagated to express
uncertainty about any quantities computed from the data, such as the unknown pa-
rameters in the model. Efron’s insight was that propagation of uncertainty, from
variability in the data to uncertainty in estimates, could be carried out easily on
the computer, and he followed up with convincing theoretical analysis of the method
using some of the principles articulated in Chapter 8. In the 1980s, when desktop
computers became available, the use of computers to propagate uncertainty took
off (see Efron, 1979b). (Efron, B. (1979a) Bootstrap methods: Another look at the
jackknife, Annals Statist., 7: 1-26. Efron, B. (1979b) Computers and the Theory of
Statistics: Thinking the Unthinkable. SIAM Rev., 21: 460-480.)

We discuss propagation of uncertainty in Section 9.1 and then move on to boot-
strap methods in Section 9.2. In Section 9.3 we specify the circumstances under
which each of the several methods described here might be preferred to the others.

9.1 Propagation of Uncertainty

The problem of transferring uncertainty about a random vector X to a random vari-
able Y = f(X) is the problem of propagation of uncertainty, or what was historically
called “propagation of error” and, sometimes, “the delta method.” There are sev-
eral varieties of propagation of uncertainty. The original method, historically, used
mathematical analysis with n → ∞ to derive an approximate SE(Y ) based on an
approximate variance matrix for X. In some cases this is easy. We discuss it in
Section 9.1.1. It is often even easier to use a brute force computer simulation: if we
can generate observations (on the computer) from the approximate distribution of
X, we can also immediately obtain the approximate distribution of Y . We explain
this method, enumerating the steps, in Section 9.1.2. Propagation of uncertainty is

1The “law of propagation of error,” as it was called, is mentioned as a standard technique by
Schultz (1929). The method is described in Brunt (1917).
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also an essential part of modern Bayesian methods, which appear in Chapter 16.

9.1.1 Functions of approximately normal random vectors are

approximately normal.

We begin with the analytical approach to propagating uncertainty. Let us suppose
we have a random variable or vector X, and a function y = f(x), which we wish to
apply to X. This will produce a random variable Y = f(X). A handful of special
cases have been analyzed in the literature (mostly many years ago), which leads to
some standard distributions such as the chi-squared distribution, the t-distribution,
and the F -distribution. In practice, however, one often comes across cases that do
not fit any specialized framework. Fortunately, there is a simple and powerful method
that may be applied in conjunction with a general theoretical result in order to get
the approximate distribution of Y .

Suppose, first, that X is a random variable having mean µX and standard devi-
ation σX . The classical idea behind what is often called the delta method assumes,
first, that the distribution of X is concentrated around µX (so that σX is small),
and, second, that the function y = f(x) is approximately linear near µX . In ad-
dition, X is often assumed to be approximately normally distributed. Under these
assumptions the linear transformation that approximates f(x) is applied to X to
get the approximate distribution of Y = f(X). In particular, if X were normal
then the theorem concerning linear transformation of a normal random variable on
page 77 would show that this linear transformation of X would be normally dis-
tributed. As a consequence (it may be shown) if X is approximately normal, then Y
is approximately normal and the approximate mean and variance of Y is given from
the approximating linear transformation, as in the theorem on page 77.

Theorem Suppose that a sequence of random variables X1, X2, . . . , Xn, . . . sat-
isfies

Xn − µ
σXn

D→ N(0, 1)

as n→∞, and that the function f(x) is continuously differentiable with f ′(µ) 6= 0.
Then

f(Xn)− f(µ)

σYn

D→ N(0, 1)

with σYn = |f ′(µ)|σXn.
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Figure 9.1: The effect of the transformation y = a + bx operating on a normally
distributed random variable X having mean µX and standard deviation σX . The
random variable Y = a+ bX is again normally distributed, with mean µY = a+ bµX

and standard deviation σY = |b|σX . The normal distributions are displayed on the
x and y axes; the linear transformation is displayed as a line, which passes through
the point (µX , µY ) so that it may be written, equivalently, as y − µY = b(x− µX).

Proof: We omit the proof, which is a consequence of Slutzky’s theorem
(page 191), but give the essential idea.

First, from the theorem on transformation of a normal random variable
(page 77), if Y = a + bX and X ∼ N(µX , σ

2
X) then Y ∼ N(µY , σ

2
Y )

with µY = a + bµX and σY = |b|σX . A pictorial display of this situation
is given in Figure 9.1. Now, suppose that f(x) is not linear, but let us
assume that it is only mildly nonlinear within the “most probable” range
of X. That is, f(x) is mildly nonlinear within, say, µX ± 2.5σX , which is
the range over which we are assuming X to be approximately normally
distributed. Then we may approximate f(x) with the best-fitting linear
approximation at x = µX :

f(x) ≈ f(µX) + f ′(µX)(x− µX)

which is usually called a first-order Taylor series at x = µX . (See the
Appendix.) That is, we have

f(x) ≈ a + bx
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Figure 9.2: The transformation y = log(x) operating on a normally distributed
(or approximately normally distributed) random variable X having mean µX and
standard deviation σX produces an approximately normally distributed random vari-
able Y with mean and standard deviation approximately given by µY = log(µX)
and σY = σX/|µX |. The approximating line could also be written in the form
y − µY ≈ (x− µX)/|µX |.
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with a = f(µX) − f ′(µX)µX and b = f ′(µX). Note that a + bµX =
f(µX). As a result, we have that Y = f(X) is approximately normally
distributed, with µY ≈ f(µX) and σY ≈ |f ′(µX)|σX . 2

We now re-state this theorem in a less mathematically precise but more practical
form.

Result: Propagation of Uncertainty in the Scalar Case
If X is approximately N(µX , σ

2
X) and the function f(x) is approxi-

mately linear with f ′(x) 6= 0 near µX (“near” being defined probabilis-
tically, in terms of σX), then
(1) Y = f(X) is approximately normal, and
(2) the approximate normal mean and standard deviation are given by
µY ≈ f(µX) and σY ≈ |f ′(µX)|σX .

Note that both conclusions in this result are important: subsequently we will
rely on the approximate normality in (1) using computer simulation in place of the
analytical formula for the standard deviation appearing in (2). On the other hand,
the formulas are sometimes valuable.

A detail: Here is a technical point. In the statement of the theorem the
numbers σXn do not have to be the standard deviations of Xn. They can,
instead, be some numbers that will serve as the approximate standard
deviations. In practice, we often do not have the exact standard deviation
but we do have a useful approximate value based on large-sample theory,
as in Chapter 8.

Illustration: Log transformation Suppose g(x) = log(x). Then f ′(x) = 1/x,
so that if X is approximately normal, with small σX , then Y is approximately normal
with µY ≈ log(µX) and σY ≈ σX/|µX|. The picture is given in Figure 9.2. Careful
examination of Figure 9.2 reveals that the distribution of Y is not exactly normal (it
is mildly skewed toward low values), but it is close. 2

The illustration above, using the log transformation, serves to show how the ana-
lytical calculation works in propagation of uncertainty. As we stressed in Chapter 2,
the log transformation is frequently used in practice to make data distributions more
symmetrical. An additional benefit of log transformations comes from its applica-
tion in statistical procedures such as analysis of variance (Chapter 13) that compare
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observations across groups or experimental conditions, where it is typically assumed
that all the observations have the same variance. Similarly, one of the standard as-
sumptions in linear regression (Chapter 12) is that the noise or error has the same
variance for all observations. Sometimes, however, this is clearly violated. Suppose
it is found, empirically, that the standard deviation is proportional to the mean.
The illustration above may be used to show that the log transformation removes this
effect, making the variances approximately homogeneous across observations.

Specifically, suppose we have random variables X1, . . . , Xm for which σXi
is pro-

portional to µXi
, with all µXi

> 0. We may write this using the proportionality
symbol as

σXi
∝ µXi

. (9.4)

For definiteness, let us assume the proportionality constant is c, so we have

σXi
= cµXi

. (9.5)

Now let Yi = log(Xi). Then, by the analysis in the previous illustration, using
|µXi
| = µXi

because µXi
> 0, we obtain

σYi
≈ c.

In this context the log transformation is called variance stabilizing. Improving ho-
mogeneity of variances, making them more nearly equal, is an additional motivation
for the log transformation in data analysis. Here is an example.

Example 2.3 (continued from page 38) As part of their argument that it
may be advantageous to transform high-field BOLD signal in fMRI data by taking
logarithms, Lewis et al. (2005) provided plots of the standard deviation versus the
mean for the BOLD signal and for the log-transformed BOLD signal. These plots
are shown in Figures 9.3 and 9.4. The standard deviation is nearly proportional
to the mean for the BOLD signal, but shows no relationship to the mean of the
log-transformed BOLD signal. Because standard statistical procedures assume the
standard deviation is more or less constant regardless of the mean, the authors
suggested that taking logs might be a good idea. 2

Example 9.2 Square-root transformation of spike counts in motor cortex
rm When the variance of spike counts is plotted against the mean it often happens
that they are roughly proportional. That is, the spike counts X1, . . . , Xm satisfy

σ2
Xi
∝ µXi

,
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Figure 9.3: Plot of standard deviation versus mean in BOLD signal across 15 sub-
jects, from Lewis et al. (2005). The plot is nearly linear, so the standard deviation
is very nearly proportional to the mean.

Figure 9.4: Plot of standard deviation versus mean of log-transformed BOLD signal
across 15 subjects, from Lewis et al. (2005). Here, in contrast to Figure 9.3, the
standard deviation is approximately constant and shows no fixed relationship with
mean.

at least approximately. (There are many references to this phenomenon; see Shadlen
and Newsome, 1998, for some of them.) Let us rewrite this analogously with Equation
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(9.5), putting it in the form
σ2

Xi
= cµXi

(9.6)

for some proportionality constant c. By examining the analysis in the forgoing il-
lustrations of the log transformation it becomes apparent that a similar trick may be
used here. From the propagation of uncertainty result σY ≈ |f ′(µX)|σX, together with
(9.6) we have

σY ≈ |f ′(µX)|c√µX . (9.7)

In order to remove the effects in (9.6) we therefore should find f(x) such that

f ′(x) ∝ 1/
√
x (9.8)

because that will force the factors |f ′(µX)| and
√
µX to cancel. The square-root

function does the job: if f(x) =
√
x then (9.8) is satisfied. For this reason, many

authors have chosen to use square-root transformations of spike counts in their sta-
tistical analyses. In particular, Georgopoulos and Ashe (2000) (Georgopoulos, A.P.
and Ashe, J. (2000) One motor cortex, two different views, Nature Neuroscience, 3:
963.) reported improvements when fitting spike counts to direction of movement by
linear regression. For a similar reason, Yu et al. (2009) (Yu, B.M., Cunningham,
J.P., Santhanam, G., Ryu, S.L., Shenoy, K.V., and Sahani, M. (2009) Gaussian-
process factor analysis for low-dimensional single-trial analysis of neural population
activity, J. Neurophysiology, 102: 614–635.) used square-root transformations of
spike counts in studying “neural trajectories” that summarize population activity in
motor cortex during movement planning. 2

We now extend the propagation of uncertainty argument to the vector case, which
involves a multivariate linear approximation (a first-order Taylor series expansion).
The idea is to take a sequence of random vectors X1, X2, . . . that are approximately
multivariate normal and apply the function f(x) to each of them and, as in the scalar
case above, approximate f(x) using a first-order Taylor series based on the derivative
of f(x). In this multidimensional case the derivative becomes the vector of partial
derivatives. Specifically, for a vector x we let f ′(µ) be the vector of partial derivatives
(with respect to all components) of the real-valued function f(x), evaluated at x = µ.
That is, the ith component of this derivative is

f ′(µ)i =
∂f

∂xi

∣
∣
∣
∣
x=µ

.

Theorem Let µ be an m-dimensional vector, and let f(x) be a differentiable
function for which f ′(µ) 6= 0. If X1, X2, . . . , Xn, . . . is a sequence of m-dimensional
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random vectors and Σn is a sequence of positive definite symmetric matrices such
that for every nonzero m-dimensional vector w,

wTΣ−1/2
n (Xn − µ)

D→ N(0, 1),

then, writing Yn = f(Xn), we have

(Yn − f(µ))

σY

D→ N(0, 1) (9.9)

where

σY =
√

f ′(µ)T Σnf ′(µ).

Proof: Omitted. 2

Here is the practical form of the method.

Result: Multivariate Propagation of Uncertainty If X is approx-
imately multivariate normal, given by Nm(µX ,ΣX), and the function
f(x) is approximately linear with f ′(x) 6= 0 near µX (“near” again
being defined probabilistically), then
(1) Y = f(X) is approximately normal, and
(2) the approximate normal mean and standard deviation are given by
µY ≈ f(µX) and

σY ≈
√

f ′(µX)T ΣXf ′(µX). (9.10)

Details: To see how we get this, consider the bivariate case. If we have
z = f(x, y) and we apply a first-order Taylor series expansion (a linear
approximation) near a point (x0, y0), we get

z ≈ f(x0, y0) +
∂f

∂x

∣
∣
(x0,y0)

(x− x0) +
∂f

∂y

∣
∣
(x0,y0)

(y − y0).

Analogously to what was done in the scalar case, we insert random vari-
ables X and Y and replace (x0, y0) with (µX , µy). With Z = f(X, Y ) we
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note that the first term in the variance σ2
Z = V (Z) is V (f(x0, y0)) = 0

(because the variance of a constant is 0), and we then get

σ2
Z =

(
∂f

∂x

∣
∣
(x,y)=(µX ,µY )

)2

· σ2
X +

(
∂f

∂y

∣
∣
(x,y)=(µX ,µY )

)2

· σ2
Y

+2 · ∂f
∂x

∣
∣
(x,y)=(µX ,µY )

∂f

∂y

∣
∣
(x,y)=(µX ,µY )

ρσXσY .

The general multidimensional case is analogous.

2

9.1.2 Simulated observations from the distribution of the
random variable X produce simulated observations from
the distribution of the random variable Y = f(X).

The derivative calculations in (9.10) can be complicated, which not only may make
them tedious but also raises the worrisome possibility of math mistakes. A remark-
ably effective way to propagate uncertainty, which may also reduce the chance of over-
looking a math error, is to use numerical simulation. To understand the method, one
must first be sure to understand how to work with a probability distribution based
on a transformation y = f(x). Let us consider a simple example.

Illustration: Three possible values Suppose X can take the values 2,4, or 8
with probabilities .2,.5,.3, respectively, and we are interested in the transformation
y = log2(x). Then Y can take the values 1,2, or 3. To find the probability distribution
of Y we simply note that

P (Y = 1) = P (log2(X) = 1) = P (X = 2) = .2

P (Y = 2) = P (log2(X) = 2) = P (X = 4) = .5

P (Y = 3) = P (log2(X) = 3) = P (X = 8) = .3.

Thus, for example, if we wanted to find the mean of Y we would obtain

µY = 1 · P (Y = 1) + 2 · P (Y = 2) + 3 · P (Y = 3)

= 1 · (.2) + 2 · (.5) + 3 · (.3).

= 2.1.
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2

The calculation in the discrete case (as above) is very simple. In the continuous
case, to get the pdf we would have to introduce a derivative factor | dy

dx
|, as ordinary

calculus requires when a variable is transformed (see page 76). We will not pursue
such calculations here. The point is that once we know the probabilities for X, we
can obtain them easily for Y using computer simulations. Suppose we can, on the
computer, generate observations (“draws”) from the distribution of X, and let us
denote a set of G such simulated observations by U (1), U (2), . . . , U (G). If we define
W (1) = f(U (1)),W (2) = f(U (2)), . . . ,W (G) = f(U (G)), we obtain a set of G draws
from the distribution of Y .

Illustration: Three possible values (continued) In the discrete example
above, suppose we wanted to find P (Y = 1) without using the formula P (Y = 1) =
P (X = 2) = .2. We could get an approximate answer by the following procedure:

1. For j = 1 to 10,000:

Generate U (g) from the distribution of X.

Compute W (g) = log2(U
(g)).

2. Let N be the number of W (g) such that W (g) = 1 and compute

P (Y = 1) ≈ N

10, 000
.

To compute the mean of Y we could follow the same step 1, and then replace step 2
with

µY ≈
1

G

G∑

j=1

W (g).

2

This computer-simulation procedure works for discrete and continuous random
variables and random vectors.

Algorithm: Simulation-Based Propagation of Uncertainty Suppose the
random variable or random vector X has a probability distribution from which we
are able to simulate observations, and we wish to find the distribution of a random
variable Y = f(X) defined by a real-valued function f(x). Proceed as follows:
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1. For j = 1 to G:

Generate U (g) from the distribution of X.

Compute W (g) = f(U (g)).

2. Step 1 gives us a sample W (1),W (2), . . . ,W (G) from the distribution of Y . We
can obtain whatever information we wish about the distribution of Y by taking
G to be sufficiently large. In particular,

(i) to get P (a < Y < b) let N be the number of W (g) such that a < W (g) < b
and compute

P (a < Y < b) ≈ N

G
.

(ii) To get σY , compute the sample meanW = 1
G

∑G
g=1W

(g) and use the sample

variance 1
G−1

∑G
g=1(W

(g) −W )2 to get

σY ≈

√
√
√
√

1

G− 1

G∑

g=1

(W (g) −W )2. (9.11)

(iii) To get the qth quantile of the distribution of Y use the qth sample quantile
wq (defined on page 81) among the pseudo-data values W (1),W (2), . . . ,W (G). 2

The procedure is very general: it is applicable as long as it is possible to gen-
erate observations from the distribution of X. (The problem of creating algorithms
that generate observations from a given distribution is itself a sub-specialty field of
research; some additional comments about this may be found in Chapter 16.) When
we use simulation-based propagation of uncertainty together with the approximate
normality of Y , due to the results in Section 9.1.1, we have a very powerful infer-
ence engine: we can apply them, together, to obtain approximate 95% CIs in a wide
variety of settings.
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Result: Simulation-Based Propagation of Uncertainty in Es-
timation Suppose the random vector X is a consistent estimator of a
parameter vector θ having an approximate distribution (such as a mul-
tivariate normal distribution) from which we are able to simulate obser-
vations and we wish to estimate φ = f(θ) for some real-valued function
f(x). If we apply simulation-based propagation of uncertainty, with G
large, then an approximate 95% CI for φ is given by (w.025, w.975) where
w.025 and w.975 are the .025 and .975 quantiles among the pseudo-data
W (1),W (2), . . . ,W (G).

The beauty of this simulation-based method of getting approximate confidence
intervals is its simplicity and practicality, as long as it is easy to generate observations
from the distribution of the esimator X. If, in addition, the estimator φ̂ = f(θ̂) is
approximately normal, then we have a slightly different option, which will produce
essentially the same answers.

Result: Simulation-Based Propagation of Uncertainty in Estimation When
the Estimator is Approximately Normal Suppose X is an approximately mul-
tivariate normal estimator of θ having estimated covariance matrix Σ̂, and we want
to estimate φ = f(θ) for some real-valued function f(x). Let us take Y = f(X) to
be the estimator of φ. We will write the observed estimate of θ as X = θ̂ and the
observed estimate of φ as Y = φ̂ = f(θ̂). If the function f(x) is approximately linear
near x = θ̂ and f ′(θ̂) is not the zero vector (i.e., not all of its partial derivatives are
zero) then

(1) Y is approximately normally distributed, and

(2) the standard error obtained from (9.11) by simulation-based propagation of
uncertainty

SE(φ̂) =

√
√
√
√

1

G− 1

G∑

g=1

(W (g) −W )2 (9.12)

furnishes approximate inferences. In particular, an approximate 95% CI is
given by (Y − 2SE(Y ), Y + 2SE(Y )).

2
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The point of this second approach is that it involves the standard error, and the
95% rule for approximate normality, which is especially simple and familiar. When
the two methods differ, it is an indication that the distribution of φ̂ is noticeably
non-normal and it is better to use the quantiles as they are likely to be more accurate.

We illustrate by returning to the example involving perception of dim light.

Example 5.5 (continued from page 254) At the beginning of the chapter we
motivated propagation of uncertainty using the problem of calculating x50, defined
on page 254, and finding its standard error. If we drop the subscript i in Equation
(8.43), the logistic function used in the logistic regression model may be written in
the form

p =
exp(u)

1 + exp(u)

where u = β0 + β1x. We can solve for u as follows:

u = log
p

1− p.

This may be checked by plugging the latter formula for u into the one above it to
get p = p. If we set p = .5 we get u = 0. In other words, x50 must be the value of x
for which

β0 + β1x = 0.

Solving for x we get

x50 =
−β0

β1

and when we plug in (β̂0, β̂1) we obtain

x̂50 =
−β̂0

β̂1

. (9.13)

To get a standard error for x̂50 we propagate the uncertainty from the approximate
variance matrix Σ̂ for (β̂0, β̂1). That is, we assume that statistical software (for
logistic regression, which we discuss in Section 14.1.1) has provided the MLE (β̂0, β̂1)
and the variance matrix V̂ based on the observed information matrix as in (8.40),
i.e., V̂ = IOBS(β̂0, β̂1)

−1 . We can then set Σ̂ = V̂ and apply either the analytical
method or the computer-simulation method.

Let us use the simulation method. To obtain the standard error of x50, or a
95% confidence interval based on percentiles, we generate many two-dimensional
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vectors that represent plausible values of (β0, β1) according to the uncertainty in
(β̂0, β̂1) and, for each such vector, find x50. That is, we simulate two-dimensional

vectors U (g) = (U
(g)
1 , U

(g)
2 ) whose first component corresponds to β0 and whose second

component corresponds to β1; we then apply (9.13) to these components to get a
simulated value

W (g) =
−U (g)

1

U
(g)
2

(9.14)

The distribution of W (g) values represents the uncertainty in x50 propagated from
the uncertainty in (β̂0, β̂1).

We now spell this out in steps. We again assume we have (from software) the
MLE (β̂0, β̂1) and the variance matrix V̂ . The algorithm is as follows:

1. Initialize by setting

β̂ = (β̂0, β̂1)

Σ̂ = V̂

G=1000 (or some other suitable value)

2. For g = 1, . . . , G

- simulate U (g) ∼ N(β̂, Σ̂)

- compute W (g) using (9.14).

3. Set O(1), O(2), . . . , O(G) equal to the ordered values of W (1),W (2), . . . ,W (G), so
that O(1) is the smallest W (g), O(2) is the second smallest, etc., with O(G) being
the largest.

If .025G is an integer, set r.025 = .025G and if .025G is not an integer set r.025

equal to the smallest integer larger than .025G. (If G = 1000 then r.025 = 25.)

If .975G is an integer, set r.975 = .975G + 1 and if .975G is not an integer
set r.975 equal to the smallest integer larger than .975G. (If G = 1000 then
r.975 = 976.)

Define

w.025 = O(r.025)

w.975 = O(r.975). (9.15)
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(If G = 1000 then w.025 is the 25th ordered value of W (g) and w.975 is the 976th
ordered value of W (g).)

The approximate 95% CI for x50 is (w.025, w.975).

4. Compute

SE(x50) =

√

1

G− 1

∑

(W (g) −W (g)
)2.

Here is a Matlab implementation of the algorithm above (using G = 10000):

response = [0 2 9 27 47 50]’;

total = [50 50 50 50 50 50]’ ;

[glmb glmdev glmstats] = glmfit(intensity,[response total],’binomial’);

b0 = glmb(1);

b1 = glmb(2);

vmatr = glmstats.covb;

x50 = -b0/b1 ;

beta = mvnrnd([b0 b1] ,vmatr,10000);

x50vec = -beta(:,1)./beta(:,2);

quantile(x50vec, [.025 .975])

sqrt(var(x50vec))

Using this simulation algorithm we obtained

approx. 95% CI for x.50 = (1.88, 1.96).

We found the standard error of x̂50 to be SE = .019. The usual standard-error based
approximate 95% CI is then

(1.92− 2(.019), 1.92 + 2(.019)) = (1.88, 1.96)

in agreement with the percentile-based method. This agreement is an indication that
the MLE in (9.13) is approximately normally distributed, to a close approximation,
for the sample sizes in this data set. The log10 intensity at which subject S.S. (whose
data were shown in Figure 8.9, the scale on the x-axis having been log10(intensity))
would have perceived half the flashes is estimated to have been x̂50 = 1.921 ± .019
with approximate 95% CI (1.88,1.96). Note that the logistic regression model (Equa-
tions (8.42) and (8.43)) could be viewed here as a method of interpolating between
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the experimental values, while also providing a standard error of the interpolated
quantity. 2

In the simulation procedure above, a detail left unspecfied is the value of G to
be used, i.e., the number of random variables or vectors U (g) to be generated on
the computer. Typically we would expect G = 1000 to be sufficient, and when the
computation is fast we might use G = 10, 000 to be safe. In general the size of G
to be used is an empirical matter; if in doubt, one easy way to proceed is to pick a
convenient value of G, such as G = 1000, and then run the entire procedure several
times. Because new random variables will be generated each time the procedure is
run, the several values of the outputs (w.025, w.975, and SE) will be different. If the
output values on different runs are all close to each other then it may be concluded
that these quantities of interest are sufficiently accurate. If not, the size of G may
be increased.

Additional details: We may also propagate uncertainy analytically to
x50 = g(β0, β1) using Equation (9.13), which gives the standard error

SE =

√

g′(β̂0, β̂1)T Σ̂g′(β̂0, β̂1)

where the partial derivates are

∂g

∂β0
|(β̂0,β̂1)

= − 1

β̂1

∂g

∂β1
|(β̂0,β̂1)

=
β̂0

β̂2
1

.

Plugging into the formulas above the values of β̂0, β̂1 and Σ̂, the log10

intensity at which subject S.S. would have perceived half the flashes is
estimated to have been x̂50 = 1.921± .019. This agrees with the approx-
imate 95% CI obtained by the simulation method. 2

9.2 The Bootstrap

The bootstrap is a very simple way to obtain standard errors and confidence inter-
vals. It has turned out to be one of the great inventions in the field of statistics.
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In Section 9.2.1 we explain the essential idea, and we contrast the parametric boot-
strap with the nonparametric bootstrap, elaborating on these two distinct methods
in Sections 9.2.2 and 9.2.3.

9.2.1 The bootstrap is a general method of assessing uncer-

tainty.

The algorithm for simulation-based propagation of uncertainty (page 267) began with
a random vector X having a known distribution (from which observations could be
generated on the computer). In practice, applying the result on page 269, X becomes
an estimator of a parameter vector θ and its distribution is known approximately;
typically it is a normal distribution. From this, uncertainty can be propagated from
X to an estimator φ̂ of φ = f(θ). As illustrated in Example 5.5 on page 270, an
essential input to the algorithm is the variance matrix of X (in Example 5.5 we had
X = (β̂0, β̂1) and used Σ̂ = IOBS(β̂0, β̂1)

−1). But what if it is difficult to compute the
variance matrix of X? The bootstrap instead backs up a step, using the variation in
the data themselves so that an explicit form for the variance matrix of X becomes
unnecessary (and the variance matrix of X can, in fact, also be obtained from the
bootstrap).

Here is the idea. Let us suppose X1, . . . , Xn is a random sample from a distri-
bution having distribution function FX(x). We write this as Xi ∼ FX , indepen-
dently, for i = 1, . . . , n. We wish to find the standard error of a scalar statistic
T = T (X1, . . . , Xn). Notice, as we have said before, that T is obtained by applying
some mapping to the random variables. Let us emphasize this still further by using
the function h(x1, x2, . . . , xn) to denote that mapping so that T (X1, X2, . . . , Xn) =
h(X1, X2, . . . , Xn). In the case of ML estimation, for instance, h(x1, x2, . . . , xn) would
be the function that gives the value of the MLE for a particular set of data x1, . . . , xn.
In some cases the function h(x1, x2, . . . , xn) is explicit, as in ML estimation of the
binomial propensity p, while in other cases it is implicit—the result of solving a
differential equation, as in ML estimation of β1 in the logistic regression model of
Example 5.5 (page 250). In either situation, however, SE(T ) is defined as the stan-
dard deviation of T = h(X1, X2, . . . , Xn) when the Xi random variables follow the
distribution with cdf FX . Now, if we were able to simulate observations from FX on
the computer, we could simulate G samples where G is a large number, proceeding
as follows:
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1. For g = 1 to G

Generate a sample U
(g)
1 , U

(g)
2 , . . . , U

(g)
n from FX

Compute W (g) = h(U
(g)
1 , U

(g)
2 , . . . , U

(g)
n )

2. Compute W = 1
G

∑G
i=1W

(g) and then

SEsim(T ) =

√
√
√
√

1

G− 1

G∑

g=1

(W (g) −W )2.

Step 1 of this scheme would evaluate the estimator T on all the sets of pseudo-data
U

(g)
1 , U

(g)
2 , . . . , U

(g)
n for g = 1, . . . , G. Each set of simulated values U

(g)
1 , U

(g)
2 , . . . , U

(g)
n

may also be called a sample of pseudo-data. The squared value SEsim(T )2 is simply
the sample variance of the W (g) random variables, and for large G it would become
close to the variance V (T ) (because, in general, the sample variance converges to the
theoretical variance, in probability, as in Section 7.3.4). Thus, for large G we would
get SEsim(T ) ≈ SE(T ).

The only problem with the scheme as we have described it so far is that, in
practice, we don’t know the distribution FX , so we don’t know how to generate the
pseudo-data. This situation is similar to the one we found in Section 7.3.4 where we
could not compute SE(X̄) = σX/

√
n because we did not know σX . There, we solved

the problem by substituting s for σX , which is often called a plug-in estimate, and
this worked because the plug-in estimate is consistent, i.e.,

S
P→ σX (9.16)

which is the same as (7.19). The idea of the bootstrap is analogous: we replace FX

by an estimate of it and then apply the algorithm above. If we have a parametric
model and we use ML estimation to estimate the parameters, we can use the model
with the fitted parameters to generate the pseudo-data U

(g)
1 , . . . , U

(g)
n . This scheme

is called the parametric bootstrap. Otherwise, we replace FX by the empirical cdf
F̂n and draw the pseudo-data U

(g)
1 , . . . , U

(g)
n from F̂n. This is the nonparametric

bootstrap. Both methods extend to cases in which we replace scalar estimates (e.g.,
β̂1) by vectors of estimated quantities (e.g., (β̂0, β̂1)).

The parametric bootstrap and nonparametric bootstrap both begin, conceptually,
by estimating the data distribution FX . The parametric bootstrap uses a specific
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assumption, such as normality of the data. The nonparametric bootstrap does not
require any specific data distributional assumption, and this is the sense in which it is
“nonparametric.” The nonparametric bootstrap is also usually easier to implement.
Its disadvantage is that it requires i.i.d. random variables to represent the variation
in the data. There are many cases where the data are not modeled as i.i.d., such as
in regression, time series, and point processes. Sometimes a clever transformation
makes the nonparametric bootstrap applicable (see Davison and Hinkely, 1997, for
examples), but in other cases the parametric bootstrap is either the only available
approach or at least a more straightforward methodology to apply. Both forms of
bootstrap use propagation of uncertainty.

9.2.2 The parametric bootstrap draws pseudo-data from an
estimated parametric distribution.

Suppose we assume that a set of data x1, x2, . . . , xn is a random sample from a dis-
tribution with pdf f(xi|θ), and we estimate θ with the MLE θ̂. If assume for the mo-
ment that the parameter θ is a scalar then, according to the scheme in Section 9.2.1,
we may obtain the standard error of θ̂ as SEsim(θ̂) by generating pseudo-samples

U
(g)
1 , U

(g)
2 , . . . , U

(g)
n from the distribution with pdf f(xi|θ). Because we do not know

the value of θ we plug in the MLE θ̂ and instead generate pseudo-samples from the
distribution with pdf f(xi|θ̂). This is a parametric bootstrap, and the resulting value
of SEsim(θ̂) is a parametric bootstrap standard error.

Algorithm: Parametric bootstrap estimate of standard error To obtain
the standard error SE(θ̂) we proceed as follows:

1. For g = 1 to G

Generate a random sample U
(g)
1 , U

(g)
2 , . . . , U

(g)
n from the distribution having pdf

f(xi|θ̂).
Find the MLE θ̂(g) based on U

(g)
1 , U

(g)
2 , . . . , U

(g)
n and set W (g) = θ̂(g).

2. Compute W = 1
G

∑G
i=1W

(g) and then

SE(θ̂) =

√
√
√
√

1

G− 1

G∑

g=1

(W (g) −W )2.
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2

Why does the parametric bootstrap work? As in (9.16), the plug-in estimator θ̂
satisfies

θ̂
P→ θ (9.17)

which is part of the statement in (8.32). Let us write the cdf corresponding to f(xi|θ)
in the form FX(x|θ). From (9.17) it follows that

FX(x|θ̂) P→ FX(x|θ) (9.18)

for all x (we omit details), which is a formal way of saying that the distribution
of pseudo-data based on the distribution having pdf f(xi|θ̂) will be close to the
distribution of the data (which has pdf f(xi|θ)). Thus, simulating pseudo-data is
very much like simulating new data from the same distribution as the original data.

When θ is a vector, the same method may be used to estimate the value f(θ) of
any real-valued function f(x). We modify the procedure as follows.

Algorithm: Parametric bootstrap when estimating f(θ) Suppose we want
to find the standard error of f(θ̂) and get an approximate 95% CI for f(θ). We
proceed as follows:

1. For g = 1 to G

Generate a random sample U
(g)
1 , U

(g)
2 , . . . , U

(g)
n from the distribution having pdf

f(xi|θ̂).
Find the MLE θ̂(g) based on U

(g)
1 , U

(g)
2 , . . . , U

(g)
n and set W (g) = f(θ̂(g)).

2. Compute W = 1
G

∑G
i=1W

(g) and then

SE(f(θ̂)) =

√
√
√
√

1

G− 1

G∑

g=1

(W (g) −W )2. (9.19)

In addition, an approximate 95% CI for f(θ) is given by

approx. 95% CI = (w.025, w.975) (9.20)

where w.025 and w.975 are the sample quantiles defined from the ordered W (g) values
as in (9.15).
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If we have several functions f1(θ), f2(θ), . . . , fk(θ) we may obtain approximate
95% CIs for each using (9.20) and we can get an approximate variance matrix

V̂ = V̂ (f1(θ̂), f2(θ̂), . . . , fk(θ̂)),

by following step 1, above, for each of f1(θ), f2(θ), . . . , fk(θ) to get

W
(g)
j = fj(θ̂

(g))

for j = 1, . . . , k, and then setting V̂ equal to the sample variance matrix (see

page 108) of the k-dimensional vectors W (g) = (W
(g)
1 , . . . ,W

(g)
k ). 2

Example 8.2 (continued from page 226) In discussing the way previous
seizures affect the relationship between spike width and preceding inter-spike interval
length we displayed results based on change-point models. The statistical model
assumed that, on average, Y decreases quadratically with x for x < τ but remains
constant for x ≥ τ , with τ being the change point. In Figure 8.7 we displayed fitted
change-points together with standard errors, which led to the conclusion that the
seizure group reset to baseline average spike widths earlier than the control group.
We said that the standard errors shown in Figure 8.7 were based on a parametric
bootstrap. The specifics of computing the bootstrap standard errors followed the
steps given above: based on the fitted τ̂ , together with the fitted parameters for the
quadratic relationship when x < τ and the constant relationship when x ≥ τ (see
page 461), pseudo-data samples were generated and for the gth such sample a value
τ̂ (g) was calculated following the same procedure that had been used with the real
data; then formula (9.19) was applied. 2

9.2.3 The nonparametric bootstrap draws pseudo-data from
the empirical cdf.

In Section 9.2.2 we showed how the parametric bootstrap is used to get standard
errors and confidence intervals. The key theoretical point was captured by Equation
(9.18), which says that, for large samples, the distribution of the pseudo-data based
on the MLE plug-in estimate will be close to the distribution of the data. The idea of
the nonparametric bootstrap is to generate pseudo-data, instead, from the empirical
cdf F̂n(x), defined on page 79. The theoretical justification for this is given by the
theorem on page 168, which says that for i.i.d. random variables

F̂n(x)
P→ FX(x). (9.21)
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This has a form very similar to (9.18). (See also footnote 2 on page 169.) In words,
for large samples, the distribution of pseudo-data generated from the empirical cdf
will be close to the distribution of the data. The advantage of this nonparametric
formulation is the reduction of assumptions: we do not have to rely on a specific
parametric model, but rather can assume only that we are dealing with an i.i.d.
sample.

How do we generate observations from the empirical cdf F̂n? This turns out to
be very easy. According to its definition (on page 79), the empirical cdf assigns
probability 1

n
to each observation in the sample x1, x2, . . . , xn. This means that in

order to draw a single observation from the distribution F̂n, we randomly select one
of the values x1, x2, . . . , xn, with each value having probability 1

n
. In order to draw

a set of pseudo-data, we simply repeat this process n times. In doing so it is very
likely to get repeats: we are sampling the values x1, x2, . . . , xn each time; this is
called sampling with replacement; we “replace” each value after sampling it, before
drawing again from all the values x1, x2, . . . , xn. Using standard statistical software
it is easy to draw samples with replacement from a set of data.

Because we are sampling the sample of data, the process is often called resampling.
Bootstrap resampling is beautifully simple. We define the algorithm in terms of any
consistent estimator T of an unknown quantity φ. Here, φ could be defined in terms
of a parameter vector φ = f(θ) or it could be defined from the data distribution
FX without reference to any parameter vector (e.g., φ could be the median of the
distribution FX). The algorithm is as follows:

Algorithm: Nonparametric bootstrap for an estimator T of φ To get a
nonparametric bootstrap approximate 95% CI for φ from a sample x1, . . . , xn based
on T = h(X1, . . . , Xn), and to get the nonparametric bootstrap SE(T ), we proceed
as follows:

1. For g = 1 to G

Generate a sample U
(g)
1 , U

(g)
2 , . . . , U

(g)
n by resampling, with replacement, the

observations x1, . . . , xn

Compute T (g) = h(U
(g)
1 , U

(g)
2 , . . . , U

(g)
n )

2. Set O(1), O(2), . . . , O(G) equal to the ordered values of T (1), T (2), . . . , T (G), so
that O(1) is the smallest T (g), O(2) is the second smallest, etc., with O(G) being
the largest.
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If .025G is an integer, set r.025 = .025G and if .025G is not an integer set r.025

equal to the smallest integer larger than .025G.

If .975G is an integer, set r.975 = .975G + 1 and if .975G is not an integer set
r.975 equal to the smallest integer larger than .025G.

Define

t.025 = O(r.025)

t.975 = O(r.975). (9.22)

The approximate 95% CI for φ is (t.025, t.975).

3. Compute T̄ = 1
G

∑G
i=1 T

(g) and then

SE(T ) =

√
√
√
√

1

G− 1

G∑

g=1

(T (g) − T̄ )2.

2

This extends immediately to the case in which each Xi, and thus each U
(g)
i , is a

random vector; the algorithm above is unchanged.

In practice, the parametric and nonparametric bootstraps often produce very
similar confidence intervals and standard error assessments, so that the choice be-
tween them may depend on convenience. There are important examples (e.g., in
time series) where the data do not form an i.i.d. sample and it can be difficult or
impossible to use the nonparametric bootstrap, but in many situations it is easy to
take advantage of theoretically identical replications, and resample the data.

Illustration: Difference index for firing rates (continued) In the SEF
example introduced in Chapter 1 there were two experimental conditions, and the
problem was to compare the firing rates of a neuron under each of these conditions
based on a limited number of trials. In a particular time interval we found mean firing
rates of 48 spikes per second for the spatial condition versus 70 spikes per second for
the pattern condition. As we have noted previously, because studies involve many
neurons with varying firing rates, it is common to examine the difference index

Y =
X̄A − X̄B

X̄A + X̄B

.
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In Section 9.1.2 we discussed generation of a standard error for T using propagation
of uncertainty based on the asymptotic normality of X̄A and X̄B. An alternative
would be to apply the nonparametric bootstrap procedure given above. These would
give very similar results, but let us make sure it is clear how the bootstrap would
be applied. For each g in step 1 we would first draw a random samples of size 15
from the 15 firing rates under the spatial condition and another random sample of
size 15 from the 15 firing rates under the pattern condition; we would compute the
two sample means to get X̄

(g)
A and X̄

(g)
B ; then we would apply the difference index

formula to get

Y (g) =
X̄

(g)
A − X̄

(g)
B

X̄
(g)
A + X̄

(g)
B

.

Having obtained Y (1), Y (2), . . . , Y (G) (where we would take something like G = 1000),
we would go to step 2 and, to find an approximate 95% CI, we would order the values
Y (1), Y (2), . . . , Y (G) and compute the resulting 2.5 and 97.5 percentiles. In Step 3 we
would compute the mean and apply the formula for the standard error. 2

Example 1.1 (continued from page 218) As we said in Section 8.1, one of
the questions asked by Olson et al. was whether SEF neurons tend to reach their
maximal firing rate later under one of the experimental conditions (the “pattern”
condition) than under the other (the “spatial” condition). To answer this, each
neuron’s PSTH, under each condition, was smoothed as in Figure 8.3 (with methods
described in Chapter 15), and then the time tmax at which the maximum occurred
was computed. This was regarded as an estimator of the time τ of maximal firing
rate. Olson et al. applied bootstrap methods. To get a bootstrap confidence interval
for τ the nonparametric bootstrap algorithm above can be applied: we set φ = τ
and in step 1, for each g, the individual trials (each of which provides a spike train,
as in Figure 8.3) would be resampled, then the resulting pseudo-data would be used

to get a PSTH, this PSTH would be smoothed, and a value T (g) = t
(g)
max would be

computed; then step 2 would be carried out. 2

The point to be taken from these examples is that the nonparametric bootstrap,
like the parametric bootstrap, can produce confidence intervals relatively easily, even
for complicated estimation procedures: in step 1 of the algorithm we simply re-run
the estimation procedure from start to finish using each set of pseudo-data rather
than the original data. Step 2 is then accomplished with just a few software com-
mands. When the data may be considered i.i.d. samples the nonparametric bootstrap
is typically even easier than the parametric bootstrap because resampling the data
may be accomplished with a single software command.
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The nonparametric bootstrap has been studied extensively, and has been shown to
work well in a variety of theoretical and empirical senses. For more information about
the bootstrap, see Efron and Tibshirani (1993) and Davison and Hinkley (1997).
(Efron, B. and Tibshirani, R. (1993) An Introduction to the Bootstrap, Chapman
and Hall. Davison, A.C. and Hinkley, D.V. (1997) Bootstrap Methods and Their
Applications, Cambridge.)

An important caveat is that arbitrary shuffles of the data do not necessarily
produce bootstrap samples. The key assumption is independent and identically dis-
tributed sampling of X1, . . . , Xn, so that the key result (9.21) applies. Many problems
may be put in this form, but the nonparametric bootstrap only applies once they
are.

9.3 Discussion of Alternative Methods

At the beginning of this chapter we considered the data on perception of dim light
to illustrate propagation of uncertainty according to the diagram in (9.2). We went
to discuss analytical propagation of uncertainty, simulation-based propagation of
uncertainty, and then both the parametric and non-parametric bootstrap methods
of obtaining uncertainty about the target estimand, in this case x50, the intensity at
which a flash of light is perceived 50% of the time.

The choice among these methods is largely a matter of convenience. It is often
easy to obtain the variance matrix of the parameter MLEs and then simulation-based
propagation of uncertainty is easy to implement (as in the code on page 272). Some-
times it is also easy to get the derivatives analytically, and the analytical approach
becomes an option. The percentile method of getting confidence intervals from sim-
ulation becomes more accurate than that based on ±2SE when the nonlinearity in
the target estimand as a function of the parameters is pronounced (relative to the
uncertainty in the parameters, as explained in Section 9.1.1). With i.i.d. data the
nonparametric bootstrap is very easy to apply, and is often the preferred method.
But many examples involve non-i.i.d. data. In regression or time series contexts, for
instance, nonparametric bootstrap methods require modification and may be diffi-
cult or impossible to apply (this is the case for some point process models of neural
spike train data). In such settings the parametric bootstrap is often used.
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These methods can produce valid 95% confidence intervals, which cover the esti-
mand 95% of the time, when the statistical model is correct and the sample size is
sufficiently large. The statistical model used with the nonparametric bootstrap, in
the form we have presented, assumes i.i.d. sampling but is otherwise very general.
All of the methods aim to provide an appropriate spread of the confidence interval
about the estimate, which is what leads to the correct coverage probability. The bias
in the estimator is ignored because, for sufficiently large samples, it becomes vanish-
ingly small. Furthermore, as we noted in Chapter 8, the bias squared often becomes
vanishingly small faster than the variance becomes vanishingly small, so that the
MSE is dominated by the variance. In practice, however, it is worth remembering
that nontrivial bias in the estimator can greatly diminish the coverage probability
of a putatively 95% confidence interval. If a statistical model is grossly incorrect
because, for example, some important expanatory factor has not been considered,
then these procedures will not perform well.
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Chapter 10

Models, Hypotheses, and
Statistical Significance

c©2010 SPRINGER SCIENCE+BUSINESS MEDIA, LLC. All rights reserved. No
part of this work may be reproduced in any form without the written permission of
SPRINGER SCIENCE+BUSINESS MEDIA, LLC.

The notion of hypothesis is fundamental to science. Typically it refers to an
idea that might plausibly be true, and that is to be examined or “tested” with
some experimental data. Sometimes, the expectation is that the data will conform
to the hypothesis. In other situations, the hypothesis is introduced with the goal
of refuting it. In either case, however, variation and experimental noise prevent a
perfect determination of the veracity of the hypothesis. In reality, the hypothesis
will at best predict only approximately the results of an experiment. But then, one
might ask, in order to be judged favorably, how close to the data should a theoretical
prediction be? Development of a systematic method of answering this question, the
chi-squared goodness-of-fit test, was one of the great advances in the early part of
the 20th century.

We describe chi-squared tests in Section 10.1. The idea is to use a statistical
model to represent the theoretical predictions of the hypothesis. In this setting the
model embodies the hypothesis, and we usually speak of assessing the fit of the
model, as opposed to the accuracy of the hypothesis. The statistical model assigns
probabilities to possible data outcomes, and if the experimental data turn out to be

285
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very rare—according to the model—then the model is deemed a poor fit. Because
the chi-squared procedure analyzes the discrepancy between model prediction and
data outcome, it might better be called, as John Tukey suggested, a “badness-of-fit”
test. On the other hand, it is often applied as a way of checking that a model fits
reasonably well—the expectation, or hope, being that it does.

When, instead, there is great interest in the possibility that the hypothesis may
be wrong, we usually label it a null hypothesis, and if the data provide sufficient
evidence against the null hypotheses we speak of rejecting it. Ronald Fisher intro-
duced the general concept of p-value, with p standing for probability, to quantify the
rarity of the data outcome under a null hypothesis. The notion is that when p is
small, the data outcome is rare under the hypothesis, and thus casts doubt on the
hypothesis. Fisher worked out specific procedures for obtaining p-values in many
important problems, and his methodology became standard practice. We introduce
p-values in the context of chi-squared tests, in Section 10.1.3, and we discuss the
general framework and methodology in Section 10.3.

The null hypothesis and p-value are only part of the standard approach to testing
hypotheses. An additional idea is to introduce a specific alternative hypothesis, which
has the potential to replace the null. In the 1930s Jerzy Neyman and Egon Pearson
provided a theoretical framework that explicitly included an alternative hypothesis.
Specifically, Neyman and Pearson defined type one error (usually written Type I) as
the probability of incorrectly rejecting the null hypothesis and type two error (Type
II) as the probability of incorrectly rejecting the alternative hypothesis. The theory
considers both kinds of errors, and analyzes statistical hypothesis tests according to
the probabilities of making these errors. We go over the fundamental elements of
the Neyman-Pearson framework in Section 10.4, and we also discuss several different
points of view about the statistical assessment of hypotheses.

It is somewhat unconventional to present goodness-of-fit tests before other hy-
pothesis tests. Our preference for this ordering1 is due to the smaller number of
concepts and issues that arise in goodness-of-fit testing: from a pedagogical point of
view, in this context it is easier to concentrate on the logic of p-values. We discuss
other kinds of null hypotheses in Section 10.2.

1This order of presentation is the one followed by Fisher in his immensely influential Statistical

Methods for Research Workers, but it seems to have been abandoned later in the 20th century as
the Neyman-Pearson approach became dominant.
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10.1 Chi-Squared Statistics

We have described several studies where a theoretical model seemed to fit the data
well and was then used for scientific inference. For instance, the Hardy-Weinberg bi-
nomial model fit the nicotinic acetycholine receptor and ADHD data in Example 5.1,
the Poisson distribution was used to fit quantal response in synaptic transmission
data in Example 5.6, the normal distribution fit the background noise in MEG in Ex-
ample 1.2, and the exponential and gamma distributions were used to fit ion channel
opening duration data in Example 3.5. Previously we judged fit simply by looking
at tables and graphs, informally. The chi-squared procedure provides a probabilistic
quantification of the observed discrepancy between theoretical prediction and data.

The essence of goodness-of-fit assessement is as follows:

(i) We define a statistical model that assigns probabilities to potentially-observed
outcomes;

(ii) we compute the discrepancy between the data values and the values obtained
from the fitted model; and

(iii) assuming the data were generated by the hypothetical model, we determine
whether the observed discrepancy would be considered rare; if observing such
a large discrepancy constitutes a sufficiently rare event, then we consider this
to be evidence that the model does not hold.

The discrepancy between observed data and fit is evaluated using a statistic, here
a chi-squared statistic, and its rarity is judged by comparing the observed value to
a suitable probability distribution, here a chi-squared distribution, according to the
p-value. The chi-squared statistic is used when each observation may be considered
to arise as one of several possible categories.

10.1.1 The chi-squared statistic compares model-fitted val-
ues to observed values.

To assess the fit of a theoretical model to a set of data we begin with the obvious idea
of examining the discrepancy between the model predictions and the data values.
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Example 5.1 (continued, see page 126) In Chapter 5, on page 126, we
displayed data from a study of genotype frequencies for the nicotinic acetylcholine
receptor subunit α4 gene among children with ADHD and their parents. The table
of frequencies (for a T → C exchange in one base in the gene sequence) among the
136 parents in the Kent et al. study is given again below:

TT CT CC
Number 48 71 17
Frequency .35 .52 .13
Hardy-Weinberg Probability .38 .47 .15
Hardy-Weinberg Expected Number 51.7 63.9 20.4

We noted previously that the frequencies and Hardy-Weinberg probabilites are quite
close. We have now added a fourth line in the table to indicate the predicted or
“expected” number of each genotype. To judge the fit of the model we evaluate the
discrepancy between the values in the first and last lines of this table. 2

In Example 5.1 there are many possible ways to measure the discrepancy between
the vector of observed values (48, 71, 17) and the vector of theoretically-expected
values (51.7, 63.9, 20.4). The most common assessment is based on the chi-squared
statistic. Let us denote observed values by O and theoretically-expected values by
E, so that the first pair of O and E values are 48 and 51.7, the second pair are 71
and 63.9, and the third pair are 17 and 20.4. The chi-squared statistic is

χ2
obs =

∑ (O − E)2

E
(10.1)

where the sum is over all pairs of values, in this case the three pairs, and we have
used the subscript on χ2

obs to indicate that it is calculated from the observed data. A
large χ2

obs indicates a failure of the model to fit the data. But how do we know when
χ2

obs should be considered large? The O values surely will, by chance fluctuation,
deviate from the theoretical E values. The key is that when the theoretical model is
valid the magnitude of this chance fluctuation becomes predictable.

To motivate χ2
obs let us note that each O value is a count, counts are usually

modeled as Poisson random variables, and for a Poisson random variable Y we have
V (Y ) = E(Y ). A reasonable way to combine the counts is to standardize each O
value by subtracting the corresponding expected value, which we here take to be
E, and dividing by the standard deviation which, if the observed value were Poisson
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would be the square root of the expectation, here
√
E. Each contribution (O−E)2/E

may thus be considered the square of a standardized variable. It turns out that, for
large samples, these standardized variables approximately follow a standard normal
distribution. Recalling that the chi-squared distribution arises as a sum of squares
of standard normal variables it then becomes at least plausible that a chi-squared
distribution might be used to judge the magnitude of the chi-squared statistic. This
argument may be made rigorous. We comment further on theoretical aspects of the
method in Section 11.1.4.

To obtain the p-value for the chi-squared procedure we consider a random vari-
able X having a χ2

ν distribution and evaluate p = P (X > χ2
obs). This provides an

approximate p-value (approximate because the chi-squared statistic approximately
follows a chi-squared distribution, for large samples). We discuss the selection of
ν in Section 10.1.2. If p is sufficiently small we consider the observed value to be
rare. Typically, p < .05 is taken as modest evidence and p < .01 is taken as strong
evidence that the model doesn’t fit.

Example 5.1 (continued from page 288) For the ADHD data we get

χ2
obs =

(48− 51.7)2

51.7
+

(71− 63.9)2

63.9
+

(17− 20.4)2

20.4
= 1.62.

We compare this to a χ2
1 distribution by takingX to be a random variable having a χ2

1

distribution and then computing P (X > 1.62). We find P (X > 1.62) = .20, so that
an approximate p-value is p = .20. This indicates a good fit of the Hardy-Weinberg
model to these data. 2

10.1.2 For multinomial data, the chi-squared statistic fol-
lows, approximately, a χ2 distribution.

In Example 1.4 we introduced a binary random variable to analyze the variation
across outcomes where each outcome was one of two possibilities, “burning house”
or “non-burning house.” In Example 5.1, we have a similar situation, except instead
of two possible outcomes we have three: each of the 136 subjects contributed a
genotype that was classified as TT , TC, or CC. As discussed on page 141, this
leads to the assumption of a multinomial distribution across the 3 categories of
data, which is the fundamental assumption for the application of the chi-squared
test on page 289. More generally, the theoretical starting point of every chi-squared
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test is the idea that the given set of counts may be considered an observation of a
multinomial random vector. Here is a particularly straightforward example where
the genetic model completely specifies the set of multinomial probabilities, leaving
no free parameters.

Example 10.1 Allele frequencies in fruit flies Some basic genetic investiga-
tions have involved the “vestigial” (vg) and “ebony” (e) strains of fruit flies. The
vestigial flies have small wings so that the animal can not fly, while the ebony flies
are very dark in color. Kempthorne (1957, p. 155) cites an investigation involving
cross breeding of vg with e flies (Kempthorne, O. (1957) An Introduction to Genetic
Statistics, Wiley.) According to Mendelian equilibrium theory, the four possible
results (denoted +,vg,e,vge) should be in the proportions 9:3:3:1. The four respec-
tive frequencies among 465 flies were 268, 94, 79, 24. The theoretical proportions
are (.563,.188,.188,.0625) while the observed proportions were (.576,.202,.170,.0516).
For instance, .576=268/465. In this case, we model the vector of numbers of pheno-
types among 465 flies as a M(n, p1, p2, p3, p4) distribution, where n = 465 and p1 is
the probability that a given fly would be of type +, p2 the probability the fly would
be of type vg, etc. We would assume that the phenotypes are independent of each
other across flies (so that knowing one fly’s phenotype does not change another fly’s
phenotype probability distribution), and each has the same set of four probabilities.
Thus, under the model, the vector (268, 94, 79, 24) is treated as if it were an observed
value of the multinomial random vector. 2

In applications of chi-squared methodology each O is a count associated with a
particular data category. In Example 5.1, for instance, the categories were TT, CT, CC.
The number of categories is important in determining the degrees of freedom ν. The
value to use for ν depends on the problem. If we take the number of categories to be
k and the number of estimated parameters to be m then ν is found from the formula

ν = k − 1−m (10.2)

The degrees of freedom, often abbreviated d.f., may be considered the number of free
parameters. The idea and terminology of degrees of freedom come from mechanics:
we count the number of dimensions in which the random variable is “free to move,”
often beginning with some apparent maximal number of dimensions and subtracting
off constraints. The examples below should help clear this up, and there are general
formulas for each type of problem. In Equation (10.2) we begin with a multinomial
distribution that has k categories with probabilities p1, . . . , pk. Because these sum
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to 1, there are only k − 1 free parameters. Then, after estimating m parameters for
the null hypothetical model we are left with ν = k − 1−m free parameters.

Example 10.1 (continued from page 290) eturning to the allele frequencies
example, the “observed values” O are 268, 94, 79, 24. The “expected values” E
values must be calculated. If the ratios were 9:3:3:1, the corresponding proportions
would be 9/16, 3/16, 3/16, 1/16. With 465 flies, we would therefore expect to see
9
16
· 465 = 261.6, 3

16
· 465 = 87.2, 3

16
· 465 = 87.2, 1

16
· 465 = 29.1. The O and E values

are compared and summarized by the chi-squared statistic using (1):

χ2
obs =

(268− 261.6)2

261.6
+ · · ·+ (24− 29.1)2

29.1
= 2.34.

Here there are 4 categories, so 3 degrees of freedom. 2

Just as the binomial may be approximated by a normal distribution for large n,
so too may the multinomial be approximated by a multivariate normal for large n.
This leads to the general result that the chi-squared statistic follows, approximately,
a chi-squared distribution.

Result Suppose X ∼ M(n, p1, p2, . . . , pk) and we have a sta-
tistical model p1 = p1(θ), p2 = p2(θ), . . . pk = pk(θ) based on an
m-dimensionl parameter vector θ. Let θ̂ be the MLE and let Yn

be a random variable representing χ2
obs according to (10.1), i.e.,

Yn =
k∑

i=1

(

Xi − npi(θ̂)
)2

npi(θ̂)
. (10.3)

Then, assuming suitable regularity conditions on the statistical
model, as n→∞ we have

Yn
D→ χ2

ν (10.4)

where ν = k − 1−m.

A detail: The “suitable regularity conditions” on the model are that the
mapping θ → (p1(θ), p2(θ), . . . , pk(θ)) must be one-to-one and differen-
tiable with the derivative matrix having rank m. 2
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In practice, the most important input to this theoretical result, which leads to
the calculation of the p-value, is the assumption that the data may be represented
by a multinomial random vector. As in the binomial case, the multinomial assump-
tion will make sense when it is reasonable to assume the classification variables are
independent across observations (across subjects in Example 5.1). Thus, as before,
it is the judgment of independence that must be considered most carefully.

10.1.3 The rarity of a large chi-squared is judged by its p-

value.

The conventional cut-offs for the p-value are .05 and .01, with p < .05 and p < .01
reflecting modest and strong evidence. These two particular numbers were handed
down from Fisher and are now imbedded in standard practice, but they are somewhat
arbitrary and should be considered rough guides rather than finely tuned criteria.2

Articles in the literature often include statements in the form p < .05, with the result
typically being called statistically significant, or p < .01, which may be labeled highly
significant. However, it is not unusual to obtain a very small p-value (e.g., 10−4),
which is quite different than .01. Rather than saying p < .01, it is preferable to
report the p-value, and it is also good practice to say what statistic was computed,
e.g., in Example 5.1 on page 289, one would report p = .20 for chi-squared on 1
degree of freedom.

Example 10.1 (continued from page 291) e use the computer to find p =
P (X > 2.34) = 1 − P (X ≤ 2.43) where X has a χ2

3 distribution. We obtain
P (X ≤ 2.43) = 0.4951 and therefore p = .50. This p-value is large, much larger than
the conventional values .05 and .01. Thus, data that deviate from expected values as
much as these would not be rare and we conclude there is a good fit of the theoretical
model to these data. 2

Example 5.4 (continued from page 131) n the radioactive disintegration
example, the statistical model is that the data are a sample from a P (λ) distribution.
Here, we have θ = λ so that pi(θ) = pi(λ). The O and E values are given in
Table 10.1. The E values are obtained as Ei = npi(λ̂) where pi(λ) = P (X = i) =
e−λλi/i! and we then substitute λ = λ̂ = x̄. Thus, after computing λ̂ = x̄ = 3.87 we

2Our characterization of p < .05 as “modest evidence” is consistent with Fisher’s view. In
particular, he felt p = .05 was inconclusive. See the footnote on page 340.
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Table 1
k Observed Counts Poisson Fitted Counts
0 57 54.399
1 203 210.523
2 383 407.361
3 525 525.496
4 532 508.418
5 408 393.515
6 273 253.817
7 139 140.325
8 45 67.882
9 27 29.189

≥ 10 16 17.075

Table 10.1: Fit of Poisson distribution to the counts of α-particle emissions from a
specimen during 2608 intervals. The frequency of counts 0, 1, 2, . . . , 9,≥ 10 appear
beside those were based on the Poisson distribution.

obtain the values p̂i(θ̂) = e−λ̂λ̂i/i!, which appear in the theoretical statement (10.3)
and the values Ei = npi(λ̂), which appear without the subscript i in (10.1). For
example, the expected number of times we would observe one particle emitted is 2608
times the probability of getting one particle emitted, i.e., 2608·e−3.87(3.87) = 210.523.

Calculation of (10.1) gives χ2
obs = 12.9 and here there are ν = 11 − 1 − 1 = 9

degrees of freedom: we start with 11 − 1 = 10 degrees of freedom, because there
are 11 categories, but we lose one degree of freedom from estimating λ. From the
chi-squared cdf we find that when X ∼ χ2

10, P (X > 12.9) = .17. Thus, p = .17
and there is no evidence of departure from the Poisson distribution despite the large
sample size, which would have given an opportunity to detect even a small departure.
2

A detail: A technical point arises in the Example 5.4, above, from the
observation that the number of categories here is actually somewhat ar-
bitrary: we chose to use 11 categories, but could have chosen a different
number. As a result, the large-sample distribution is not the claimed chi-
squared, but a slightly different approximation (a pair of bounds) may
be used for the p-value. In this case, the p-value would be somewhere be-
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tween those obtained for 9 and 10 degrees of freedom. This would make
the p-value a bit bigger than our reported p = .17. Many texts emphasize
this technicality but, for models such as these, with a single parameter,
it has little effect on the conclusions. 2

10.1.4 Chi-squared may be used to test independence of two

traits

Many studies seek to evaluate the association of two traits. In genetic epidemiology,
for instance, it is useful to know whether a particular genotype may be associated
with a disease. When the occurrence of each trait is considered a random variable,
the traits will fail to be associated if the two random variables are independent.
Thus, the issue becomes one of evaluating the fit of a statistical model based on
independence.

Example 10.2 Alzheimer’s and APOE As part of a study of markers for late-
onset Alzheimer’s disease, Yu et al. (2007) (Yu, C.E., Seltman, H., Peskind, E.R.,
Galloway, N., Zhou, P.X., Rosenthal, E., Wijsman, E.M., Tsuang, D.W., Devlin, B.,
and Schellenberg, G.D. (2007) Comprehensive analysis of APOE and selected prox-
imate markers for late-onset Alzheimer’s disease: Pattern of linkage disequilibrium
and disease/marker assocation, Genomics, 89: 655–665.) looked for the presence
of the ε4 allele of the apolipoprotein E gene (APOE), which had previously been
associated with increased risk of Alzheimer’s, among both Alzheimer’s patients and
controls. The following table summarizes some of the data they presented from 193
Alzheimer’s patients (AD) and 232 controls:

ε4 absent ε4 present
AD 58 135
controls 162 70

At first glance it appears that the ε4 allele is far more prevalent among the Alzheimer’s
patients than among the controls—and that this is probably not due to chance. This
may be verified using a χ2 test. 2

Example 10.2 involves what is called a two-by-two table (written 2×2). In general,
the probabilities for a 2× 2 table may be represented as follows:
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1 absent 1 present
2 absent p11 p12 p1+

2 present p21 p22 p2+

p+1 p+2

Here the subscript ij corresponds to the (i, j) element in the table, meaning that
pij is the probability in row i and column j. For example, p22 is the probability
that a random individual has both trait 1 and trait 2 (e.g., in Example 10.2 both ε4

and AD). The probabilities along the margins of the table come from summing the
probabilities along rows or columns. For example, p+2 = p12 + p22 is the probability
that the individual has trait 1 (e.g., ε4) and p2+ = p21+p22 is the probability that the
individual has trait 2 (e.g., AD). Now, if independence holds, then the probability
of having both trait 1 and trait 2 must equal the probability of having trait 1 times
the probability of having trait 2, i.e., p22 = p2+p+2. Filling out the rest of the table
of probabilities the same way gives the independence model

pij = pi+p+j

for all i, j.

In order to apply χ2
obs we need to compute the expected values, each of which

is the number of individuals we would expect in a particular entry of the table. In
principle, the expected value for (i, j) entry in the table is E = n · pij = n · pi+p+j

for each of the four pij’s, but we don’t know the values of pi+ and p+j. Here we
resort to the standard “plug-in” method: we estimate these marginal probabilities
from the data. For instance, in the Alzheimer’s example there are a total of 425
individuals so we use p̂1+ = (58 + 135)/425, for the probability of having AD, etc.
(p̂2+ = (162 + 70)/425, p̂+1 = (58 + 162)/425, p̂+2 = (135 + 70)/425).

This estimation process causes the chi-squared distribution to lose degrees of
freedom, as in Example 5.4. In general, if there are r rows and c columns we begin
with rc− 1 degrees of freedom: there are rc probabilities in the table but they must
sum to 1, which means we lose 1 degree of freedom. We then lose another r−1 degrees
of freedom for estimating row marginal probabilities and c−1 for estimating column
marginal probabilities. This leaves rc−1−(r−1)−(c−1) = rc−r−c+1 = (r−1)(c−1)
degrees of freedom.

Example: 10.2 (continued from page 294) In this example r = 2 and c = 2
so there is 1 degree of freedom. Entering the data into an appropriate statistical
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software package produces χ2
obs = 65 on 1 degree of freedom, and p = 7 × 10−16,

which is truly tiny. Clearly there is an association here. 2

Software used to get chi-squared results, as in Example 10.2 above, typically
applies a variation of the chi-squared statistic that includes a “continuity correction.”
This adjusts the statistic slightly to make the continuous chi-squared distribution
match more closely the distribution of the discrete chi-squared statistic in small
samples. It is also possible to use so-called “exact” methods, which avoid the χ2

distribution altogether. While such methods are commonly applied, it is important
to keep in mind that we are usually looking for clear and compelling results, either
not significant or strongly significant, and borderline cases should be interpreted as
such. That is, when the continuity correction—or the distinction between exact and
approximate methods—is important to conclusions, this may signal a case in which
a careful investigator will recognize the ambiguity of the data.

Example 10.2 (continued, introduced on page 294) he Alzheimer’s and
APOE data may be examined further to see if there is a difference between men and
women. Here is the table for the AD patients:

ε4 absent ε4 present
women AD 32 70
men AD 26 65

The proportions appear to be about the same, and this time we get χ2 = .071 again
on 1 degree of freedom, and p = .79, so there is no evidence of any discrepancy in ε4

prevalence among the male and female AD patients. 2

One final subtlety should be noted. The logic we have described here assumes
that each subject in the study is drawn randomly from a population of potential sub-
jects. That could be a good rough description of what happened in the Alzheimer’s
study: the incidence of Alzheimer’s among relatively old subjects can be quite high.
However, often a set of diseased patients is selected and then a set of controls is
chosen separately. In epidemiology this is called a case-control study. It generates
a different statistical model, but it turns out to give the same χ2 test. (The cited
study did not say which way the subjects were collected.) We return to the issue of
data collection strategies and their effects on scientific inference in Section 13.4.
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10.2 Null Hypotheses

10.2.1 Statistical models are often considered null hypothe-

ses.

In talking about assessing fit we have used a “hypothesized model,” i.e., the model
being fit to the data. The standard terminology is to take such a model to be
the “null” model, or the null hypothesis, often written as H0. Sometimes the null
hypothesis completely specifies the probability distribution, as in Example 10.1. In
other cases it merely identifies a family of distributions, as in the α-particle emissions
example (where there is still a free parameter λ), and in the Alzheimer’s and APOE
example (where there remain two free parameters p1+ and p+1). The “null” here
indicates that such a hypothesis is often used with an eye toward collecting evidence
against the hypothesis, the implicit understanding being that H0 would eventually
be replaced with something that could describe such data better.

10.2.2 Null hypotheses sometimes specify a particular value

of a parameter within a statistical model.

Another possibility is that the null hypothesis specifies a particular value of a pa-
rameter within a family of distributions.

Example 1.4 (continued, see page 16) In the investigation of blindsight in
patient P.S., the possibility that P.S. was guessing corresponds to taking p = .5 in
the binomial model. We write this as X ∼ B(17, p) with H0: p = .5. One way
to test this is with χ2. We take the observed values to be 14 and 3 (for the two
categories “non-burning preferred” and “burning preferred”) and take the expected
values to be np0 and n(1− p0), with n = 17 and p0 = .5, which gives np0 = 8.5 and
n(1− p0) = 8.5. The chi-squared statistic is then

χ2
obs =

(14− 8.5)2

8.5
+

(3− 8.5)2

8.5
= 7.12.

Here we have 2 categories and 0 estimated parameters, so ν = 1. Comparing 7.12 to
a χ2

1 distribution gives a p-value of p = .0076, which3 is strong evidence against H0.

3In this example we use the notation p in two different ways: at first p stands for the probability
that P.S. would choose the non-burning house, and then later it stands for the p-value. These are
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2.

In Example 1.4 there is a simple null hypothesis and a chi-squared procedure to
test it. Because the sample size there is small, however, the continuity correction
mentioned on page 296 would change the p-value somewhat. We will obtain a more
accurate p-value for Example 1.4 on page 309.

10.2.3 Null hypotheses may also specify a constraint on two
or more parameters.

In the blindsight example we had a single binomial and tested H0 : p = .5. Now
suppose we have two binomials, X1 ∼ B(n1, p1) and X2 ∼ B(n2, p2) and we wish to
test H0 : p1 = p2. This is a special case of a widely-applied type of null hypothesis,
namely one that corresponds to a constraint on some parameters in a statistical
model. In the case of two binomials, H0 : p1 = p2 may be assessed by comparing χ2

obs

to a χ2
1 distribution: we begin with two free parameters p1 and p2 and lose a degree

of freedom due to the constraint. In fact, this special case of χ2
obs turns out to be

mathematically equivalent to the test of independence examined above.

Example 10.2 (continued, see page 294) n page 296 we noted that the way
the Alzheimer’s data were collected would affect the way the statistical problem
would be posed. If AD patients and controls were collected separately, then we
would examine whether the probability of having the ε4 genotype was the same in
each population, i.e, we would have two binomials and would test H0 : p1 = p2. To
repeat, this test may be carried out using χ2

obs, exactly as done previously, on page
295. 2

In a similar way, data from two independent samples X11, X12, . . . , X1n1 and
X21, X22, . . . , X2n2 may be used to test the hypothesis that the corresponding means
µ1 and µ2 are equal, H0 : µ1 = µ2. For example, in the case of the SEF neuronal
activity under two conditions discussed in Example 1.1 (page 3) there were 15 trials
in both experimental conditions, generating mean firing rates of 48 spikes per second
for the spatial condition and 70 spikes per second for the pattern condition across
the time interval from 200 to 600 milliseconds after the onset of the cue. The null
hypothesis H0 : µ1 = µ2 would say that the two mean firing rates are equal. The

both such common notations that we felt we couldn’t change either of them. We hope our double
use of p is not confusing.
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standard statistical procedure for testing this hypothesis is called a t test, because
it relies on the t distribution. We discuss this below. Example 7.2 provides another
example.

Example 7.2 (continued from page 196) For the test-enhanced learning study
we previously showed how to get a confidence interval for µ1 − µ2, where µ1 and µ2

were the mean scores within the SSSS and SSST conditions. As an alternative we
may test the null hypothesis H0 : µ1 = µ2, which says that the population mean
scores in the SSSS and SSST conditions are identical. 2

10.3 Testing Null Hypotheses

10.3.1 The hypothesis H0 : µ = µ0 for a normal random vari-

able is a paradigm case.

We have aleady noted that a null hypotheses may specify a particular value of a
parameter. To establish intuition based on a widely-used form of test statistic, let us
return to the prototypical situation we considered in Section 7.3.2, where we have a
sample X1, . . . , Xn from a N(µ, σ2) distribution with σ known. To test H0 : µ = µ0

we may form the ratio

Z =
X̄ − µ0

SE(X̄)
(10.5)

where

SE(X̄) = σ/
√
n

is the standard error of the mean, as in Equation (7.9). The data-based analogue,
computed from a sample x1, . . . , xn, is

zobs =
x̄− µ0

SE(x̄)
(10.6)

where x̄ is the sample mean computed from the data and SE(x̄) = σ/
√
n. (The SE

value is the same for the data-based mean and its theoretical counterpart because
the formula in this simple case does not depend on the actual values of the data.) If
the magnitude |zobs| is sufficiently large we would say there is evidence against H0.
To analyze this procedure we return to the theoretical statement (10.5). Because
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X̄ ∼ N(µ, σ2/n), under H0 : µ = µ0 we also have

Z ∼ N(0, 1). (10.7)

We therefore obtain a p-value from

p = P (|Z| ≥ |zobs|). (10.8)

Together, (10.6) and (10.8) define a z-test for normal data with σ known.

As in Section 7.3.2 we have presented the z-test first in this special case for
conceptual simplicity. In practice, the data are typically not normally distributed
and σ is not known. We may treat the more general setting by approximation,
analogously to what was done in Section 7.3.4. The procedure is to replace σ with
the sample standard deviation s in SE(x̄), as in Equation (7.17) and, having done
so, invoke (10.6) as above. For the purpose of formalizing the argument in theoretical
terms let us replace Z, in (10.5) with Y ,

Y =
X̄ − µ0

SE(X̄)
. (10.9)

We do this because when the observations are non-normal Y will also typically be
non-normal and we want to reserve the notation Z for the case Z ∼ N(0, 1).

Result If X1, . . . , Xn is a random sample from a distribution
having mean µ and standard deviation σ, and n is sufficiently
large, then a test of the null hypothesis H0 : µ = µ0 may be
carried out by applying (10.6) with SE(x̄) defined by (7.17)
and computing an approximate p-value using (10.8). That is,
under H0 : µ = µ0, for sufficiently large n we have

P (|Y | ≥ |zobs|) ≈ P (|Z| ≥ |zobs|) (10.10)

where Y is defined by (10.9) and Z ∼ N(0, 1), so that the p-value
based on (10.6), where SE(x̄) is defined by (7.17), together with
(10.8) is approximately correct.

This result is an immediate consequence of the theorem following (7.18).
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10.3.2 For large samples the hypothesis H0: θ = θ0 may be
tested using the ratio (θ̂ − θ0)/SE(θ̂).

The uncertainty associated with an estimate is quantified by the estimate’s standard
error, as defined in Equation (7.6) on page 187. In Example 1.4, concerning blindsight
in patient P.S., we reported on page 16 an approximate 95% confidence interval
(.64, 1.0) (based on calculations given on page 186) and we noted that this was
inconsistent with the probability of .5, which would correspond to guessing. But
if we are mainly interested in whether the data are consistent with guessing, we
could rephrase the problem using the observed discrepancy between 14

17
and .5. The

proportion θ̂ = 14
17

seems much too big to be consistent with guessing. So we may

ask this question: If P.S. were guessing, how unlikely would it be that θ̂ would be as
far from .5 as was 14

17
?

We will present several different procedures that provide slightly different numer-
ical answers to this question, all of which lead to the same conclusion. The one most
closely related to the approximate confidence interval in (7.8) assesses the discrep-
ancy between θ̂ and .5 in units of SE(θ̂). This relies on the approximate normality
of the MLE θ̂.

Result: Suppose X1, . . . , Xn has joint pdf f(x1, . . . , xn|θ), with θ a
scalar, and suppose further that Tn is an asymptotically normal estima-
tor of θ with standard error SE(Tn) = σ̂Tn . Then the null hypothesis
H0: θ = θ0 may be tested by using the statistic

zobs =
Tn − θ0
SE(Tn)

, (10.11)

with large values of |zobs| indicating evidence against H0. If the sample
size is large, an approximate p-value may be obtained from

p = P (|Z| ≥ |zobs|) (10.12)

where Z ∼ N(0, 1).

This result follows from the theorem in Section 7.3.5, which said that if σ̂Tn is
the standard error of Tn in the sense that

σ̂Tn

σTn

P→ 1
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then
(Tn − θ)
σ̂Tn

D→ N(0, 1).

If θ = θ0 then the random variable

Z =
Tn − θ0
SE(Tn)

follows, approximately, for large n, a N(0, 1) distribution and the p value based on
Z ∼ N(0, 1) will be approximately correct. Because Z is a common notation for a
N(0, 1) random variable, the value zobs in (10.11) is often called a z-score and the
procedure in (10.11) and (10.12) is a z-test.

Example 1.4 (continued from page 297) Suppose X ∼ B(n, θ) and we wish

to test H0 : θ = θ0. The usual formula for SE is SE(θ̂) =

√
θ̂(1−θ̂)

n
. It is customary

to find SE under the null hypothesis, θ0 = .5, i.e., we replace4 θ̂ with θ0 = .5 in
the calculation of SE. In the case of the data from P.S., we had n = 17 so we
get SE =

√

(.5)(.5)/17 = .121, and zobs = (.824 − .5)/.121 = 2.68. This gives us
a p-value of .0074, which is nearly the same as the value .0076 obtained from the
chi-squared analysis (see page 297). In fact, in this case, a little bit of manipulation
shows that we have the arithmetic identity z2

obs = χ2
obs, where zobs is defined in (10.11)

and χ2
obs is defined by (10.1) with (10.2). 2

The identity above provides a way of understanding the chi-squared procedure.
The definition of a χ2

1 distribution is that it results from squaring a N(0, 1) random
variable. When we replace the data with random variables we get the theoretical
counterpart of the observed value zobs,

Z =
θ̂ − θ0
SE(θ̂)

,

which has an approximate N(0, 1) distribution. Therefore, its square has an approx-
imate χ2

1 distribution, but its square is the theoretical counterpart of the observed
value z2

obs = χ2
obs. In other words, the theoretical chi-squared statistic follows, ap-

proximately, a chi-squared distribution.

4The logic of the procedure does not demand that we use θ0 in place of θ̂. The justification of the
large-sample significance test, the Theorem in Section 7.3.5 that says Z is approximately N(0, 1),
and is not refined enough to distinguish between the two alternative choices for SE(Tn) (both would
satisfy the theorem). However, because we are doing the calculation under the assumption that
θ = θ0, it makes some sense to use the value θ = θ0 in computing the standard error.
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When θ is a vector essentially the same result as in (10.11) and (10.12) holds
again for each component. That is, if θi is one component of θ and Tn,i is the corre-
sponding component of an asymptotically normal vector estimator Tn (which would
be asymptotically multivariate normal as in (8.41)), then we can test H0 : θi = θi,0

by replacing Tn by Tn,i and θi by θi,0 in (10.11) and again using (10.12). For example,
in simple linear regression we may have both an intercept and a slope, but we may
wish to test the null hypothesis that the slope is zero—which would correspond to
there being no linear relationship between the response and explanatory variables.
We return to this case in Chapter 12.

10.3.3 For small samples it is customary to test H0 : µ = µ0

using a t statistic.

In Section 7.3.10 we presented the usual t-based confidence interval for a mean µ of
a normal distribution. The point was that, for small samples of observations that
are truly normal, the normal distribution of the standardized sample mean should be
replaced by a t distribution (with degrees of freedom given by the degrees of freedom
used in the estimation of σ by s). In the case of testing H0 : µ = µ0 with truly normal
observations the normal distribution in (10.8) is replaced by a t-based counterpart:

p = P (|T | ≥ |tobs|) (10.13)

where tobs = zobs in (10.6) and T follows a t distribution, T ∼ tν where ν = n − 1.
This is called a t-test. We replace zobs by tobs (even though they denote the same
quantity) to match the random variable T in (10.13). As in Section 7.3.10, using the
t distribution instead of the standard normal distribution has the effect of making
extreme values more probable; therefore, the p-value using (10.13) will be larger than
that found using (10.8).

The t-test defined in Equation (10.13) is often used when paired data of the
form ui and wi are observed and their differences xi = ui − wi are analyzed. The
conception is that U1, . . . , Un is a random sample from a N(µ1, σ

2
1) distribution and

W1, . . . ,Wn is a random sample from a N(µ1, σ
2
1) distribution and the problem is to

test H0 : µ1 = µ2. The differences Xi = Ui−Wi, for i = 1, . . . , n then form a random
sample from a N(µ, σ2) distribution with µ = µ1 − µ2. The null hypothesis then
may be rewritten H0 : µ = 0, so that we obtain a normal random sample with null
hypothesis of the form H0 : µ = µ0 (where µ0 = 0), which is the problem solved by
the t-test in Equation (10.13). In this setting the procedure is called a paired t-test.
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Example 10.3 Glutamate increase in response to pain Mullins et al. (2005)
(Mullins, P.G., Rowland, L.M., Jung, R.E., and Sibbitt, W.L. (2005) A novel tech-
nique to study the brain’s response to pain: Proton magnetic resonance spectroscopy,
NeuroImage, 26: 642-646.) used proton magnetic resonance spectroscopy to study
brain response to pain in humans. The authors obtained spectra from the anterior
cingulate cortex during application of painfully cold compress to the subject’s foot
and during several rest periods. One analysis used the magnitude of the response
associated with glutamate. This involved a pair of measurements of the form ui and
wi, for subject i, with ui being the glutamate concentration during pain and wi being
the glutamate concentration during rest. The differences xi = ui−wi, for i = 1, . . . , n
were then analyzed with a paired t-test. In this study, which the authors called “pre-
liminary,” results from only 7 subjects were reported. The authors reported a 9.3%
increase in glutamate concentation during pain, with tobs = 3.85, yielding p = .006,
which is highly significant. In other words, even with only 7 subjects, these data
appear to provide strong evidence of an increase in glutamate in anterior cingulate
cortex during administration of a painful stimulus. 2

The t-test is justified by the following theorem.

Theorem If X1, . . . , Xn is a sample from a N(µ, σ2) distribution and H0 : µ = µ0

holds, then
P (|Y | ≥ |tobs|) = P (|T | ≥ |tobs|) (10.14)

where Y is defined by (10.9), with SE(X̄) = S/
√
n, tobs = zobs is given by (10.6)

with SE(x̄) defined by (7.17), and T follows a tν distribution with ν = n− 1.

Proof: The proof is the same as that of the theorem containing Equation (7.29).
2

In practice, as we said in Section 7.3.10, calculations based on t distributions
often agree pretty well with those based on normal distributions. However, for large
values of |tobs| the tails of the distribution come into play, and the p-values computed
with the t distribution may be quite a bit different than those based on the normal
distribution. In any case, throughout the scientific literature the t-test is considered
a standard approach, as long as the data do not deviate too far from normality. The
small sample size in Example 10.3 is worrisome because departures from normality
could affect the results. The p-value of .006, however, is sufficiently small to be
reassuring: substantial departures from normality would be required to change the
conclusion we would draw from the data. In Section 13.3 we discuss methods that
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depend on neither the normality of the data, as in (10.14), nor normality of the
sample mean, as in (10.10).

10.3.4 For two independent samples, the hypothesis H0: µ1 =

µ2 may be tested using the t-ratio.

Let us next apply the idea in Section 10.3.2 to the problem of testing H0 : µ1 = µ2

based on two independent samples X11, X12, . . . , X1n1 and X21, X22, . . . , X2n2. The
obvious starting point is the difference between the sample means X̄1 − X̄2, which
should then be divided by its standard error.

Now, what is the standard error of X̄1 − X̄2? Because the two samples are
independent we have

V (X̄1 − X̄2) =
σ2

1

n1
+
σ2

2

n2
(10.15)

where σ2
1 and σ2

2 are the respective variances of each X1i and X2i, within each of the
two samples. The standard error will be the square-root of the variance in (10.15)
after we plug in suitable estimates of σ1 and σ2. The most common procedure,
the ordinary t-test, makes the assumption that σ1 = σ2, which greatly simplifies
the theoretical results. We now label these standard deviations by σ (so that σ =
σ1 = σ2). With this assumption, the two sample standard deviations s1 and s2 both
estimate σ. We then pool the data together by calculating

S2
pooled =

1

n1 + n2 − 2

(
n1∑

i=1

(X1i − X̄1)
2 +

n2∑

i=1

(X2i − X̄2)
2

)

which is taken as an estimator of σ2 and gets plugged into (10.15) for σ1 and σ2. The
test statistic becomes

T =
X̄1 − X̄2

Spooled

√
1
n1

+ 1
n2

(10.16)

and, assuming µ1 = µ2, as n1 and n2 become infinite T converges in distribution to
N(0, 1). This gives the following method (where the notation converts the capital T ,
X and S to lower case once T is applied to observed data).
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Result: Suppose X11, X12, . . . , X1n1 and X21, X22, . . . , X2n2 are inde-
pendent random samples from distributions having means µ1 and µ2

and standard deviations σ1 = σ2. The null hypothesis H0 : µ1 = µ2

may be tested using

tobs =
x̄1 − x̄2

spooled

√
1
n1

+ 1
n2

, (10.17)

with large values of |tobs| indicating evidence against H0. If the sample
sizes are large, an approximate p-value may be obtained from

p = P (|Z| ≥ |tobs|) (10.18)

where Z ∼ N(0, 1).

The result above, using (10.18), is justified by the Central Limit Theorem. If, in
addition, we are willing to assume normality of the distributions then we have an
“exact” result, which applies in small samples.

Result: Suppose X11, X12, . . . , X1n1 and X21, X22, . . . , X2n2 are in-
dependent random samples from normal distributions having means
µ1 and µ2 and standard deviations σ1 = σ2. The null hypothesis
H0 : µ1 = µ2 may be tested using (10.17) with large values of |tobs|
indicating evidence against H0. A p-value may be obtained from

p = P (|T | ≥ |tobs|) (10.19)

where T ∼ tν , with ν = n1 + n2 − 2.

The method above, using (10.19) with (10.17), is called the two-sample t-test.
Sometimes the two samples are called “independent” to emphasize the distinction
between this setting and that of the paired t-test in Section 10.3.3. To be concrete,
suppose that the data come from human subjects. Typically, the data in the paired
case are paired because two observations come from the same subject, as in Exam-
ple 10.3. It is then natural to take advantage of the pairing by analyzing differences.
In contrast, the two samples in (10.17) come from separate subjects5 and there is no
natural way to identify a particular x1 observation with an x2 observation. Here is
an example.

5We discuss this distinction again in Section 13.1.
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Example 7.2 (continued from page 299) In the test-enhanced learning study
Roediger and Karpicke (2006) found strong evidence against H0, the hypothesis
the population mean scores in the learning-test group and the restudy groups were
identical. Applying the two-sample t-test to the data displayed in Figure 7.3 we
obtained tobs = −3.19 on 58 degrees of freedom. Using the normal approximation
this gives p = .0014 while using the t distribution we get p = .0023. Either way there
is strong evidence against H0, indicating strong evidence that the mean assessment
score under the SSST condition is greater than the mean assessment score under the
SSSS condition. 2

In Example 7.2 the p-value is larger when the t distribution is used than when
the normal distribution is used. This is generally the case, as the t distribution
has thicker tails, so that it gives higher probability to values with large magnitudes.
Standard practice is to report the t-based p-value.

Deviations from the assumption that σ1 = σ2, which motivates the use of (10.16),
typically must be quite large in order to have a strong effect on the p-value in (10.18)
or (10.19). (A rough rule of thumb would be that, for substantial sample sizes, the
conclusions are likely to be valid when the standard deviations are within a factor of
3 of each other.) However, a simple alternative is to define S1 = s1 and S2 = s2 to
be the sample standard deviations of the two respective samples and then define

tobs =
x̄1 − x̄2
√

s2
1

n1
+

s2
2

n2

. (10.20)

Replacing T in (10.16) with

T =
X̄1 − X̄2
√

S2
1

n1
+

S2
2

n2

, (10.21)

the large-sample result based on the central limit theorem again holds, with p-value
given by (10.18). This version of the two-sample t-test is often called6 Welch’s t-test,
or the unequal variance t-test. We provide simulation-based methods of computing
the p-value for this test in Sections 11.2.1 and 11.2.2.

6Welch provided an approximate distribution from which p-values could be computed, which is
more accurate than the normal.
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10.3.5 Computer simulation may be used to find p-values.

We have gone over several examples of p-values but we have not actually spelled out
what a p-value is supposed be. Let us now summarize the essential logic of p-values.

In each case we have an observed value of some test statistic, which we now write
in generic form as qobs. The examples so far have involved various formulas for χ2

obs,
zobs and tobs, with context determining the formula. We then introduce a theoretical
statistic Q, and use its distribution under the null hypotheis (chi-squared, normal,
tν) in a relevant statistical model to compute the p-value

p = P (Q ≥ qobs|H0) (10.22)

where we have used the conditioning notation to emphasize that7 the probability is
computed under the assumption that H0 holds.

In many situations it is possible to use the computer to generate artificial data
under the null hypothesis. That is, the statistical model specified by the null hy-
pothesis contains certain probability distributions, and it is often relatively easy to
generate observations from these probability distributions. When this is done, one
says that the data are simulated. We will call such artificial, computer-generated
data pseudo-data. Each set of pseudo-data should resemble the real data in many
respects that are crucial to analysis, such as having the same number of observations
as the real data. On the other hand, the pseudo-data will have known variation with
all the characteristics we assume in our theoretical world of statistical modeling. If
we can create sets of pseudo-data repeatedly, a large number of times (each set of
pseudo-data being different due to the randomness specified by the statistical model)
then we can also compute the p value numerically.

The idea is to generate a large number G of pseudo-data sets (e.g., G = 10, 000)
and apply the statistic Q to each set of pseudo-data. This produces G computer-
generated observations from the probability distribution of Q (under H0). To find
p = P (Q ≥ qobs) we then simply have to get the proportion of such generated
observations (out of G = 10, 000) for which Q is as large as qobs. Let us use Q(g) to

7This may be considered an abuse of the notation because we usually consider H0 to be a
fixed, non-random entity, so we are not really “conditioning” on it in the usual sense developed in
Chapter 3. The exception occurs under the Bayesian interpretation given in Section 10.4.5, where
H0 is formally considered to be an event. In that scenario the probability in (10.22) does become
a conditional probability.
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denote a value of Q computed from a set of pseudo-data, where g = 1, 2, . . . , G. Here
is the algorithm.

Finding the p-value by simulation

1. Generate G sets of pseudo-data labelled g = 1, . . . , G and for the
gth set of pseudo-data compute Q(g).

2. Let N be the number of sets of pseudo-data for which Q(g) ≥ qobs.

3. The p-value is given by p = N
G

.

Example 1.4 (continued from page 302) Let us take X to be a random
variable representing the number of non-burning house preferences. Under the null
hypothesis we have X ∼ B(17, .5). As our test statistic we may use Q = |X −
8.5|, where 8.5 is the expected value of X and we are here judging small and large
deviations from 8.5 to be equally important. We have qobs = 14 − 8.5 = 5.5. We
may then simulate 10,000 observations from a B(17, .5) distribution and count the
number N for which Q ≥ qobs. Doing this, we obtained N = 126 and p ≈ .013. 2

One issue is that the accuracy of such computer-generated p-values depends on
the number of data sets generated. If we take G to be extremely large we can get a
very accurate p-value, but in complicated problems the computing time may get too
long. In most problems G = 10, 000 is large enough to obtain reasonable accuracy.

Details: In fact, we may compute the accuracy of such computer-generated
p-values quite generally from the binomial standard error. If we generate
G data sets, we have N ∼ B(G, p) where p is the desired p-value, which
is estimated by p̂ = N/G. The standard error for this binomial propor-
tion is SE(p̂) =

√

p̂(1− p̂)/G. Thus, in the example above, the accuracy

would be SE =
√

(.0126)(.9874)/10, 000 = .0011. Doubling this we get
a 95% CI for p of .013± .002. 2

We used Example 1.4 to demonstrate the idea of simulation-based computation
of p-values. The great virtue of p-values based on pseudo-data is that they can
be easy to compute even in very complicated situations where direct calculation is
impossible. However, the binomial setting shares with some other common problems
sufficient simplicity that the exact p-value may be computed more directly.
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Example 1.4 (continued) We have that Q ≥ qobs precisely when x ≥ 14 or
x ≤ 3. Thus, we have

p = P (X ≤ 3) + P (X ≥ 14)

where X ∼ B(17, .5), which may be computed by evaluating the binomial cdf from
statistical software. Specifically, if F (x) is the B(17, .5) cdf, then

p = F (3) + 1− F (13).

In this special case the B(17, .5) distribution is symmetrical so that P (X ≥ 14) =
P (X ≤ 3) and we also have

p = 2F (3) = .013

which agrees with the value obtained above, by simulation. 2

10.4 Interpretation and Properties of Tests

We now turn to some theoretical aspects of significance tests. In practice, new situ-
ations arise where no standard test is available. Researchers then invent significance
tests, and sometimes they are not valid. What do we mean by this? The key prop-
erty is Equation (10.22). For an evaluation of statistical significance to be correct,
theoretically, (10.22) must be satisfied.

Let FQ(x) be the cdf of Q under the statistical model specified by H0 and let
us assume that Q follows a continuous distribution. We then have P (Q ≤ q) =
1− P (Q ≥ q) and we obtain from (10.22) the equivalent form

p = 1− FQ(qobs). (10.23)

This will help below. Sometimes (10.22) does not hold exactly, but it does hold
approximately, as in the case of chi-squared tests. In Section 10.4.1 we derive two
consequences that allows us to check whether (10.22) is approximately true. That
section describes the behavior of a valid significance test when H0 is true. In Sec-
tion 10.4.3 we consider what happens when H0 is false.
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10.4.1 Statistical tests should have the correct probability
of falsely rejecting H0, at least approximately.

The criteria for deterimining statistical significance, usually taken to be .05 or .01, are
called significance levels. Fisher suggested8 that research workers might routinely use
p < .05 as a “convenient convention” to summarise the evidence against H0. Indeed,
this became standard practice. Neyman and Pearson then considered, formally,
the behavior of such a procedure. They began by saying one might reject H0 for
sufficiently large values of the test statistic Q. If we let c be the cut-off value for
which H0 is rejected whenever Q ≥ c, then c is called the critical value and

α = P (Q ≥ c)

is called the level of the test for the critical value c. Now, for the t-test on page 306
based on Q = |T | and qobs = tobs defined in (10.17), at a particular level, such as
α = .05, we may reverse the process and, for any α, we can find a critical value cα
such that

α = P (Q ≥ cα). (10.24)

For example, the probability of falsely rejecting H0 based on the criterion p < .05
is α = .05. Equation (10.24) should hold for any valid test, at least if Q has a
continuous distribution (and it should hold approximately for the discrete case).

A detail: For continuous statistics like that in the t-test we can find c.05
for which P (Q ≥ c.05) = .05 and P (Q ≥ c) < .05 whenever c > c.05. In
the discrete case, however, only particular values of probabilities actually
occur, so there may not exist c.05 for which P (Q ≥ c.05) = .05 and,
furthermore, there will be values a > b such that P (Q > a) = P (Q > b).
We ignore this technical point here. 2

Equation (10.24) gives us a way of checking any test to see whether the fundamen-
tal property (10.22) holds: we pick values of cα, compute the probability P (Q ≥ cα),
and see whether the answer is α. For instance, when H0 holds, we should find p < .05
(i.e., Q ≥ c.05) 5% of the time and we should find p < .01 (i.e., Q ≥ c.01) 1% of the
time. Another way to say this9 would be, “if we use p < .05 we will be making an

8See pages 114 and 128 of the 14th (1970) edition of Fisher (1925). (Fisher, R.A. (1925) Statistical

Methods for Research Workers, Hafner Press.)
9Fisher objected to the idea that statistical significance should be equated with decision making

about hypotheses. From our modern perspective this is an objection about the words used to
describe (10.24) but the formula itself is crucial. We say more about this in Section 10.4.6.
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incorrect decision 5% of the time and if we use p < .01 we will be making an incorrect
decision 1% of the time.”

This calibration of p-values in terms of significance levels is satisfied when (10.22)
holds. That is, for any α between 0 and 1, a test that rejects H0 whenever p < α
will have α as its significance level. Formula (10.22) holds for the t-test under the
assumption of normality, but without the assumption of normality (10.22) is only
approximately correct, as in the first version in Section 10.3.4. Similarly, (10.22)
holds only approximately for the p-values computed from the chi-squared distribution
based on the chi-squared statistics in Section 10.1. For approximate tests it is good to
know how close the p-value is to being correct. Sometimes p-values may be obtained
by computer simulation, as in Section 10.3.5, but this is not always possible. When
a new statistical test is proposed to deal with a complicated or unusual situation, it
may provide approximate p-values. In this case it is valuable to verify, by computer
simulation, that the test has approximately the level α = .05 when p < .05, and
similarly for other levels such as α = .01. For illustrative purposes we carried out
the calculation in the case of the example on blindsight of patient P.S.

Example: Blindsight of P.S. Let us consider the use of χ2
obs as we did on page

297. For a χ2
1 distribution we have c.05 = 3.84, i.e., ifX ∼ χ2

1 then P (X ≥ 3.84) = .05.
For the case n = 17 and p0 = .5 we may compute the value of α = P (Q ≥ 3.84)
where Q is the chi-squared statistic. This is easily done by computer simulation.
We obtained α = .049. Repeating this for c.01 = 6.63 we obtained α = .013. For
these standard cut-off values for p, and for this sample size, we conclude that the χ2

1

distribution furnishes an accurate approximation.10 2

Equations (10.22) and (10.24) provide explicit statements of the behavior of a
significance test under the assumption that H0 is true. Let us continue to assume
that H0 is true and go a step further by observing that the p-value is, itself, a
random variable and inquiring about its distribution. If we ask, “How often do we
get p < .05?” the answer, for any valid test, according to (10.24), is 5% of the time; if
we ask “How often do we get p < .01?” the answer is 1% of the time; if we ask “How
often do we get p < .25?” the answer is 25% of the time. In general, we must get
p < α with probability α. But if a random variable X satisfies P (X < α) = α then
X ∼ U(0, 1). (Assuming X is continuous then P (X < x) = P (X ≤ x) = FX(x) = x,

10On the other hand, we should recall that the p-value we obtained for the data x = 14 was
p = .0076 based on χ2

obs and the chi-squared distribution while the exact p-value was p = .0127.
The discrepancy between approximate and exact values is a bit larger; the approximation apparently
gets worse as we move further out into the tails.
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which is the cdf of the U(0, 1) distribution.) Therefore, when H0 holds, the p-values
from a valid significance test will be uniformly distributed between 0 and 1.

Details: If we were to repeatedly sample data according to the statistical
model specified by H0, then we would get random values of qobs. Let us
denote such random values by the random variable Y . By the way we
are constructing Y it has the same distribution as Q. To be even more
specific, let us denote the mapping from data values x1, . . . , xn to y values
by y = T (x1, . . . , xn) so that Y = T (X1, . . . , Xn). The definition (10.22)
could be rewritten in terms of y as

p = P (Q ≥ y|H0) = P (Q ≥ T (x1, . . . , xn)|H0). (10.25)

Now, just as repeated samples would give random values of y so, too,
would repeated samples give random values of p. Let us denote such
random values by the random variable P . The random variable P satisfies

P = P (Q ≥ Y |H0) = P (Q ≥ T (X1, . . . , Xn)|H0). (10.26)

With this notation in hand, we show that the theoretical distribution of
p-values under H0 is uniform.

Theorem Let X1, . . . , Xn be a random sample from which P is defined
from (10.26), and assume Q follows a continuous distribution. If H0 holds
then P ∼ U(0, 1).

Proof: From the first equality in (10.26) we have

P = 1− FQ(Y ),

which is the random variable version of (10.23). Because Y follows the
same distribution as Q, FQ(y) = FY (y), so that

P = 1− FY (Y )

and
1− P = FY (Y ).

From the probability integral transform given in Section 3.2.5 it follows
that 1− P has a U(0, 1) distribution. It is an easy exercise to show that
X ∼ U(0, 1) if and only if 1−X is U(0, 1). Therefore, P ∼ U(0, 1).
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We also have the following.

Theorem Let X1, . . . , Xn be a random sample from which P is defined
from (10.26), and assume Q follows a continuous distribution. Then,
under H0, the probability that P < cα is equal to α, i.e.,

P (P < cα|H0) = α. (10.27)

Proof: This is a corollary to the previous theorem: because P ∼ U(0, 1)
we have FP (x) = x which, because Q is continuous, is the same as (10.27).
2
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Figure 10.1: Histogram of test-enhanced learning p-values under H0. The p-values
were computed by sampling at random the 60 data values under the SSSS and SSST
conditions and arbitrarily putting them into two groups of 30 each, then running a
t-test, as in the t-test on page 307.

Example 7.2 (continued from page 307) To illustrate the uniformity of p-
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values guaranteed by the theorem, we generated samples of pseudo-data based on
the real data used in the t-test on page 307. The idea was to begin with the 60 data
values under the SSSS and SSST conditions and create 10,000 sets of pseudo-data
like the real data except that for each set of pseudo-data H0 was true. To force H0 to
hold we sampled the 60 data values and then arbitrarily put them into two groups of
30 values each, so that each of the two groups of pseudo-data would follow the same
distribution.11 We repeated this to get the 10,000 sets of pseudo-data, and then ran
the t-test and computed the p-value for each set of pseudo-data. Figure 10.1 is a
histogram of the resulting 10,000 p-values. The distribution is uniform. 2

10.4.2 A confidence interval for θ may be used to test H0: θ =
θ0.

Let us return to the “paradigm case” of Section 7.3.2 in which X1, . . . , Xn is a random
sample from a N(µ, σ2) distribution with the value of σ known. In Section 7.3.2 we
found a confidence interval for µ. Now let us consider, instead, the null hypthesis
H0: µ = 0. This hypothesis comes up frequently because many experiments generate,
for each subject, one observation under each of two conditions, and the data may be
reduced by taking the difference of the two observations. Thus, instead of n pairs
of observations we analyze n single-number differences Xi and the null hypothetical
question becomes whether the mean of these differences is zero. In practice, the
value of σ is unknown but here, as in Section 7.3.2, we assume it is known in order
to simplify the derivation below.

As in Section 7.3.2 we have standard error SE(X̄) = σ/
√
n. In Section 7.3.2 we

showed that the interval (X̄ − 2 · SE(X̄), X̄ + 2 · SE(X̄)) is a 95% CI for µ, which
means

P (X̄ − 2 · SE(X̄) ≤ µ ≤ X̄ + 2 · SE(X̄)) = .95.

To test H0: µ = 0 we can check whether our 95% CI contains 0. If it does not, we
have evidence against H0.

Theorem Suppose X1, . . . , Xn is a random sample from a N(µ, σ2) distribution,

11Specifically, both groups followed the distribution specified by the empirical cdf based on the
60 data values. This is an example of bootstrap sampling and will lead to a bootstrap test discussed
in Chapter 11.
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with the value of σ known. If H0 : µ = 0 holds, then we have

P (0 /∈ (X̄ − 2 · SE(X̄), X̄ + 2 · SE(X̄))) = .05.

Proof: For every µ we have

P (µ /∈ (X̄ − 2 · SE(X̄), X̄ + 2 · SE(X̄)))

= 1− P (µ ∈ (X̄ − 2 · SE(X̄), X̄ + 2 · SE(X̄)))

= 1− .95 = .05.

The result follows by taking µ = 0. 2

This theorem says that the confidence interval for µ may be inverted to produce
a test of H0: µ = 0. We use the term “inverted” because instead of looking within
the interval, as we do in the usual application of a confidence interval, in testing H0

we are seeing whether it lies outside the confidence interval. When µ = 0 lies outside
the confidence interval we reject H0 with significance level α = .05, and can report
p < .05.

The same logic may be used to state a version of the theorem in more general
form.

Theorem Suppose X1, . . . , Xn is a random sample from a distribution that de-
pends on a single parameter θ, and suppose (θ̂ − 2 · SE(θ̂), θ̂ + 2 · SE(θ̂)) is a 95%
CI, i.e.,

P (θ̂ − 2 · SE(θ̂) ≤ θ ≤ θ̂ + 2 · SE(θ̂)) = .95.

If H0 : θ = θ0 holds, then we have

P (θ0 /∈ (θ̂ − 2 · SE(θ̂), θ̂ + 2 · SE(θ̂))) = .05.

Proof: The argument is the same here as for the previous theorem. 2

This theorem says that whenever we have a 95% confidence interval for a pa-
rameter, we may invert it to get a test of a null hypothesis that takes the form
H0 : θ = θ0. We stated the theorem to indicate generality, but actually the paradigm
case of the normal sample with σ known furnishes one of the rare situations in which
a standard confidence interval has exactly the correct coverage probability of .95.
More commonly we rely on intervals that have approximate coverage probability .95.
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The method of using an approximate 95% confidence interval to test a hypothesis
produces a signficance level of approximately p = .05 (we might write p ≈ .05). In
practice, one makes sure that the null-hypothetical value is far outside the confidence
interval, as in Example 1.4 in Chapter 1.

10.4.3 Statistical tests are evaluated in terms of their prob-

ability of correctly rejecting H0.

In Section 10.4.1 we pointed out that a statistical test should have its signicance
levels match reasonably well its reported p-values, at least in the case of .05 and
.01, and that this results in incorrect rejection of H0 with the putative frequency
(e.g., 5% or 1% of the time). But suppose we have two different ways of testing a
hypothesis. How should we judge which way is better?

To answer this question, we may consider not only incorrect rejection of H0 but
also an incorrect decision not to reject. The two possible decisions may be identified
as “reject H0” and “accept H0.” There are then two types of errors: incorrectly
rejecting H0 when it is in fact true, and incorrectly accepting H0 when it is in fact
false. These are called type I and type II errors. A good test would be one with
small type I and type II errors. In order to evaluate the type II error we must
introduce a particular non-null hypothesis. This is called the alternative hypothesis
and is usually denoted HA (or H1). The power of the test is then the probability of
correctly rejecting H0 when HA is true, i.e., it is one minus the type II error. The
power is usually denoted by β. Thus, for a test based on large values of a statistic
Q we have

α = P (Q ≥ c|H0) (10.28)

and
β = P (Q ≥ c|HA). (10.29)

If we have two different tests that we want to compare, we may pick for each
their respective critical values c.05, and then ask, for a particular HA, which test is
more powerful. This is the general program laid out by Neyman and Pearson, and
it is the standard way to evaluate competing statistical tests of hypotheses.

Example 10.4 Time-varying dependence between spike trains Ventura, Cai,
and Kass (2005) (Ventura, V., Cai, C., and Kass, R.E. (2005) Statistical assessment
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Figure 10.2: Power of the method proposed by Ventura, Cai, and Kass (2005), shown
in the thick black line, compared with an alternative method, shown in the thin line.
Power is plotted against the maximum percentage excess firing above that predicted
by independence. Both tests have the same probability of rejecting H0 when H0 holds
(type I error) α = .05, indicated by the coincidence of the two power graphs when the
percentage excess firing is zero. The power of the new method is much greater than
the power of the alternative method.

of time-varying dependence between two neurons, J. Neurophys., 94: 2940-2947)
proposed a bootstrap method of testing the null hypothesis of independence between
two spike trains. Their method not only tested independence but also found a window
of time over which the two spike trains had increased joint activity. To compare the
new method to an existing procedure (which instead used contiguous time bins in the
joint peri-stimulus time histogram), Ventura et al. computed power for a particular
series of scenarios as the excess joint firing, above that predicted by independence,
was increased. Figure 10.2 is a plot of power as a function of excess firing rate for
the two methods. The purpose of such a plot is to demonstrate the superiority of
a proposed method to an existing alternative. The plot in Figure 10.2 indicates
especially large gains in power for 15-20% excess joint activity. 2
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Another use of power is to determine sample size. The idea is to choose an
alternative HA, considered to be plausible, and ask how big a sample size would be
needed to achieve both a particular level α and a particular power β. The values
α = .05 and β = .8 are often used in medical applications, and planners of clinical
trials typically must show to reviewers their calculation that the proposed sample
size meets such specifications under reasonable assumptions.

10.4.4 The performance of a statistical test may be displayed

by the ROC curve.
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Figure 10.3: Two pairs of normal distributions and the resulting ROC curves. The
left-hand side shows the pair of pdfs for N(0, 1) (solid) and N(δ, 1) (dashed) and to
the right are the corresponding ROC curves. Top: δ = 2. Bottom: δ = 1.

According to (10.28) and (10.29), the level and power of a test based on large
values of a statistic Q depend on the critical value c. Let us make this dependence
explicit by writing

α(c) = P (Q ≥ c|H0) (10.30)
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and
β(c) = P (Q ≥ c|HA). (10.31)

The choice of c is based on a trade-off of type I and type II errors: when c is
increased, α(c) gets smaller so type I error decreases but β(c) also gets smaller so
type II error increases. The performance of a test may be examined by plotting β(c)
versus α(c) for a range of values of c. The function y = f(x) that traces values
(x, y) = (α(c), β(c)) is called the receiver-operating characteristic (ROC) curve.

The simplest setting is the paradigm case of Section 10.3.1, where X̄ ∼ N(µ, σ2/n)
and we wish to test H0 : µ = µ0. If H0 holds, then the ratio Z defined in (10.5)
satisifies Z ∼ N(0, 1) but if HA : µ1 holds with µ1 6= µ0, then Z ∼ N(δ, 1) where
δ = (µ1−µ0)/SE(X̄). The ROC curves for δ = 2 and δ = 1 are shown in Figure 10.3.
When δ = 1 it is more difficult to discriminate between the two alternatives, so the
power (β) is lower for a given value of the level (α) and the ROC curve is closer to
the line y = x (which is the ROC curve when δ = 0). If we were instead to pick a
very small value of δ the ROC curve would essentially fall on the line y = x, while if
we picked a very large value of δ the ROC curve would hug the y-axis near x = 0 and
hug the asymptote y = 1 for increasing values of x. Thus, the higher the curve, the
better its overall performance. Sometimes tests are compared by plotting their ROC
curves. In addition, the area under the curve is often evaluated: it is 1 (the area of
the 0-1 square) for a perfect test and .5 (the area within the square under the line
y = x) for tests with no predictive ability at all (in the normal case corresponding
to δ = 0).

The ROC curve is also used in psychophysical analysis of perceptual detection of
stimuli, called signal detection theory.

10.4.5 The p-value is not the probability that H0 is true.

The p-value is commonly misinterpreted as the probability that the null hypothesis is
true. This is quite wrong. A correct statement is necessarily rather cumbersome. Let
us continue to write a generic test statistic asQ and the value it takes when calculated
from data as qobs. In the case of the chi-squared tests we used Q = X ∼ χ2

ν with
xobs = χ2

obs and for the two-sided t test (10.17) we used Q = |T | with qobs = |tobs|.
We chose the notation qobs so that we can clearly distinguish the observed value from
the theoretical random variable Q. The p-value is then given by Equation (10.22).
In words, p is the probability that one would observe a value of the test statistic as
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discrepant from the null hypothesis as the one observed from the data, if the null
hypothesis were true. Or, again, in slightly different words: if the null hypothesis
were true, the test statistic Q would have a probability distribution; the p-value is
the resulting probability that Q would be as discrepant from the null hypothesis as
the value qobs actually observed. There is no substantially simpler way to say this.
The important point about the correct interpretation is its subjunctive nature: the
p-value is a probability based on what might have happened if a random sample had
been drawn under H0.

Because the logic behind p-values is somewhat convoluted, they are very often
misinterpreted to mean something much simpler and more direct, namely the proba-
bility thatH0 is true. There is no denying how nice it would be to have the probability
that H0 is true, based on the data. That probability may be obtained, instead, from
Bayes’ Theorem:

P (H0|data) =
P (data|H0)P (H0)

P (data|H0)P (H0) + P (data|HA)P (HA)
.

From a practical point of view, however, the simplicity of this “Bayesian” result is
deceptive. In data-analytic problems its application requires considerable care. For
a detailed discussion see Kass and Raftery (1995) (Kass, R.E. and Raftery, A. (1995)
Bayes factors, J. American Statistical Association, 90: 773–795.). Nonetheless, with
reasonable assumptions one may use Bayes’ Theorem to get guidance on the interpre-
tation of p-values. In many common situations with small or moderate sample sizes
it turns out that p = .05 corresponds to values of P (H0|data) somewhere between
roughly .5 and .7. In other words, a p-value of .05 is really only marginal evidence
against H0. Most importantly, p = .05 does not correspond to P (H0|data) = .05.
Additional discussion of these issues may be found in Edwards, Lindeman, Savage
(1963), Kass and Raftery (1995), and Sellke, Bayarri, and Berger (2001). (Edwards,
W., Lindman, H., and Savage, L.J. (1963) Bayesian statistical inference for psycho-
logical research, Psych. Rev., 70: 193-242.)(Kass, R.E. and Raftery, A.E. (1995)
Bayes factors, J. Amer. Statist. Assoc., 90: 773-795. (Sellke, T., Bayarri, M.J., and
Berger, J.O. (2001) Calibration of p-values for testing precise hypotheses. Amer.
Statist., 55: 62-71.)
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10.4.6 The p-value is conceptually distinct from type one
error.

We began by presenting p-values as a way of assessing evidence against a null hy-
pothesis, and then reviewed the basic elements of the additional hypothesis testing
framework based on evaluation of the performance of a test under both null and
alternative hypotheses. The latter was introduced originally by Neyman and Pear-
son. Fisher disliked the Neyman-Pearson conception because he thought the alter-
native hypothesis was artificial and unnecessary—more than that, he thought it was
counter-productive. In the Neyman-Pearson scheme there was no apparent role for
p-values: in principle, one would pick a level α (such as α = .05) a priori and then
determine whether p < α rather than reporting the p-value itself. Furthermore, the
implication was that, in practice, the null hypothesis might routinely be accepted
rather than rejected. This was the point that Fisher found most troubling. He
said, “It is certain that the interest of statistical tests for scientific workers depends
entirely [on] their use in rejecting hypotheses which are thereby judged to be incom-
patible with the observations.” (R.A. Fisher (1935) Statistical tests, Nature, 136:
474.) From our current vantage point it is easy enough to step back from that early
controversy. On the one hand, Fisher was correct that p-values and the rejection
of statistical hypotheses would become a major activity of everyday science. On
the other hand, the Neyman-Pearson conceptions have proven their worth in the-
oretical work, where evaluation of type I and type II errors have been important
in understanding alternative testing procedures. The modern point of view is thus
a synthesis of Fisher’s “significance testing” and the Neyman-Pearson “hypothesis
testing.” There is no longer a compelling need to distinguish between these separate
notions, which were once considered incompatible. We use the terms “significance
testing” and “hypothesis testing” interchangeably.

10.4.7 A non-significant test does not, by itself, indicate ev-
idence in support of H0.

In previous subsections we have laid out the logic of significance testing using p-
values. As we noted at the beginning of Section 10.4.1, Fisher’s original conception
was that small p-values could provide evidence against H0, and in Section 10.4.6 we
cited his concern that they not be used for “accepting” a null hypothesis. In this
regard, the modern view is consistent with Fisher’s interpretation of p-values: they
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can only be used to show how the data appear to be inconsistent with H0; they do
not supply support for H0. A non-significant test of H0 : θ = θ0 could occur either
because H0 holds or because the variability is so large that it is difficult to determine
the value of the unknown parameter. The latter possibility must be considered.

As an illustration, let us return to the blindsight example, Example 1.4, once
again and imagine a different outcome. Suppose that, instead of 14/17 “non-burning”
house selections, patient P.S. had chosen the non-burning house 12 out of 17 times.
If X ∼ B(17, .5), an exact calculation like that on page 310 gives

p = 2F (5) = .14.

In this circumstance it would be incorrect to say that there is evidence in favor
of H0. In fact, for 12 out of 17, the estimate of the propensity of P.S. to choose
the non-burning house would be p̂ = 12/17 = .71 with standard error SE(p̂) =
√

p̂(1− p̂)/n = .22. While it is true that the value H0: p = .5 is clearly consistent
with the data, the standard error is so large that a wide range of non-null values are
also consistent with the data.

It is very common for investigators to interpret failure of a test to reach signifi-
cance as an indication that H0 : θ = θ0 holds. This is reasonable only if, in addition,
the standard error of the estimate SE(θ̂) is small: a confidence interval would have
to include only those values of θ that are, for practical purposes, essentially the same
as θ0.

It is especially tempting to mis-interpret a non-significant test when results from
two situations are being compared, and significance is obtained in one situation but
not the other. We return to this point in Section 13.2.2 when we discuss interaction
effects in ANOVA.

Example 10.5 Synchronous firing of V1 neurons Synchronous neural activity
is widely believed to play an important role in neural computation (e.g., Uhlhaas et
al., 2009) but its statistical assessment is subtle (see Harrison, Amarasingham, and
Kass, 2012). (Harrison, M.T., Amarasingham, A., and Kass, R.E. (2012) Statistical
identification of synchronous spiking. In Spike Timing: Mechanisms and Function,
Eds: P. Di Lorenzo and J. Victor, Taylor and Francis.)(Uhlhaas, P.J., Pipa, G.,
Lima, B., Melloni, L., Neuenschwander, S., Nikolić, D., and Singer, W. (2009) Neu-
ral synchrony in cortical networks: history, concept, and current status. Frontiers in
Integrative Neuroscience, 3.) Suppose we have two spike trains that are each repre-
sented as binary time series using some small windows of time, as in Figure 5.2, where
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a 1 signifies that a spike has occurred and a 0 that no spike has occurred. When
both time series have a 1 in the same time bin we say that the two neurons have
fired synchronously. Under reasonable statistical models, some synchronous spikes
will occur by chance even if the two neurons are firing independently. The statistical
problem is to identify synchronous firing that occurs more frequently than predicted
by chance alone. Kass, Kelly, and Loh (2011) provided a statistical framework for
evaluating synchronous spikes (see also Kelly and Kass, 2012). To illustrate their ap-
proach they analyzed two pairs of neurons recorded from primary visual cortex (V1)
in an anesthesized monkey during visual exposure to moving grating stimuli. They
defined a quantity ξH that represented the proportional gain in synchronous firing
rate above that expected under independence (actually, conditional independence
given measured network activity). The null hypothetical value under independence
was H0 : ξH = 1, which they restated as H0 : log ξH = 0. For one pair of neurons
they reported log ξ̂H = .06 with SE = .15 giving a t-ratio of .39. Their conclusion
was that these data were consistent with H0. Here, they were not relying on the
significance test alone: a confidence interval would exclude substantial values log ξH .
Specifically, an approximate 95% confidence interval for log ξH based on (7.8) is (-
.24,.36) and when transformed to the ξH scale it becomes (.79,1.4), which eliminates
as highly unlikely excess synchronous firing rates of 40% above independence. (Here
exp(−.24) = .79, exp(.36) = 1.4, and the 40% figure comes from the right-hand CI
limit of 1.4.) The authors contrasted this pair of neurons with a different pair, for
which they obtained log ξ̂H = .82 with SE = .23 giving a t-ratio of 3.57, which leads
to an approximate 95% confidence interval for ξH of (1.4,3.6).

The physiological point was that distinct pairs of neurons in V1 may respond
quite differently with regard to synchronous spiking in excess of that produced by
network activity: the first pair produced synchronous spikes at roughly the rate they
would be produced under independence, while the second pair produced synchronous
spike at roughly double the rate expected under independence (exp(.82) = 2.3, with
confidence interval (1.4,3.6)). The statistical point is that the results of the signifi-
cance tests, alone, did not adequately convey what the data were able to show about
the excess synchronous firing rates in these neurons. Standard errors or confidence
intervals are also necessary. 2
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10.4.8 One-tailed tests are sometimes used.

We summarized the logic of p-values in Equation (10.22), and the surrounding dis-
cussion, taking qobs to represent the value of a generic statistic used to test a null
hypothesis. In nearly all of the special cases we have examined we have chosen qobs

to be the absolute value of some statistic, and then Q was the absolute value of
the corresponding random variable. For example, in testing H0 : µ = µ0 we used
either qobs = |zobs| or qobs = |tobs|. A different choice is to remove the absolute value.
This version of significance testing sometimes appears in the literature. It is called a
one-sided test and it corresponds to a one-sided null hypothesis, such as H0 : µ ≤ µ0.
Let us discuss this by way of our most heavily-used example.

Example 1.4 (continued from page 310) We previously posed the statistical
problem of testing H0: p = .5, which corresponds to saying that P.S. was guessing,
and on page 310 we obtained the exact p-value p = .013. We might, instead, say that
we are interested only in the case in which P.S. might have chosen the non-burning
house more often than half the time. In other words, we might say that we care about
the possibility that her propensity to choose the non-burning house was p > .5 and,
therefore, the appropriate null situation would be H0: p ≤ .5. To test this, different
null hypothesis we would replace (10.12) with

p = P (Z ≥ zobs)

which we compute (modifying the calculation on page 310) as P (X ≥ 14) = P (X ≤
3) = .0064, where X ∼ B(17, .5). This new p-value is half the size of the previous
value, and thus would indicate stronger evidence against this null hypothesis than
against the original null hypothesis H0 : p = .5. 2

This example introduces the standard dilemma of one-sided versus two-sided
testing. If one-sided testing is used, the p-value is cut in half and the evidence
appears stronger. On the other hand, the null hypothesis has been changed. Which
null hypothesis is more appropriate?

In order to use the one-sided hypothesis one must argue that a reverse result
would not have been evidence of an interesting phenomenon. In Example 1.4, such
a claim would mean that if patient P.S. had consistently chosen the burning house,
we would have ignored the data as no more interesting that guessing. This seems
implausible to us. In the extreme case, if P.S. always chose the burning house it
surely would have provided evidence that her brain perceived the flames on the left
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side of the visual field. Therefore, we prefer the two-sided version for this example.
Our feeling is that the vast majority of cases are analogous to this example: the
reverse result would almost always be interesting, and it is therefore almost always
preferable to use the two-sided test. Furthermore, the two-sided test is conservative
in the sense of providing double the p-value (it is less likely to lead, by chance alone,
to the conclusion that there is evidence against H0) and we regard this feature as
an advantage as well.12 If a one-sided test must be used in order to claim statistical
significance, the data are not conclusive and provide only weak evidence against the
null hypothesis.

12Part of our reasoning comes from Bayesian calibration of significance tests, which is discussed
briefly in Section 10.4.5.
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General Methods for Testing
Hypotheses
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In Chapter 10 we laid out the main ideas in assessing statistical significance. First,
there is a null hypothesis; second, there is a statistic that defines some deviation
away from a null model; third there is a p-value to judge the rarity of the observed
deviation under the null hypothesis. These are the three essential ingredients of a
statistical hypothesis test. We also discussed several aspects of the interpretation
and evaluation of statistical tests. While Chapter 10 provided the basic notions of
testing, it did so within a few simple settings. After presenting goodness-of-fit for
data in categories, we considered hypotheses involving restriction of a parameter
to a single value, equality of two proportions, and equality of two means. These
hypotheses were chosen partly because they occur very frequently, but also because
the test statistic in each case is highly intuitive. What happens when one is faced
with a new problem that does not fit one of these molds? How should the statistical
test be defined?

In estimation, maximum likelihood plays a unifying role and helps solve new
problems: many familiar and intuitive estimators are actually maximum likelihood
estimators, ML estimation may be applied in many novel situations and, it turned
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out, ML estimation was optimal for large samples. For testing problems there is
an analogous method: the likelihood ratio test. This test is also quite general; it
has large-sample optimality properties; and it produces as special cases familiar
procedures such as the t-test. Likelihood ratio tests are the subject of Section 11.1.

ML estimation is applicable to problems involving parametric specification of
statistical models. In Section 9.2.2 we discussed the parametric bootstrap, which may
be applied in conjunction with ML estimation and in Section 9.2.3 we showed how
the nonparametric bootstrap could be applied without the parametric specification in
the statistical model—thus, its name. Similarly, there is a nonparametric bootstrap
method of testing hypotheses. We discuss this, and the closely related permutation
tests, in Section 11.2.

The procedures in Chapter 10 and in Sections 11.1-11.2 treat single, isolated
hypotheses. In practice one often faces many hypotheses, all of which need to be
tested. This creates what is known as the multiple testing problem, which we treat
in Section 11.4.

11.1 Likelihood Ratio Tests

Where do statistical tests come from? Sometimes they are based on intuition. A
particular discrepancy measure may seem sensible as a way to capture the relevant
departure from H0. For instance, in the case of patient P.S. in Example 1.4 it would
seem reasonable to use a test based somehow on |p̂ − p0|, and in Section 10.3.2 we
suggested the ratio (θ̂ − θ0)/SE(θ) could be used when H0 involves only a single,
scalar parameter, or a single component of a parameter vector, or a scalar function
of a parameter vector. What about hypotheses that involve multiple parameters?
Just as ML estimation is widely applicable to parametric estimation problems, the
likelihood ratio test may be used in parametric testing problems. In this section
we review the essential methods and results on the likelihood ratio test, but do
not provide many examples. A major source of applications is the body of methods
associated with generalized linear models, which provide important generalizations of
linear regression including the logistic regression model we presented in Example 5.5.
We discuss the way the likelihood ratio test is used with generalized linear models
in Chapter 14.



11.1. LIKELIHOOD RATIO TESTS 329

11.1.1 The likelihood ratio may be used to test H0 : θ = θ0.

The likelihood function assigns to alternative values of θ their plausibility in light of
the data L(θ). It can be used, analogously, when a particular value of θ is singled
out in the form of a null hypothesis H0 : θ = θ0. That is, we consider the value L(θ0)
and assess whether it is nearly the same as the maximal value L(θ̂). Here, θ could
be either a scalar or a vector. Suppose we have data x1, . . . , xn that are assumed to
have a joint pdf f(x1, . . . , xn|θ). We define the likelihood ratio test statistic to be

LRobs =
f(x1, . . . , xn|θ0)
f(x1, . . . , xn|θ̂)

. (11.1)

Because the MLE maximizes the likelihood function, we have LRobs ≤ 1. If we apply
the same formula to a random sample X1, . . . , Xn, we get the theoretical version of
the likelihood ratio as the random variable

LR =
f(X1, . . . , Xn|θ0)
f(X1, . . . , Xn|θ̂)

. (11.2)

We now define the test procedure.

Likelihood ratio test of H0 : θ = θ0. For a random sample
X1, . . . , Xn with joint pdf f(x1, . . . , xn|θ), the likelihood ratio test eval-
uates LRobs defined in (11.1) and assigns the p-value

p = P (LR < LRobs|H0) (11.3)

where LR is defined in (11.2).

Note that it is equivalent to examine the log of the likelihood ratio: in (11.3) we
may take logs to get

p = P (log
f(X1, . . . , Xn|θ0)
f(X1, . . . , Xn|θ̂)

< logLRobs).

As when maximizing a likelihood function, taking logs generally simplifies the ex-
pression. In addition, the log likelihood ratio is often multiplied by -1 so that larger
values produce greater evidence against H0, i.e., we compute

p = P (− log
f(X1, . . . , Xn|θ0)
f(X1, . . . , Xn|θ̂)

≥ − logLRobs). (11.4)
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Example 1.4 (continued from page 310) Suppose X ∼ B(n, p) and we wish
to test H0 : p = p0. In the case of the data from P.S., we would have p0 = .5 and
p̂ = x/n, with n = 17 and x = 14. The pdf is

f(x|p) =

(
n

x

)

px(1− p)n−x

and the observed likelihood ratio statistic is

LRobs =
px

0(1− p0)
n−x

p̂x(1− p̂)n−x

=
1

2n( x
n
)x(1− x

n
)n−x

=
1

2n(14
17

)14(1− 14
17

)3
.

The negative log likelihood ratio becomes

− logLRobs = n log 2 + x log
x

n
+ (n− x) log(1− x

n
)

= 17 log 2 + 14 log
14

17
+ 3 log(1− 14

17
).

2

In Chapter 10 we described several methods of testing H0 in Example 1.4. The
statistic − logLRobs provides yet another approach. The conclusions reached are
consistent with each other and, for sufficiently large samples, the various methods
of testing H0 : p = .5 for the binomial parameter will give equivalent results. The
advantage of the likelihood ratio test is that it can be generalized and applied in
diverse problems. Furthermore, like ML estimation, it turns out to have an important
optimality property in large samples.

11.1.2 P -values for the likelihood ratio test of H0 : θ = θ0 may
be obtained from the χ2 distribution or by simulation.

How do we find p-values for the likelihood ratio test? One way is to use the following
convenient result.
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Result Under certain conditions, for large samples, if θ is m-
dimensional then −2 logLR, defined in (11.2), is approximately dis-
tributed as χ2

m, so that an approximation to the p-value in (11.3) may
be obtained from the chi-squared distribution with m degrees of free-
dom.

Example 1.4 (continued) Continuing from the calculation above, we obtain

−2 logLRobs = 2(17 log 2 + 14 log
14

17
+ 3 log(1− 14

17
)) = 7.72.

Here we have m = 1 degree of freedom for the chi-squared distribution. Writing
Y ∼ χ2

1 we find P (Y ≥ 7.72) = .0055, i.e., we get p = .0055. This is only slightly
different than the value p = .0076 obtained on page 297 from the χ2 statistic. 2

We have now used several alternative methods to test H0 in Example 1.4. The
chi-squared statistic and χ2

1 distribution gave p = .0076. The likelihood ratio test
and χ2

1 distribution gave p = .0055. The exact calculation on page 309 gave p = .013.
The discrepancies among these p-values are not very consequential for conclusions in
this case. On the other hand, the numbers are different. This is due to the relatively
small sample size. When conclusions depend on which test is used or the method of
computing the p-value, the main message should be that the data are not decisive.
When one must make a choice as to which p-value to report (in a publication), it
is generally preferable to use an exact calculation of the p-value. The computation
may be done by simulation. Specifically, under the assumption that H0 holds, we
generate a large number G of data sets and for each compute the test statistic—here,
the likelihood ratio statistic—then find the proportion of such simulated test statistic
that exceeds to observed value. We illustrate by returning again to the blindsight
example.

Example 1.4 (continued) For the responses of patient P.S. it is actually very
easy to compute the exact p-value for the likelihood ratio. By symmetry about
p = .5, it is apparent that −2 logLR ≥ −2 logLRobs when X ≤ 3 or X ≥ 14. Thus,
we would simply find P (X ≤ 3 or X ≥ 14) under the null-hypothetical assumption
X ∼ B(17, .5). We computed this previously by simulation on page 309, and we also
noted on page 310 that simulation is unnecessary in this simple example. We found
p = .013. Let us now write out the steps in the simulation based on the likelihood
ratio statistic, because these would be followed in more general contexts.

We use x[g] to denote element g of the vector x and we write the sum of the
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elements as sum(x), i.e.,

sum(x) =

G∑

g=1

x[g].

1. Define a function LLR(x) that evaluates the loglikelihood ratio statistic. Here

LLR(x) = 17 log(2) + x log(
x

17
) + (17− x) log(

17− x
17

).

2. Evaluate 2LLRobs using LLRobs = LLR(14). Here 2LLRobs = 7.72.

3. Make x a vector of G observations from the null distribution. Here we use
G = 100, 000 observations from B(17, .5).

4. If there are possible values of the data that make the loglikelihood ratio become
undefined (because the argument of a log would become zero), fix this. Here
the log likelihood ratio is not defined when x = 0 or x = 17 so: if x[g] = 0 set
x[g] = 1; if x[g] = 17 set x[g] = 16.

5. Set N equal to the number of values g for which 2LLR(x[g]) ≥ 2LLRobs. This
may be accomplished by creating a vector y of length G; if 2LLR(x[g]) ≥
2LLRobs set y[g] = 1; otherwise set y[g] = 0; then N = sum(y).

Here 2LLRobs = 7.72.

A detail: The value 7.72 was actually rounded down slightly, so
that we are computing P (X ≤ 3 or X ≥ 14) (rather than P (X <
3 or X > 14)). We would rather compute p = P (X ≤ 3 or X ≥ 14)
because it finds the probability of observing a value at least as large
as LLRobs instead of larger than LLRobs, and is therefore more
conservative in the sense of producing a larger p-value.

6. Compute p = N
G

.

2
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11.1.3 The likelihood ratio test of H0: (ω, θ) = (ω, θ0) plugs in
the MLE of ω, obtained under H0.

We now consider the case in which the parameter vector may be decomposed into
two sub-vectors ω and θ, having respective dimensions m1 and m2. For example, in
linear regression we would have a parameter vector (β0, β1) and we might decompose
it as ω = β0 and θ = β2. We consider null hypotheses of the form H0 : θ = θ0 which
now becomes a short-hand for H0 : (ω, θ) = (ω, θ0). In linear regression, for example,
we might consider whether there is a non-zero slope by introducing H0 : β1 = 0. This
is short for H0 : (β0, β1) = (β0, 0), which means that H0 does not put any restriction
on ω = β0. A wide variety of statistical models that are submodels of larger models
may be written in this form. (See for example, Kass and Vos (1997, Theorem 2.3.2).)
When we focus on a sub-vector θ of a larger vector (ω, θ) the parameter vector ω is
called a nuisance paramter.

To apply the likelihood ratio test, we must recognize that ω remains a free pa-
rameter under H0. To evaluate the likelihood ratio we must pick a particular value
of ω. We do so by maximizing the likelihood under the null-hypothetical restriction
θ = θ0. That is, we maximize L(ω, θ0) over ω. Let us denote the solution by ω̂0. In
general ω̂0 may not equal the global MLE ω̂ (though in some particular cases they
will be equal). We thus define the likelihood ratio test statistic as

LRobs =
f(x1, . . . , xn|ω̂0, θ0)

f(x1, . . . , xn|ω̂, θ̂)
. (11.5)

For a sample X1, . . . , Xn with joint pdf f(x1, . . . , xn|ω, θ), the theoretical likelihood
ratio becomes

LR =
f(X1, . . . , Xn|ω̂0, θ0)

f(X1, . . . , Xn|ω̂, θ̂)
(11.6)

and from this we can define the testing procedure.

Likelihood ratio test of H0 : (ω, θ) = (ω, θ0). For a sample
X1, . . . , Xn with joint pdf f(x1, . . . , xn|ω, θ), the likelihood ratio test
evaluates LRobs in (11.5) and assigns the p-value

p = P (LR < LRobs|H0) (11.7)

where LR is defined in (11.6).
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The nuisance parameter ω presents a substantial complication for calculation of
an exact p-value by computer simulation. In principle, to compute an explicit p-
value, we would not only have to assume θ = θ0 (which we do to satisfy H0) but we
would also have to assume some value for ω: to obtain

p = P (
f(X1, . . . , Xn|ω̂0, θ0)

f(X1, . . . , Xn|ω̂, θ̂)
≥ LRobs)

we must have an explicit probability distribution. Put differently, if we were to use
computer simulation to find the exact p-value, we would have to know both the
parameters ω, θ in order to do the simulation.

This problem is insoluble without introducing some further restriction or princi-
ple.1 Luckily, there are two good approximate solutions. Here is the first.

Result Under certain conditions, for large samples, if θ is a vector of
length m then −2 logLR, defined in (11.6), has an approximate χ2

m

distribution, so that an approximation to the p-value in (11.7) may be
obtained from the chi-squared distribution with m degrees of freedom.

The second method is to use ω = ω̂0 as a “plug-in” value, under which to compute
the p-value by simulation. The procedure is to set (ω, θ) = (ω̂0, θ0), generate many

sets of pseudo-data (X
(g)
1 , . . . , X

(g)
n ), and then find the proportion of them for which

LR(g) < LRobs. This constitutes a parametric bootstrap likelihood ratio test.

11.1.4 The likelihood ratio test reproduces, exactly or ap-
proximately, many commonly-used significance tests.

The likelihood ratio test may be used to derive the t test and other standard tests used
in common situations, including the F test in regression (Chapter 12) and analysis of
variance (Chapter 13). For testing independence of two traits (as in Section 10.1.4),
in large samples the likelihood ratio test is approximately equivalent to the χ2 test
of independence, meaning that in large samples the likelihood ratio test gives very
nearly the same p-value as the χ2 test of independence.

1One idea is to find the “worst case” p-value (the largest) among all possible values of ω. However,
this often remains intractable, except in large samples.
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11.1.5 The likelihood ratio test is optimal for simple hy-
potheses.

Let us consider the simplest form of statistical hypothesis testing where, under both
H0 and HA there is a distribution that is completely determined, with no free pa-
rameters. Specifically, we take H0: X ∼ f(x) and HA : X ∼ g(x) and consider the
problem of testing H0 versus the alternative HA. This is often called the case of
“simple versus simple” hypotheses, because a simple hypothesis is one with no free
parameters. If T is a test statistic let us write its level and power (defined in Sections
10.4.1 and 10.4.3) as αT and βT .

The likelihood ratio may be written

LRobs(x) =
f(x)

g(x)

and its theoretical counterpart becomes

LR(X) =
f(X)

g(X)
.

Note that the likelihood ratio test will reject H0 when LRobs(x) is sufficiently small
(which is equivalent to − logLR(x) being sufficiently large). In other words, the
likelihood ratio test will reject H0 when LR(x) < c for some suitable number c. The
level is then

αLR = P (LR(X) < c|H0)

and the power is
βLR = P (LR(X) < c|HA).

The Neyman-Pearson Lemma Let α be a positive number less than 1 and let
c = cα be chosen so that

αLR = α.

Let T (X) be another test statistic having level αT such that

αT ≤ α.

Then the power of these two tests satisfies

βLR ≥ βT .
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Proof: The argument is very similar to that used in proving the theorem on optimality
of Bayes classifiers in Section 4.3.4. 2

In words, the Neyman-Pearson lemma says that the likelihood ratio test is the
optimal test, in the sense of power, for testing H0 versus HA. More generally, likeli-
hood ratio tests may be shown to be optimal for large samples (see Section 5.4.4 of
Bickel and Doksum, 2001, and Section 16.6 of van der Vaart, 1998).

11.1.6 To evaluate alternative non-nested models the like-
lihood ratio statistic may be adjusted for parameter

dimensionality.

The likelihood ratio LRobs in (11.5) compared a statistical model having parameter
vector (ω, θ) with a reduced form of the model in which the parameter was (ω, θ0).
In this case, the statistical model based on (ω, θ0) is said to be nested within the
larger model based on (ω, θ). For instance, the model

Yi ∼ N(β0, σ
2),

independently, for i = 1, . . . , n is nested within the simple linear regression model

Yi ∼ N(β0 + β1xi, σ
2),

independently, for i = 1, . . . , n. Note that LRobs satisfies LRobs ≤ 1: if

L(ω̂, θ̂) = max
(ω,θ)

L(ω, θ)

and

L(ω̂0, θ0) = max
ω

L(ω, θ0),

as in (11.5), then, by definition of the maximum, L(ω̂, θ̂) ≥ L(ω, θ) for any other
value of (ω, θ), including (ω̂0, θ0). Therefore, we have

L(ω̂, θ̂) ≥ L(ω̂0, θ0). (11.8)

The likelihood ratio test accounts for this necessity, and judges the degree to which
L(ω̂, θ̂) exceeds L(ω̂0, θ0) according to (11.7).
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When two models are to be compared and neither is a reduced special case of
the other the models are called non-nested. For non-nested models the likelihood
ratio test no longer applies. How should non-nested models be compared? If the two
models have the same parameter dimensionality it is possible to compare their max-
imized loglikelihood functions. However, because of (11.8), when non-nested models
of different dimensionality are to be compared, some adjustment for dimensionality
of the parameter vectors must be made. The most common methods introduce a
criterion that starts with the maximized loglikelihood and then subtracts a penality
for dimensionality. By convention, to match the usual form of the loglikelihood ratio
statistic, these criteria include a multiplier of -2 so that they may be written as

criterion = −2 ·max loglikelihood + penalty.

The most widely used criteria are the Akaike information criterion, or AIC (Akaike,
1974), and the Bayesian information criterion, or BIC (Schwarz, 1978), for which
the penalties are

AIC penalty = 2p

where p is the number of parameters in the model, and

BIC penalty = p logn,

where n is the sample size. Many variants on these two model selection criteria
have also been proposed; they begin with the same idea, and have more or less the
same general form. Note that in this form smaller values of the criterion indicate
better models. (Akaike, H. (1974) A new look at the statistical model identification,
IEEE Trans. Automatic Control, 19: 716-723. Schwarz, G. (1978) Estimating the
dimension of a model, Ann. Statist., 6: 461-464. Konishi, S., and Kitagawa, G.
(2008) Information Critera and Statistical Modeling, Springer. Brown, E.N., Barbi-
eri, R., Eden, U.T., Frank, L.M. (2003) Likelihood methods for neural data analysis.
In: Feng J, ed. Computational Neuroscience: A Comprehensive Approach. London:
CRC, Chapter 9, pp 253-286. Iyengar, S., and Liao, Q. (1997) Modeling neural
activity using the generalized inverse Gaussian distribution, Biol. Cybernetics, 77:
289-295.)

Example 11.1 Interspike interval distribution in resting retinal ganglion
cells rm In Section 5.4.6 we introduced the inverse Gaussian distribution as the
distribution of interspike intervals for a theoretical integrate-and-fire neuron. Brown
et al. (2003), following Iyengar and Liao (1997), analyzed interspike intervals from a
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resting retinal ganglion neuron recorded in vitro, and compared the fits of exponential,
gamma, and inverse Gaussian distributions. The obtained AIC = 8598, 8567, 8174
for these three models, respectively, indicating a much better fit for the inverse Gaus-
sian distribution than for either of the other distributions. Plots of fitted pdfs overlaid
on the interspike interval histogram were consistent with this evaluation. 2

The motivation for AIC begins with the Kullback-Liebler discrepancy defined
on page 110. Suppose we let f(x) be the true pdf and we wish to obtain a model
with pdf g(x) that is a close as possible to f(x) in the sense of minimzing DKL(f, g).
When we minimize over g(x) we are maximizing Ef(log(g(X))). Consider the special
case of trying to determine the value of a single scalar parameter θ, where the true
value is θ0, based on data x. Then we are trying to find the closest pdf g(x|θ) to
f(x) = g(x|θ0). It is not too hard to show that the expectation Ef (log g(X|θ))
is maximized by θ = θ0. Because θ0 is unknown we might use the loglikelihood
log g(x|θ) as an estimate of Ef (log g(X|θ), and thus might maximize to get the

maximized loglikelihood log g(x|θ̂). But this is, in general, a biased estimate of
Ef (log g(X|θ). Akaike proposed to subtract off an estimate of the bias, and then
showed that the bias is, in general, approximately equal to the dimensionality of
θ. (See Konishi and Kitagawa (2008) for full details.) Multiplying the maximized
loglikelihood by -2 gives the form of AIC above.

BIC begins, instead, with the Bayesian formulation of choosing between models
M1 and M2 based on posterior probability:

p(M1|x) =
f1(x|M1)p(M1)

f1(x|M1)p(M1) + f2(x|M2)p(M2)
(11.9)

where fi(x|Mi) is the pdf under model Mi and p(Mi) is its prior probabilityies, for
i = 1, 2. Equation (11.9) follows from an application of Bayes’ Theorem, as in (4.32).
To eliminate the prior probabilities one may use the Bayes factor, which is the ratio
of posterior odds to prior odds:

BF =
p(M1|x)
p(M2|x)

÷ p(M1)

p(M2)

and, because
p(M1|x)
p(M2|x)

=
f1(x|M1)p(M1)

f2(x|M2)p(M2)
,

we have

BF =
f1(x|M1)

f2(x|M2)
.
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It may be shown that asymptotic approximation of logBF , as n→∞, leads to the
form for BIC given above. See Kass and Raftery (1995). (Kass, R.E. and Raftery,
A. (1995) Bayes factors, J. Amer. Statist. Assoc., 90: 773–795.) More accurate
approximations provide additional intuition, as reviewed by Kass and Raftery. From
a more general perspective, BIC is consistent in the sense that, for sufficiently large
samples, the probability of BIC choosing the correct model will get arbitrarily close
to 1. In practice, the most important fact is that BIC is conservative compared to
AIC in the sense of imposing a larger penalty for dimensionality. Thus, BIC is used,
rather than AIC, when there is a strong preference for models of lower dimensionality.

11.2 Permutation and Bootstrap Tests

11.2.1 Permutation tests consider all possible permutations
of the data that would be consistent with the null
hypothesis.

The idea behind permutation tests is illustrated by a famous example introduced
by Fisher in his book Design of Experiments. There was, apparently, a lady who
claimed to be able to tell the difference between tea with milk added after the tea
was poured, and tea with milk added before the tea was poured. Fisher asked how
one might test this claim experimentally. His discussion emphasized the importance
of randomly allocating the two treatments (milk second versus milk first) to many
cups, without the subject’s knowledge, and then asking for a judgment on each. (See
Section 13.4 for discussion of randomization.) He also considered the question of
sample size, and the computation of a p-value. Fisher suggested using 8 cups of tea,
4 of which would have the tea put in first and 4 of which would have the milk put in
first. The lady had to identify tea first or milk first for each of the 8 cups. The null
hypothesis was that every possible combination of responses would be equally likely,
which corresponds to having no ability to tell the difference. There are

(
8
4

)
= 8!

4!4!
= 70

ways to select 4 tea-first cups among from the 8. Therefore, considering all these
possible permutations, if the lady were randomly guessing, there would be a 1/70
chance she would correctly identify all cups of tea as either tea first or milk first.
Thus, Fisher pointed out, in the event that she correctly identified milk fist or tea
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first for all 8 cups2 there would be evidence against H0 with p = 1
70

= .014.

Example 7.2 (continued, see page 307) We previously applied the two-
sample t-test to the data displayed in Figure 7.3 obtained tobs = −3.19 on 58 degrees
of freedom, giving p = .0023. We now apply a permutation test analogous to that
for the lady tasting tea.

In this data set there are two groups of 30 subjects. The permutation test consid-
ers all of the many ways that 60 subjects, with their learning results, could have been
split into two groups of 30 and then asks, out of all those many ways of permuting
the subjects, how many of them would have led to results as striking as the one
actually observed? The number of ways of splitting 60 individuals into two groups
of 30 is

60!

30!30!
≈ 1.18× 1017.

In other words, there are 1017 different samples of pseudo-data that would be obtained
by permuting the group membership among the 60 subject values. The exact two-
sample permutation test would, in principle, examine all of these 1017 samples and
ask how many of them would produce a t-statistic at least as large in magnitude as
tobs = −3.19. This computation is possible, but it is a bit complicated and we will
skip it here. However, a variant on the idea is easy and will lead us naturally to
the bootstrap procedure. Instead of examining all 1017 permutations, we can sample
from this distribution. In statistical software there is typically a function that does
this sampling by providing random permutations. For example, a sample from the
values 1,2,3,4,5 might be 1,5,3,2,4, which is a permutation of the original values.
To get a relevant random permutation of the data we therefore sample the 60 data
values and assign the first 30 values to the first group (SSSS) and the last 30 values
to the second group (SSST). We then compute the t-statistic for this permuted data
set. If we repeat the procedure a large number of times (say, 10,000 times) we can
thereby generate the distribution of the t-statistic under the permutations. 2

Illustration: Permutation test based on two-sample t statistic To be
clear about the procedure in Example 7.2, above, let us define the t-statistic as a
function of data vectors x and y in several steps. We write the length of a vector
x as length(x), the mean of its components as mean(x), the sample variance of its

2Fisher also pointed out that with 6 cups there would be only 20 permutations and thus one
would at best obtain p = .05; he considered this p-value too large to be useful.
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components as var(x), and we make the following definitions:

df = length(x) + length(y)− 2

vpooled(x, y) =
1

df
((length(x)− 1)var(x) + (length(y)− 1)var(y)) ,

spooled(x, y) =
√

vpooled(x, y)

and

t(x, y) =
mean(x)−mean(y)

spooled(x, y)
√

1
length(x)

+ 1
length(y)

. (11.10)

We then use the following algorithm.

1. For i = 1 to G:

Generate U
(g)
1 , . . . , U

(g)
n1+n2

by permuting the components of the data vector
(x[1], . . . , x[n1], y[1], . . . , y[n2]).

Set x(g) = (U
(g)
1 , . . . , U

(g)
n1 ) and y(g) = (U

(g)
n1+1, . . . , U

(g)
n1+n2

) .

Compute t(g) = t(x(g), y(g)).

2. Set N equal to the number of values g for which |t(g)| ≥ |tobs|.

3. Compute p = N
G
.

The result is a permutation-based p-value for the t-statistic defined in (10.17). The
t-test defined in (10.17) is formulated as a test of H0 : µ1 = µ2 under normality using
(10.19), or via large-sample approximation using (10.18). The permutation test is
more general in the sense that the p-value is valid even if the data are not normally
distributed, and even if the CLT fails to produce approximately-normal means for
the two samples. Furthermore, we may replace the t-statistic based on (10.17), which
uses the pooled estimate of variance under the assumption σ1 = σ2, with (10.20). In
the algorithm above we simply re-define t(x, y) as

t(x, y) =
mean(x)−mean(y)
√

var(x)
length(x)

+ var(y)
length(y)

. (11.11)

In either case, for large samples there is generally very little difference between the
p-values based on permutations and those based on the t or normal distributions.
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The permutation test creates pseudo-data for which the distributions of the two
samples are the same; in this sense we may write the null hypothesis asH0 : FX = FY ,
which is much more restrictive than H0 : µ1 = µ2 and, therefore, in principle much
easier to reject. However, the t-statistic itself will be strongly sensitive to differences
between means, and will tend to be only weakly sensitive to other distinctions be-
tween FX and FY , such as differences in the variances. The permutation test based
on the t-statistic is therefore generally considered to be a reliable two-sample testing
procedure when the main interest is H0 : µ1 = µ2. 2

Example 7.2 (continued) Applying the algorithm above with G = 10, 000
using (11.10) we obtained p = .0019. Note that here the simulation standard error
is SE =

√

(.0019)(.9981)/10, 000 = .00044. Applying the version of the algorithm
based on (11.11) we found p = .0026. Clearly the conclusions are the same, and they
are the same as those based on the ordinary t-test. 2

Permutation tests can involve very complicated test procedures. We give an
example in Section 11.4.2 on page 350.

11.2.2 The Bootstrap samples with replacement.

Suppose we have a vector x whose components are data values. A permutation of the
components of x is a special case of sampling from that data set where (i) the sample
size is equal to the length of x and (ii) the sampling is done without replacement,
meaning that once a data value is selected it can not be selected again. An alternative
type of sampling is with replacement. In this form, if n is the length of x, then one
component of x is drawn at random repeatedly, with all components having equal
probabilities of being drawn on all occasions, until a total n numbers are drawn. In
this case, there may be repetitions of values. For example, when x = (1, 2, 3, 4, 5) is
sampled with replacement we might obtain 3,4,1,4,2. Bootstrap tests are essentially
the same as permutation tests, except that the sampling is done with replacement.

Illustration: Bootstrap test based on two-sample t statistic Using the
same notation as in the illustration of the permutation test on page 340, the bootstrap
test is as follows:

1. For i = 1 to G:

Generate U
(g)
1 , . . . , U

(g)
n1+n2

by sampling the components of the data vector
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(x[1], . . . , x[n1], y[1], . . . , y[n2]) with replacement.

Set x(g) = (U
(g)
1 , . . . , U

(g)
n1 ) and y(g) = (U

(g)
n1+1, . . . , U

(g)
n1+n2

) .

Compute t(g) = t(x(g), y(g)).

2. Set N equal to the number of values g for which |t(g)| ≥ tobs.

3. Compute p = N
G
.

The only distinction in software implementation (e.g., in Matlab) between the boot-
strap and permutation tests would be that the line involving sampling without re-
placement is changed to sampling with replacement. 2

Example 7.2 (continued from page 342) Applying the bootstrap procedure
based on the statistic (11.11) we obtained p = .0022. 2

11.3 Kolmogorov-Smirnov Tests

11.3.1 A Kolmogorov-Smirnov test may be used to test H0: F (x) =

F0(x)

Suppose we have a sample of i.i.d. random variables X1, . . . , Xn each having distribu-
tion function F (x), and suppose we wish to examine whether F (x) takes a specified
form, such as N(0, 1) or Exp(1). The latter case is important in the analysis of spike
train data because the exponential distribution plays a special role in the theory of
point processes (see Section 19.3.5). We write the specified distribution function as
F0(x) and consider the null hypothesis H0: F (x) = F0(x), and we assume F (x) and
F0(x) are continuous.

To test H0 the discrepancy between empirical cdf F̂n(x), which satisfies Fn(x)→
F (x) for all x as n→∞ (see Section 6.2.2), and F0(x) may be examined. A standard
procedure is to consider the largest possible value of the magnitude |F̂n(x)−F0(x)|,
over all x. This is called the Kolmogorov-Smirnov (KS) statistic.

A detail: Strictly speaking, because x ranges from −∞ to ∞ there may
not be a value of x at which the magnitude |F̂n(x)−F0(x)| achieves a maxi-
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mal value. Instead, the least upper bound or supremum is used. This is the
smallest value of all possible values that are larger than |F̂n(x)− F0(x)|.
The supremum of a set of numbers S(x) written supx S(x). Therefore,
the KS statistic is

KS = sup
x
|F̂n(x)− F0(x)|.

2

The distribution of the KS statistic under H0 has been studied and, it turns
out, does not depend on the choice of null cdf F0(x) (see Bickel and Doksum, 2001,
Section 4.1). Many statistical software packages provide p-values for the KS test.

11.4 Multiple Tests

11.4.1 When multiple independent data sets are used to
test the same hypothesis, the p-values are easily com-

bined.

Sometimes results for each of several subjects, or several experimental units (such as
neurons), are equivocal yet all lean in the same direction. Intuitively, such consistency
seems to provide additional evidence of a possible effect. Fisher (1925) suggested a
simple method of combining multiple independent p-values.

Example 11.2 Precisely repeated intracellular synaptic patterns It has
been suggested that precisely timed patterns of synchronous neural activity may
propagate across a cortical circuit and, indeed, that such propagation is a crucial
mode of information transmission in the brain (see Abeles, 2009). Experimental evi-
dence aimed at supporting this idea, which is controversial, was provided by Ikegaya
et al. (2004), who recorded spontaneous intracellular activity in vitro from slices of
mouse primary visual cortex and in vivo from cat primary visual cortex. Ikegaya et
al. (2008) conducted additional experiments and reanalyzed the original data. The
in vitro recordings produced relatively long traces of post-synaptic currents which
the authors examined for repeated precise patterns. To judge whether observed pat-
terns might be explained by chance, in one of their analyses they performed a kind
of permutation test. Because the computations were very time consuming they used
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only 50 permutations and, when they found their observed test statistic to exceed
the values obtained from all 50 sets of pseudo-data they thus achived statistical sig-
nificance p < .02. This was repeated across 5 neurons. In other words, for each of
5 neurons they achieved p < .02, which would seem to be strong statistical evidence
that their null hypothesis should be rejected.3

(Abeles, M. (2009) Synfire chains. Scholarpedia, 4: 1441. Ikegaya, Y., Aaron, G.,
Cossart, R., Aronov, D., Lampl, I., Ferster, D., and Yuste, R. (2004) Synfire chains
and cortical songs: Temporal modules of cortical activity, Science, 304: 559-564.
Ikegaya, Y., Matsumoto, W., Chiou, H.-Y., Yuste, R., and Aaron, G. (2008) Statis-
tical signficance of precisely repeated intracellular synaptic patterns, PLoS ONE, 3:
e3983.) 2

Suppose we have p-values from n independent tests. Fisher observed that under
H0 the p-value for test i would be a uniformly distributed random variable Pi, with
i = 1, . . . , n (see page 313) and, therefore, the random variable

X = −2

n∑

i=1

logPi (11.12)

would follow the distribution
X ∼ χ2

ν (11.13)

where ν = 2n.

Details: From the change of variables formula (the theorem on page 76),
if W ∼ U(0, 1) then − logW ∼ Exp(1). This is not hard to show. It
follows that

−2 logW ∼ Exp(
1

2
)

and the sum of n such independent random variables is distributed as
Gamma(n, 1

2
), which is the same as χ2

ν with ν = 2n. 2

Thus, we may combine the observed p-values p1, . . . , pn by writing

xobs = −2

n∑

i=1

log pi (11.14)

3Some care is required to state correctly the null hypothesis, but roughly speaking it corresponds
to time intervals between post-synaptic currents being i.i.d., which they would not be if there were
repeated patterns.
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and then, based on (11.12) and (11.13) we obtain

pcombined = P (Y > xobs) (11.15)

where Y ∼ χ2
ν with ν = 2n.

Example 11.2 (continued) To combine the 5 p-values of .02 we put pi = .02
for i = 1, 2, 3, 4, 5, in (11.14) to get

xobs = (−2)(5) log(.02) = 39.

From (11.15) we use the χ2
10 distribution to obtain

pcombined = 2.5× 10−5.

Because the authors reported p < .02 for all five neurons, the combined result is
p < 2.5× 10−5, which is very strong evidence against the null hypothesis. 2

11.4.2 When multiple hypotheses are considered, statistical
significance should be adjusted.

In Section 10.4 we tried to clarify the interpretation of significance tests. The whole
discussion concerned the interpretation of a test of a single hypothesis. In many
situations, however, multiple hypotheses must be considered within a single analysis.

Example 11.3 Adaptation in fMRI activity among autistic and control
subjects Autism is characterized by difficulty in social interaction and commu-
nication. One proposal is that autism may involve a defect in the mirror neuron
system, which is active in response to observation of activity by other subjects (thus
the idea that an individual subject’s brain may “mirror” the activity of the other
subject). Several studies found the human mirror system to contain subpopulations
of neurons that adapt when hand movements are observed or executed repeatedly.4

Specifically, fMRI responses to observed or executed movements decreased when the
movement occurred for a second time. Dinstein et al. (2010) studied brain response
adaptation using fMRI, and found that adaptation occurred among autistic subjects
as well as controls across multiple regions of interest. The authors considered this

4This is important to the logic of the mirror neuron argument. See Dinstein (2008).
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to be evidence against mirror system dysfunction in autism. (Dinstein, I. (2008)
Human cortex: Reflections of mirror neurons, Curr. Opin. Biol., 18: R956-969.)
(Dinstein, I., Thomas, C., Humphreys, K., Minshew, N., Behrmann, M. and Heeger,
D. (2010). Normal movement selectivity in autism, Neuron, 13: 461-9.)

A crucial step in their argument involved the definition of each region of inter-
est (ROI). For this they combined anatomical and functional characterizations: for
each ROI they included every voxel that was both (i) located within 15 mm of an
anatomically-defined region and (ii) significantly active based on a t-test of experi-
mental condition versus baseline. Across their ROIs, however, there were thousands
of voxels to be examined. In other words, the authors had to perform thousands of
tests, of thousands of null hypotheses. This is very common in fMRI studies. 2

To see that multiple tests require an additional calculation consider what happens
when 100 tests are made. It might be tempting to declare any of the tests signficant
when p < .05. However, if each of the 100 null hypotheses were true, then we would
expect about (.05)(100) = 5 of the p-values to satisfy p < .05, indicating statistical
significance. Thus, we would expect several such tests (about 5) to yield spurious
(false) results of evidence against the null. An additional calculation makes the
situation even more worrisome. Let us suppose that we have 100 random variables
Ti representing test statistics for null hypotheses H0,i with5

P (|Ti| > cα|H0,i) = α. (11.16)

This implies
P (|Ti| ≤ cα|H0,i) = 1− α

for i = 1, 2, . . . , 100. If all the tests are independent then we have

P (|Ti| ≤ cα for all i|H0,i for all i) = (1− α)100

and, therefore,

P (|Ti| > cα for at least one i|H0,i for all i) = 1− P (|Ti| < cα for all i|H0,i for all i)

= 1− (1− α)100. (11.17)

If we set α = .05 we have

P (|Ti| > cα for at least one i|H0,i for all i) = 1− .95100 = .994.

5We use the absolute value form |Ti| > cα for consistency with the two-sided tests emphasized
in Chapter 10 but the logic is the same for all significance tests.
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In other words, there is more than a 99% chance obtaining at least one spurious
result out of 100. Clearly there must be some re-calibration of significance in order
to guard against misleading findings.

One way to re-calibrate is to consider the version of (11.17) that applies to n
tests,

P (|Ti| > cα for at least one i|H0,i for all i) = 1− (1− α)n (11.18)

and change the criterion cα to some value c such that

P (|Ti| > c for at least one i|H0,i for all i) ≤ α. (11.19)

In this case we say that the family-wise error rate for the collection (family) of n
tests is at most α. Let us refer to cα in (11.16) and (11.18) as the nominal criterion
for each test. The nominal criterion is the cutoff value we would use for any one test
in isolation. We call the criterion c in (11.19) the family-wise criterion. There is a
very simple way of choosing the family-wise criterion in order to satisfy (11.19).

Bonferroni Correction To test n hypotheses H0,i, i = 1, 2, . . . , n with
familywise error rate at most α, as in (11.19), we may set

c = cα/n

where cα/n is the nominal criterion for each test.

For example, if we wish to test 5 hypotheses with family-wise error rate α = .05
we calculate .05/5 = .01 and use the criterion that each of the 5 tests must be
significant with p < .01. This ensures that we would find at least one spuriously
significant test no more than 5% of the time. In the case of n two-sided t-tests, the
Bonferroni correction is to use the criterion tν(1− .025/n) and declare a particular
test significant if |Tobs| > tν(1− .025/n).

The Bonferroni correction is justified by the following inequality. Let Ai represent
the event that the ith test is declared significant, where i = 1, 2, . . . , n. If we examine
3 tests, then n = 3 and P (A1 ∪ A2 ∪ A3) is the probability that at least one of the
tests is significant. For n tests P (A1 ∪A2 ∪ · · · ∪An) is the probability that at least
one test is significant.

Theorem: Bonferroni inequality For events A1, A2, . . . , An we have that

P (A1 ∪A2 ∪ · · · ∪An) ≤ P (A1) + P (A2) + · · ·+ P (An). (11.20)
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Proof: Recall that for two events A and B we have

P (A ∪B) = P (A) + P (B)− P (A ∩ B). (11.21)

This implies
P (A ∪B) ≤ P (A) + P (B). (11.22)

Now consider three events C,D,E. Applying the formula (11.21) with
A = C ∪D and B = E we get

P (C ∪D ∪ E) = P (C ∪D) + P (E)− P ((C ∪D) ∩ E)

and applying (11.21) to the right-hand side with A = C and B = D we
obtain

P (C ∪D ∪ E) = P (C) + P (D)− P (C ∩D) + P (E)− P ((C ∪D) ∩E)

which gives
P (C ∪D ∪E) ≤ P (C) + P (D) + P (E). (11.23)

The inequalities (11.22) and (11.23) are examples of the Bonferroni in-
equality. We can continue the same argument to obtain (11.20). 2

The Bonferroni correction is easy to apply, but it is usually quite conservative
in the sense that it tends to produce relatively few statistically significant tests.
This has led to development of many other ways to control the family-wise error
rate, especially in the context of analysis of variance, which we comment on in
Section 13.1.7. A different idea is to try to control the proportion of spuriously
significant results, which is known as the False Discovery Rate (FDR),

FDR =
number of spuriously significant tests

total number of significant tests
. (11.24)

Here, the spuriously significant tests represent “false discoveries.” In practice one
does not know whether a particular H0 is true or false, so one also does not know
whether a particular statistically significant test is a false discovery (because its H0

is true) or a true discovery (because its H0 is false). Therefore, the numerator and
denominator in (11.24) are not known. However, under certain general conditions it
turns out to be possible to control the expected false discovery rate. We will use the
letter q to represent the desired false discovery rate, such as q = .05.

FDR algorithm
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1. Perform n tests using statistics Ti, for i = 1, . . . , n, and obtain n p-values.

2. Put the p-values in ascending order p(1), p(2), . . . , p(n) (so p(1) is the smallest
p-value) and let T(j) be the test having p-value p(j).

3. Let r be the largest value of j such that

p(j) ≤
jq

n
.

4. Consider the tests T(1), T(2), . . . , T(r) to be significant with expected false dis-
covery rate less than q.

2

The FDR procedure is justified by the following inequality (see Benjamini and
Yekutieli, 2001; Genovese, Lazar, and Nichols, 2002). (Genovese, C.R., Lazar, N.A.,
and Nichols, T.E. (2002). Thresholding of statistical maps in functional neuroimag-
ing using the false discovery rate, NeuroImage, 15: 870-878. Benjamini, Y. and
Yekutieli, D. (2001) The control of false discovery rate in multiple testing under
dependency, Ann. Statist., 29: 1165-1188.)

FDR inequality Under certain conditions, when tests are declared signficant
using the FDR algorithm we have

E(FDR) ≤ q.

Example 11.3 (continued) To define their regions of interest, Dinstein et al.
had to select functionally active voxels based on thousands of t tests. For this purpose
they used FDR, setting the rate at q = .05. 2

Yet another strategy for grappling with multiple hypotheses is available in some
repeated-trial contexts. It is illustrated in Example 5.7

Example 5.7 (continued from page 154) Figure 5.7 displayed decoding
accuracy based on MEG sensor recordings in an experiment on overt and imagined
wrist movement. In that work, and in MEG studies generally, it is also of interest
to find the brain source locations of such sensor observations. This is called the
source localization problem (see Example 12.9). One issue is that large numbers of
possible sources, typically thousands, are examined and there is the potential for
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false discoveries. Xu et al. (2011) described a method of finding regions of brain
activity following the application of a standard source localization algorithm, and
they applied a permutation test to guard against spurious results. (Xu, Y., Sudre,
G.P., Wang, W., Weber, D.J., and Kass, R.E. (2011) Characterizing global statistical
significance of spatio-temporal hot spots in MEG/EEG source space via excursion
algorithms, Statist. Medicine, 30: 2854–2866.) In their scheme the sensor data from
a single subject formed a 3-dimensional array with dimensions R ×M × T , where
R was the number of repeated trials, M was the number of sensor signals, and T
was the number of time points. A source localization algorithm produced an N × T
array of source signals, where N was the number of sources. They then defined
a collection of N × T likelihood ratio statistics aimed at identifying sources that
contained directional hand movement information; these likelihood ratio statistics
were thresholded and clustered into spatio-temporal regions that could represent
important sources of activity. The finished product was 9 spatial-temporal regions
having directional hand movement information from a single subject. This was a
complicated procedure involving several distinct algorithms. To determine a p-value
for the set of regions Xu et al. performed 100,000 permutations of the trials6 and for
each resulting set of pseudo-data they ran the the entire procedure. They then asked
how many results based on pseudo-data were as extreme as those obtained from the
data. This allowed them to report p < 10−5 for the set of activity regions obtained
from the data, which is very strong evidence that the activity regions were real as
opposed to representing statistically spurious results. The key idea here is that a
p-value may be obtained for a procedure that searches across many spatial-temporal
locations, corresponding to many null hypotheses of no directionally-related activity,
by evaluating the procedure on each set of pseudo-data generated by a permutation
test. 2

6The permutations were done in source space; see Xu et al. (2011).
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Chapter 12

Linear Regression

c©2010 SPRINGER SCIENCE+BUSINESS MEDIA, LLC. All rights reserved. No
part of this work may be reproduced in any form without the written permission of
SPRINGER SCIENCE+BUSINESS MEDIA, LLC.

We introduced linear regression in Section 1.2.1 (on page 13) by placing it in the
context of curve-fitting, reviewing the method of least squares, and providing an ex-
plicit statement of the linear regression model. Our purpose there was to use linear
regression as a concrete example of a statistical model, so that we could empha-
size a few general points, including the role of models in expressing knowledge and
uncertainty via inductive reasoning. In Chapters 7-11 we presented the main ideas
behind two key inductive reasoning techniques: confidence intervals and significance
tests. In this chapter we step through the application of these techniques to linear
regression. In Sections 12.1-12.4 we treat the simple linear regression model given by

Yi = β0 + β1xi + ǫi (12.1)

for i = 1, . . . , n, where ǫi is a random variable. The adjective “simple” refers to the
single x variable on the right-hand side of (12.1). When there are two or more x vari-
ables on the right-hand side the terminology multiple regression is used instead. We
go over some of the most fundamental aspects of multiple regression in Section 12.5.

To help fix ideas, as we proceed we will refer to several examples.

Example 12.1 Neural correlates of reward in parietal cortex Platt and

353
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Figure 12.1: Plots of firing rate (in spikes per second) versus reward volume (as
fraction of the maximal possible reward volume). The plot represents firing rates
during 200 milliseconds following onset of a visual cue across 329 trials recorded from
an LIP neuron. The 329 pairs of values have been reduced to 7 pairs, corresponding
to 7 distinct levels of the reward volume. Each of the 7 yi values in the figure is a
mean (among the trials with xi as the reward volume), and error bars representing
standard errors of each mean are also visible. A least-squares regression line is
overlaid on the plot.

Glimcher (1999) suggested that cortical areas involved in sensory-motor processing
may encode not only features of sensation and action but also key inputs to deci-
sion making. (Platt, M.L. and Glimcher, P.W. (1999) Neural correlates of decision
variables in parietal cortex, Nature, 400: 233-238.) To support their claim they
recorded neurons from the lateral intraparietal (LIP) region of monkeys during an
eye movement task, and used linear regression to summarize the increasing trend in
firing rate of intraparietal neurons with increasing expected gain in reward (volume
of juice received) for successful completion of a task. Figure 12.1 shows plots of firing
rate versus reward volume for a particular LIP neuron following onset of a visual cue.
2

Example 2.1 (continued from page 32) n their analysis of saccadic reaction
time in hemispatial neglect, Behrmann et al. used linear regression in examining the
modulation of saccadic reaction time as a function of angle to target by eye, head,
or trunk orientation. We refer to this study in Section 12.5. 2

In Chapter 1 we used Example 1.5 on neural conduction velocity to illustrate
linear regression. Another plot of the neural conduction velocity data is provided
again in Figure 12.2.
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Figure 12.2: Plot of the Hursh conduction velocity data set, with data points in
gray except for a particular point (xi, yi) which is shown in black to identify the
corresponding fitted value ŷi. The regression line also passes through the point
(x̄, ȳ), as indicated on the plot.

Before we begin our discussion of statistical inference in linear regression, let us
recall some of the things we said in Chapter 1 and provide a few basic formulas.

Given data n data pairs (xi, yi), least squares finds β̂0 and β̂1 that satisfy

n∑

i=1

(

yi − (β̂0 + β̂1xi)
)2

= min
β∗

0 ,β∗

1

n∑

i=1

(yi − (β∗
0 + β∗

1xi))
2 (12.2)

where we use β∗
0 and β∗

1 as generic possible estimates of β0 and β1. The formulas
(obtained by calculus) are

β̂1 =

∑

i(yi − ȳ)(xi − x̄)
∑

i(xi − x̄)2
(12.3)

and
β̂0 = ȳ − β̂1x̄. (12.4)
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The resulting fitted line
y = β̂0 + β̂1x (12.5)

is the linear regression line (and often “linear” is dropped).

Details: To be clear what we mean when we say that the least-squares
estimates may be found by calculus, let us write

g(β0, β1) =
n∑

i=1

(yi − (β0 + β1xi))
2 .

The formulas (12.4) and (12.3) may be obtained by computing the partial
derivatives of g(β0, β1) and then solving the equations

0 =
∂g

∂β0

0 =
∂g

∂β1
.

2

The least-squares fitted values at each xi are

ŷi = β̂0 + β̂1xi (12.6)

and the least-squares residuals are

ei = yi − ŷi. (12.7)

See Figure 12.2. If we plug (12.4) into (12.5) we get

y − ȳ = β̂1(x− x̄) (12.8)

which shows that the regression line passes through the point (x̄, ȳ), as may be seen
in Figure 12.2. It also implies that

n∑

i=1

ei = 0, (12.9)

which is useful as a math fact, and also can be important to keep in mind in data
analysis: least squares residuals fail to satisfy (12.9) only when a numerical error has
occurred.
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Details: We have
n∑

i=1

ei =

n∑

i=1

(yi − ȳ + ȳ − ŷi). (12.10)

Because
∑
yi = nȳ we have

n∑

i=1

(yi − ȳ) = 0 (12.11)

and, similarly,
n∑

i=1

(xi − x̄) = 0. (12.12)

Applying (12.8) when x = xi gives

ŷi − ȳ = β̂1(xi − x̄) (12.13)

and combining (12.12) with (12.13) gives

n∑

i=1

(ŷi − ȳ) = 0. (12.14)

Finally, using (12.11) with (12.14) in (12.10) gives (12.9). 2
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Figure 12.3: The hemodynamic response function defined by Equation (12.19).
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The linear regression model is important in the analysis of neural data not only
because many noisy relationships are adequately described as linear, but also—as we
tried to explain in Section 1.2.1—because the framework gives us a way of thinking
about relationships between measured variables. For this reason, we began with the
more general model in Equation (1.2), i.e.,

Yi = f(xi) + ǫi, (12.15)

and only later, in Equation (1.3), specified that f(x) is taken to be linear, i.e.,

f(x) = β0 + β1x. (12.16)

Equation (1.2), repeated here as (12.15), gave substance to the diagram in Equation
(1.1), i.e.,

Y ←− X. (12.17)

To incorporate multiple explanatory variables we replace f(x) in (12.15) with f(x1, . . . , xp),
and to extend beyond the additive form of noise in (12.15) we replace the diagram
in (12.17) with

Y ←−
{

noise
f(x1, . . . , xp).

(12.18)

This diagram is supposed to indicate a variety of generalizations of linear regression
which, together, form the class of methods known as modern regression. In this
chapter we lay the groundwork for modern regression by discussing many aspects of
linear regression. Generalizations are described in Chapters 14 and 15.

While (12.15) and (12.18) emphasize potential nonlinearity in the way a variable
x, or multiple variables x1, . . . , xp may influence y, it turns out that linear regression
may be used to fit some nonlinear relationships. This is discussed in Section 12.5.4.
Here is a particularly simple, yet important additional example.

Example 12.2 BOLD hemodynamic response in fMRI In Figure 1.3 of Exam-
ple 1.3 we displayed fMRI images from a single subject during a simple finger-tapping
task in response to a visual stimulus. As we said there, fMRI detects changes in blood
oxygenation and the measurement is known as the BOLD signal, for Blood Oxygen-
Level Dependent signal. The typical hemodynamic response that produces the signal
is relatively slow, lasting roughly 20 seconds. Many experiments have shown, how-
ever, that it has a reasonably stable form (see Glover, 1999). (Glover, G.H. (1999)
Deconvolution of Impulse Response in Event-Related BOLD fMRI, NeuroImage, 9:
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416–429.) Software for analyzing fMRI data, such as BrainVoyager (see Goebel et
al., 2006; Formisan et al., 2006), often uses a particular hemodynamic function.
(Goebel, R. Esposito, F., and Formisano, E. (2006). Analysis of FIAC data with
BrainVoyager QX: From single-subject to cortically aligned group GLM analysis and
self-organizing group ICA. Human Brain Mapping, 27: 392-401. Formisano, E., Di
Salle, F., and Goebel R. (2006) Fundamentals of data analysis methods in fMRI. In
Advanced Image processing in magnetic resonance imaging. Landini L, Positano V,
Santarelli M.F.,. (Eds).) Figure 12.3 displays a plot of such a theoretical hemody-
namic response function h(t) defined by

h(t) =

(
t

d1

)a1

exp(−t− d1

b1
)− c

(
t

d2

)a2

exp(−t− d2

b2
) (12.19)

where a1, b1, d1, a2, b2, d2 and c are parameters that have default values in the soft-
ware. Using this function the fMRI data at a particular voxel (a particular small
rectangular box in the brain) may be analyzed using linear regression. Let us suppose
we have an on/off stimulus, as is often the case, and let uj = 1 when the stimulus
is on and 0 otherwise, j = 1, . . . , T . The effect at time i of the stimulus being on
at time j is assumed to follow the hemodynamic response function, i.e., the effect is
determined by h(t) where t = i−j is the delay between the stimulus and the response
time i. It is also assumed that the effects of multiple “on” stimuli at different times
j produce additive effects at different time lags i − j. Therefore, the total stimulus
effect at time i is1

xi =
∑

j<i

h(i− j)uj. (12.20)

The linear regression model (12.1) may then be fitted, and the coefficient β1 rep-
resents the overall magnitude of the increased BOLD response due to the activity
associated with the stimulus. 2

1This expression is known as the convolution of the hemodynamic response function h(t) with
the stimulus function uj.
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12.1 The Linear Regression Model

12.1.1 Linear regression assumes linearity of f(x) and inde-

pendence of the noise contributions at the various
observed x values.

The model (12.15) is additive in the sense that it assumes the noise, represented by ǫi
is added to the function value f(xi) to get Yi. This entails a theoretical relationship
between x and y that holds except for the “errors” ǫi. Linear regression further
specializes by taking f(x) to be linear as in (12.16) so that we get the model (12.1).
The ǫi’s are assumed to satisfy

E(ǫi) = 0

for all i, so that E(Yi) = β0 + β1xi. In words, the linear relationship y = β0 + β1x
is assumed to hold “on average,” that is, apart from errors that are on average zero.
Additivity of the errors and linearity of E(Yi) are the most fundamental assumptions
of linear regression. In addition, the errors ǫi are assumed to be independent of
each other. The independence assumption may be violated when observations are
recorded sequentially across time, in which case more elaborate time series methods
are needed. These are discussued in Chapter 18.

Important, though less potentially problematic, additional assumptions are that
the variances of the ǫi’s are all equal, so that the variability of the errors does not
change with the value of x, and that the errors are normally distributed. These
latter two assumptions guarantee that the 95% confidence intervals discussed in
Section 12.3.1 have the correct probability .95 of covering the coefficients and the
significance tests in Section 12.3.2 have the correct p-values. In sufficiently large
samples these two assumptions become unnecessary, as the confidence intervals and
significance tests will be valid, approximately.

To summarize, the assumptions of linear regression may be enumerated, in order
of importance, as follows:

(i) the linear regression model (12.1) holds;

(ii) the errors satisfy E(ǫi) = 0 for all i;

(iii) the errors ǫi are independent of each other;
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(iv) V (ǫi) = σ2 for all i (homogeneity of error variances), and

(v) ǫi ∼ N(0, σ2) (normality of the errors).

12.1.2 The relative contribution of the linear signal to the
total response variation is summarized by R2.

As shown in Figure 12.2, in Example 1.5 linear regression provides a very good
representation of the relationship between x and y, with the points clustering tightly
around the line. In other cases there is much more “noise” relative to “signal,”
meaning that the (xi, yi) values scatter more widely, so that the residuals tend to be
much larger. In this section we describe two measures of residual deviation.

The error standard deviation σ (see item (iv) in the assumptions in Section 12.1.1)
represents the average size of the error, in the sense that it is an average amount of
deviation of each ǫi from zero. Thus, σ tells us how far off, on average, we would
expect the line to be in predicting a value of y at any given xi. It is estimated by
s =
√
s2 where

s2 =
1

n− 2
SSE (12.21)

and

SSE =
n∑

i=1

(yi − ŷi)
2 (12.22)

is the sum of squares for error or the residual sum of squares. (Here ŷi is defined by
(12.6).) The variance estimate s2 is then also called the residual mean squared error
and we often write

MSE = s2. (12.23)

This definition of s makes it essentially the standard deviation of the residuals, except
that n−2 is used in the denominator instead of n−1; here there are two parameters
β0 and β1 being estimated so that two degrees of freedom are lost from n, rather
than only one.

The other quantity, R2, is interpreted as the fraction of the variability in Y that
is attributable to the regression, as opposed to error. We begin by defining the total
sum of squares

SST =

n∑

i=1

(yi − ȳ)2. (12.24)



362 CHAPTER 12. LINEAR REGRESSION

This represents the overall variability among the yi values. We then define

R2 = 1− SSE

SST
. (12.25)

The fraction SSE/SST is the proportion of the variability in Y that is attributable
to error, and R2 is what’s left over, which is attributable to the regression line. The
value of R2 is between 0 and 1. It is 0 when there is no linear relationship and 1
when there is a perfect linear relationship. If we define the sum of squares due to
regression as the difference

nSSR = SST − SSE (12.26)

then we can re-write R2 in the form

R2 =
SSR

SST
. (12.27)

From this version we get the interpretation of R2 as “the proportion of variability of
Y that is explained by X.” In different terminology, we may think of SSR as the
signal variability (often called “the variability due to regression”) and SSE as the
noise variability. Then R2 = SSR/(SSR + SSE) becomes the relative proportion
of signal-to-noise variability. (The ratio of signal-to-noise variabilities2 would be
SSR/SSE.)

In (12.26) we defined the sum of squares due to regression by subtraction. There
is a different way to define it, so that we may see how total variability (SST ) is
decomposed into regression (SSR) and error components (SSE). The derivation
begins with the values yi, ŷi, and ȳ, as shown in Figure 12.2, where ŷi = β̂0 + β̂1xi.
Writing yi − ȳ = yi − ŷi + ŷi − ȳ, we have

n∑

i=1

(yi − ȳ)2 =

n∑

i=1

(yi − ŷi)
2 +

n∑

i=1

2(yi − ŷi)(ŷi − ȳ) +

n∑

i=1

(ŷi − ȳ)2

but after plugging in the definition of ŷi from (12.6) some algebra shows that the
cross-product term vanishes and, defining

SSR =
n∑

i=1

(ŷi − ȳ)2, (12.28)

2The signal-to-noise ratio is a term borrowed from engineering, where it refers to a ratio of
the power for signal to the power for noise, and is usually reported in the log scale; under certain
stochastic models it translates into a ratio of signal variance to noise variance.
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we have

SST = SSR + SSE. (12.29)

As we mention again in Section 12.5.3, the vanishing of the cross-product may be
considered, geometrically, to be a consequence of the Pythagorean theorem. Equation
(12.29) is important in understanding linear regression and analysis of variance: we
think of the total variation as coming from different additive components, whose
magnitudes we compare.

The estimated standard deviation s has the units of Y and is therefore interpretable—
at least to the extent that the Y measurements themselves are interpretable. But
R2 is dimensionless. Unfortunately, there are no universal rules of thumb as to what
constitutes a large value: in some applications one expects an R2 of at least .99 while
in other applications an R2 of .40 would be considered substantial. One gets a feeling
for the size of R2 mainly by examining, and thinking about, many specific examples.

12.1.3 For large samples, if the model is correct, the least-
squares estimate is likely to be accurate.

In presenting the assumptions on page 360 we noted that they were listed in order of
importance and, in particular, normality of the errors is not essential. The following
theoretical result substantiates the validity of least-squares for non-normal errors in
large samples.

Theorem: Consistency of least squares estimators For the linear regression
model (12.1) suppose conditions (i)-(iv) hold and let x1, x2, . . . , xn, . . . be a sequence
of x values such that

n∑

i=1

(xi − x̄)2 →∞ (12.30)

as n→∞. Then the least-squares estimator defined by (12.3) satisfies

β̂1
P→ β1

β̂0
P→ β0. (12.31)

In other words, under these conditions β̂1 and β̂0 are consistent estimators of β1 and
β0.
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Proof: This is essentially a consequence of the law of large numbers in a non-i.i.d.
setting, where linear combinations of the Yi values are being used according to (12.3)
and (12.4). We omit the proof and refer the interested reader to Wu (1981), which
examines a more general problem but provides extensive references and discussion.
(Wu, C.-F. (1981) Asymptotic theory of nonlinear least squares estimation, Ann.
Statist., 9: 501–503.) 2.

Note that to fit a line we must have at least 2 distinct values, so that not every
observation can be made at the same x value. The condition (12.30) fails when, for
all sufficiently large i and j, xi = xj . In other words, it rules out degenerate cases
where essentially all the observations (i.e., all but finitely many of them) are made
at a single x value.3 We may interpret this asymptotic statement as saying that for
all situations in which there is any hope of fitting a line to the data, as the sample
size increases the least-squares estimator of the slope will converge to the true value.

12.2 Checking Assumptions

12.2.1 Residual analysis is helpful because residuals should
represent unstructured noise.

In examining single batches of data, in Chapter 2, we have seen how the data may
be used not only to estimate unknown quantities (there, an unknown mean µ) but
also to check assumptions (in particular, the assumption of normality). This is
even more important in regression analysis and is accomplished by analyzing the
residuals defined in (12.7). Sometimes the residuals are replaced by standardized
residuals. The ith standardized residual is ei/SD(ei), where SD(ei) is the standard
deviation of ei (as estimated from the data). Dividing by the standard deviation
puts the residuals on a familiar scale: since they are supposed to be normal, about
5% of the standardized residuals should be either larger than 2 or smaller than −2.
Standardized residuals that are a lot larger than 2 in magnitude might be considered
outliers.

A detail: There are two different ways to standardize the residuals. We
have here taken SD(ei) to be the estimated standard deviation of ei.

3In fact, the results cited in Wu (1981) show that (12.30) is necessary and sufficient for (12.31).
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The formula for SD(ei) involves the xi values. An alternative would be
to compute the sample variance of the residuals

s2
e =

1

n− 1

∑

(ei − ē)2

and take its square root. The standardization using SD(ei), which allows
the n residual standard deviations to be different, is often called studenti-
zation (by analogy with the ratio that defines Student’s t distribution, see
page 150). The statistical software packages we are most familiar with
use SD(ei) to standardize the residuals. 2
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Figure 12.4: Residual plots: the top left plot depicts unstructured noise while the
latter three reveal structure, and thus deviations from the assumptions.

Two kinds of plots are used. Residual versus fit plots are supposed to reveal (i)
nonlinearity, (ii) inhomogeneity variances, or (iii) outliers. Plots having structure of
the kind that would indicate these problems are shown in the Figure 12.4. The first
plot is typical of data with no systematic variation remaining after linear regression:
the pattern is “random,” specifically, it is consistent with errors that are independent
and normally distributed, all having the same distribution. The second plot shows
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departure from linearity; the third indicates more variability for large fitted values
than for smaller ones. The last plot has an outlier, indicating a point that is way off
the fitted line.

Histograms and Q-Q plots of the residuals are also used to assess assumptions.
These are supposed to (i) reveal outliers and (ii) check whether the errors may be
described, at least approximately, by normal distribution.

12.2.2 Graphical examination of (x, y) data can yield crucial

information.
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Figure 12.5: Plots of four very different data sets all having the same fitted regression
equation Y = 3 + .5x and R2 = .667. These were discussed in Anscombe (1973).
(Anscombe, F.J. (1973), Graphs in statistical analysis, American Statistician, 27:
17-21.)

As we tried to emphasize in Chapters 1 and 2, it is important to examine data
with exploratory methods, using visual summaries where possible. The following
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illustration gives a nice demonstration of how things can go wrong if one relies solely
on the simplest numerical summaries of least-squares regression.

Illustration Figure 12.5 shows a striking example in which four sets of data
all have the same regression equation and R2, but only in the first case (data set 1)
would the regression line appropriately summarize the relationship. In the second
case (data set 2) the relationship is clearly nonlinear, in the third case there is a big
outlier and removing it dramatically changes the regression. In the fourth case the
slope of the line is determined entirely by the height of the point to the right of the
graph; therefore, since each point is subject to some random fluctuation, one would
have to be very cautious in drawing conclusions. 2

This illustration underscores the value of plotting the data when examining linear
or curvilinear relationships.

12.3 Evidence of a Linear Trend

12.3.1 Confidence intervals for slopes are based on SE, ac-
cording to the general formula.

When reporting least-squares estimates, standard errors should also be supplied.
That is, one reports either β̂1±SE(β̂1) or a confidence interval. Standard errors are
given as standard output from regression software. The general formula for standard
errors in linear regression appears in Equation (12.59). To get an approximate 95%
confidence interval for β1 based on β̂1 and SE(β̂1), we again use the general form
given by (7.8), i.e.,

approx. 95% CI = (β̂1 − 2 · SE(β̂1), β̂1 + 2 · SE(β̂1)). (12.32)

An alternative, in small samples, is analogous to the small sample procedure in (7.29)
used to estimate a population mean: we substitute for 2 the value t.975,ν , where now
ν = n− 2 because we have estimated two parameters (intercept and slope) and thus
have lost two degrees of freedom. Thus, we would use the formula

95% CI = (β̂1 − t.025,n−2 · SE(β̂1), β̂1 + t.025,n−2 · SE(β̂1)). (12.33)
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Example 1.5 (continued, see page 355) Using least squares regression we
found β̂1 = 6.07 and SE(β̂1) = .14. We would report this by saying that, on average,
action potential velocity increases by 6.07± .14 meters per second for every micron
increase in diameter of a neuron. Applying (12.32), an approximate 95% CI for the
slope of the regression line is 6.07± 2(.14) or (5.79, 6.35). For these data there were
n = 67 observations, so we have ν = 65 and t.975,n−1 = 2.0. Thus, the CI based on
(12.33) is the same as that based on (12.32). 2

Formula (12.32) may be justified by an extension of the theorem on the consis-
tency of β̂1 in (12.31).

Theorem: Asymptotic normality of least squares estimators For the lin-
ear regression model (12.1) suppose conditions (i)-(iv) hold and let x1, x2, . . . , xn, . . .
be a sequence of x values such that

1

n

n∑

i=1

(xi − x̄)2 → c (12.34)

for some positive constant c, as n → ∞. Then the least-squares estimator defined
by (12.3) satisfies

β̂1 − β1

SE(β̂1)

D→ N(0, 1)

β̂0 − β0

SE(β̂0)

D→ N(0, 1) (12.35)

where SE(β̂1) and SE(β̂0) are the standard errors given by (12.59).

Proof: This is a consequence of the CLT, but requires some algebraic manipu-
lation. We omit the proof and again refer the interested reader to Wu (1981) for
references. 2

The condition (12.34) implies (12.30). It would be satisfied if we were drawing xi

values from a fixed probability distribution.4 In practice, it is essentially always true
that the xi values in the data could be conceived as coming from some probability
distribution (one that is not concentrated on a single value), so this is an innocuous

4Beyond (12.30), condition (12.34) says that the xi values do not diverge extremely quickly,

which would make β̂1 converge faster than 1/
√

n.
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condition. On the other hand, the Anscombe example in Section 12.2.2 is a reminder
that sensible interpretations require the fitted line to represent well the relationship
between the xi and yi values. In the theoretical world this is expressed by saying
that the model assumptions (i)-(iv) are satisfied. In practice we would interpret
the theorems guaranteeing consistency and asymptotic normality of least-squares
estimators, according to (12.31) and (12.35), as saying that if the regression model
does a good job in describing the variation in the data, and the sample size is not too
small, then the approximate confidence interval in (12.32) will produce appropriate
inferences.

12.3.2 Evidence in favor of a linear trend can be obtained

from a t-test concerning the slope.

In Examples 1.5 and 12.1 it is obvious that there are linear trends in the data.
This kind of increasing or decreasing tendency is sometimes a central issue in an
analysis. Indeed, in Example 12.1 the quantitative relationship, meaning the number
of additional spikes per second per additional drop of juice, is not essential. Rather,
the main conclusion involved the qualitative finding of increasing firing rate with
increasing reward. In problems such as this, it makes sense to assume that y is
roughly linear in x but to consider the possibility that in fact the slope of the line is
zero—meaning that y is actually constant, on average, as x changes, that is, that y
is really not related to x at all. We formalize this possibility as the null hypothesis
H0: β1 = 0 and we test it by applying the z-test discussed in Section 10.3.2. In the
one-sample problem of testing H0: µ = µ0, considered in Section 10.3.3, the z-test
is customarily replaced by a t-test, which inflates the p-value somewhat for small
samples and is justified under the assumption of normality of the data. Similarly,
in linear regression, the z-test may be replaced by a t-test under the assumption of
normality of errors (assumption (v) on page 360). The test statistic becomes the
t-ratio,

t-ratio =
β̂1

SE(β̂1)
. (12.36)

For large samples, under H0, this statistic has a N(0, 1) distribution, but for small
samples, if assumption (v) is satisfied, under H0 the t-ratio has a t distribution on
ν = n − 2 degrees of freedom. This is the basis for the p-value reported by most
statistical software. Here, the degrees of freedom are n−2 because two parameters β1

and β0 from n freely ranging data values yi. Generally speaking, when the magnitude



370 CHAPTER 12. LINEAR REGRESSION

of the t-ratio is much larger than 2 the p-value will be small (much less than .05,
perhaps less than .01) and there will be clear evidence against H0: β1 = 0 and in
favor of the existence of a linear trend.

Example 1.5 (continued, see page 13) For the conduction velocity data,
testing H0: β1 = 0 with (12.36) we obtained p < 10−15. Keeping in mind that
very extreme tail probabilities are not very meaningful (they are sensitive to small
departures from normality of the estimator) we would report this result as very highly
statistically significant with p << .0001, where the notation << is used to signify
“much less than.” 2

Example 12.1 (continued from page 353) For the data shown in Figure 12.1
the authors reported p < .0001. 2

In the data reported in Figure 12.1 there are only 7 distinct values of xi, with
many firing rates (across many trials) corresponding to each reward level. Thus, the
329 data pairs have been aggregated to 7 pairs with the mean value of yi reported for
each xi. It turns out that the fitted line based on means is the same as the fitted line
based on all 329 values considered separately. However, depending on the details of
the way the computation based on the means is carried out, the standard error may
or may not agree with the standard error obtained by analyzing all 329 values. The
correct hypothesis test would be based on all 329 values.

12.3.3 The fitted relationship may not be accurate outside
the range of the observed data.

An interesting related issue arises in Example 1.5. There, the fitted line does not go
through the origin (0, 0). In fact, according to the fitted line, when the diameter of
the nerve is 0, the conduction velocity becomes negative! Should we try to fix this?

It is possible to force the line through (0, 0) by omitting the intercept in the
fitting process. Regression software typically provides an option for leaving out the
intercept. However, for this data set, and for many others, omission of the intercept
may be unwise. The reason is that the relationship may well be nonlinear near the
origin, and there are no data to determine the fitted relationship in that region.
Instead, we would view the fitted relationship as accurate only for diameters that
are within the range of values examined in the data. Put differently, when the linear
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regression model does a good job of representing the regularity and variability in the
data it allows us to interpolate (predict values within the range of the data) but may
not be trustworthy if we try to extrapolate (predict values outside the range of the
data).

12.4 Correlation and Regression

Sometimes the “explanatory variable” x is observed, rather than fixed by the experi-
menter. In this case the pair (x, y) is observed and we may model this by considering
a pair of random variables X and Y and their joint distribution. Recall that the cor-
relation coefficient ρ is a measure of linear association between X and Y . As we
discussed in Section 4.2.1, the best linear predictor β0 + β1X of Y satisfies

β1 =
σY

σX

· ρ. (12.37)

as in Equation (4.9). Also, the theoretical regression of Y on X is defined to be
E(Y |X = x), which is a function of x, and it may happen that this function is
linear:

E(Y |X = x) = β0 + β1x.

In Chapter 4 we noted that the regression is, in fact, linear when (X, Y ) has a bivari-
ate normal distribution and then (12.37) holds. This linearity, and its interpretation,
was illustrated in Figure 4.3. However, the right-hand plot in Figure 4.3 concerns
data, rather than a theoretical distribution, and there is an analogous formula and
interpretation using the sample correlation r, which was defined in (4.7). Under the
assumption of bivariate normality, it may be shown that the sample correlation r is
the MLE of ρ.

The sample correlation is related to the relative proportion of signal-to-noise
variability R2 by R2 = r2. Important properties are the following:

• −1 ≤ r ≤ 1 with r = 1 when the points fall exactly on a line with positive
slope and r = −1 when the points fall exactly on a line with negative slope;

• the value of r does not depend on the units in which the two variables are
measured;
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• just as ρ measures linear association between random variables X and Y , so
too may r be considered a measure of linear association.

As we said in discussing R2, there are no general guidelines as to what consti-
tutes a “large” value of the correlation coefficient. Interpretation depends on the
application.

12.4.1 The correlation coefficient is determined by the re-
gression coefficient and the standard devitations of x

and y.

Equation (12.37) gives the relationship of the theoretical slope β1 to the theoretical
correlation coefficient ρ. For data pairs (xi, yi) we have the analogous formula

β̂1 =
sY

sX

· r.

As a consequence, if x and y have about the same variability, the fitted regression
slope becomes approximately equal to the sample correlation. In some contexts it
is useful to standardize x and y by dividing each variable by its standard deviation.
When that is done, the regression slope will equal the sample correlation.

12.4.2 Association is not causation.

There are numerous examples of two variables having a high correlation while no one
would seriously suggest that high values of one causes high values of the other. For
example, one author (Brownlee, 1965) looked at data from many different countries
and pointed out that the number of telephones per capita had a strong correlation
with the death rate due to heart disease. (Brownlee, KA (1965) Statistical Theory
and Methodology in Science and Engineering, Wiley.) In such situations there are
confounding factors that, presumably, have an effect on both variables and thus create
a “spurious” correlation. Only in well-performed experiments, often using random-
ization5, can one be confident there are no confounding factors. Indeed, discussion

5Randomization refers to the random assignment of treatments to subjects, and to the process
of randomly ordering treatment conditions; we discuss this further in Section 13.4.
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sections of articles typically include arguments as to why possible confounding factors
are unlikely to explain reported results.

12.4.3 Confidence intervals for ρ may be based on a trans-
formation of r.

The sample correlation coefficient r may be considered an estimate of the theo-
retical correlation ρ and, as we mentioned on page 371, under the assumption of
bivariate normality r is the MLE of ρ. To get approximate confidence intervals the
large-sample theory of Section 8.4.3 may be applied.6 If we have a random sample
(X1, Y1), . . . , (Xn, Yn) we may compute its sample correlation Rn, which is itself a
random variable (so that when X1 = x1, Y1 = y1, . . . , Xn = xn, Yn = yn we compute
the sample correlation Rn = r based on (x1, y1), . . . , (xn, yn)). Now, if we consider a
sequence of such samples from a bivariate normal distribution with correlation ρ it
may be shown that √

n(Rn − ρ)
(1− ρ2)

D→ N(0, 1)

as n → ∞. This limiting normal distribution could be used to find confidence
intervals. However, Fisher (1924) showed that a transformation of the correlation
Rn = r improves the limiting normal approximation. This is known as Fisher’s z
transformation (z because it creates a nearly N(0, 1) distribution) defined by

zr =
1

2
log

(
1 + r

1− r

)

. (12.38)

For the theoretical statement we again consider a sequence of bivariate normal ran-
dom samples with sample correlations Rn and define

ZR =
1

2
log

(
1 +Rn

1−Rn

)

and

ζ =
1

2
log

(
1 + ρ

1− ρ

)

6The usual derivation of the limiting normal distribution of r begins with an analytic calculation
of the covariance matrix of (Vx, Vy , C) where Vx = V (X), Vy = V (Y ), and C = Cov(X, Y ), in which
(X, Y ) is bivariate normal. That calculation provides an explicit formula for the covariance matrix
in the limiting joint normal distribution of (Vx, Vy, C), and then propogation of uncertainty is
applied as in Section 9.1.1.
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to get √
n− 3(ZR − ζ) D→ N(0, 1) (12.39)

as n→∞ (see7 page 52 in DasGupta, 2008). Consequently, we can define the lower
and the upper bounds of an approximate 95% confidence interval for the theoretical
quantity ζ by

Lz = zr − 2

√

1

n− 3

Uz = zr + 2

√

1

n− 3
. (12.40)

To get an approximate 95% confidence interval for ρ we apply the inverse transfor-
mation

ρ =
exp(2ζ)− 1

exp(2ζ) + 1

to L and U in (12.40) to get

L =
exp(2Lz)− 1

exp(2Lz) + 1

U =
exp(2Uz)− 1

exp(2Uz) + 1
. (12.41)

Confidence interval for ρ
Suppose we have a random sample from a bivariate normal distribution
with correlation ρ and Rn = r is the sample correlation. Then an
approximate 95% confidence interval for ρ is given by (L,U) where L
and U are defined by (12.41), (12.40), and (12.38).

The result (12.39) may also be used to test H0: ρ = 0, which holds if and only if
H0: β1 = 0. The procedure is to apply the z-test in Section 10.3.2 using

zobs =
√
n− 3zr,

which is zr divided by its large-sample standard deviation 1/
√
n− 3, and is thus a

z-ratio.

7The z-transformation may be derived as a variance-stabilizing transformation, as on page 262,
beginning with the limiting result mentioned in footnote 6. More general results are given by
Hawkins (1989).
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(Fisher, R.A. (1924) On a distribution yielding the error functions of several well-
known statistics. Proceedings of the International Congress of Mathematics, Toronto
2: 805-813.) (Hawkins, D.W. (1989) Using U statistics to derive the asymptotic
distribution of Fisher’s Z statistic, Amer. Statist., 43: 235-237.) (DasGupta, A.
(2008) Asymptotic theory of statistics and probability. Springer.)

12.4.4 When noise is added to two variables, their correla-
tion diminishes.

When measurements are corrupted by noise, the magnitude of their correlation de-
screases. The precise statement is given in the theorem below, where we begin with
two random variables U and W and then add noise to each, in the form of variables
ǫ and δ. The noise-corrupted variables are then X = U + ǫ and Y = W + δ.

Theorem Suppose U and W are random variables having correlation ρUW and
ǫ and δ are independent random variables that are also independent of U and V .
Define X = U + ǫ and Y = W + δ, and let ρXY be the correlation between X and
Y . If ρUW > 0 then

0 < ρXY < ρUW .

If ρUW < 0 then

ρUW < ρXY < 0.

Proof details: We assume that V (ǫ) > 0 and V (δ) > 0 and we begin by
writing

Cov(X, Y ) = Cov(U + ǫ,W + δ)

= Cov(U,W ) + Cov(U, δ) + Cov(W, ǫ) + Cov(ǫ, δ).

Because of independence the last 3 terms above are 0. Therefore, Cov(X, Y ) =
Cov(U,W ), which shows that ρXY and ρUW have the same sign. Suppose
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ρUW > 0, so that Cov(U,W ) > 0. Then we have

ρXY = Cor(U + ǫ,W + δ)

=
Cov(U,W )

√

V (U + ǫ)V (W + δ)

=
Cov(U,W )

√

(V (U) + V (ǫ))(V (W ) + V (δ))

<
Cov(U,W )

√

V ar(U)V ar(W )
= ρUW .

If ρUW < 0 then Cov(U,W ) < 0 and the inequality above is reversed. 2

The theorem above indicates that when measurements are subject to substantial
noise a measured correlation will underestimate the strength of the actual correlation
between two variables. In the notation above, we wish to find ρUW but the corrupted
measurements we observe would be (X1, Y1), . . . , (Xn, Yn), and if we compute the
sample correlation r based on these observations it will tend to be smaller than ρUW

even for large samples. However, if the likely magnitude of the noise is known it
becomes possible to correct the estimate. Such corrections for attenuation of the
correlation can be consequential.

Example 12.3 Correction for attenuation of the correlation in SEF selec-
tivity indices Behseta, Berdyyeva, Olson, and Kass (2009) (Behseta, S., Berdyyeva,
T., Olson, C.R., and Kass, R.E. (2009), Bayesian correction of attenuation of corre-
lation in multi-trial spike count data, J. Neurophysiol., 101: 2186–2193.) reported
analysis of data from an experiment on neural mechanisms of serial order perfor-
mance. Monkeys were trained to perform eye movements in a given order signaled
by a cue. For example, one cue carried the instruction: look up, then right, then
left. Based on recordings of neural activity in frontal cortex (the supplementary eye
field, SEF) during task performance, Behseta et al. reported that many neurons fire
at different rates during different stages of the task, with some firing at the highest
rate during the first, some during the second and some during the third stage. These
rank-selective neurons might genuinely be sensitive to the monkey’s stage in the se-
quence. Alternatively, they might be sensitive to some correlated factor. One such
factor is expectation of reward. Reward (a drop of juice) was delivered only after
all three movements had been completed. Thus as the stage of the trial progressed
from one to three, the expectation of reward might have increased.
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To see whether rank-selective neurons were sensitive to the size of the anticipated
reward, the same monkeys were trained to perform a task in which a visual cue
presented at the beginning of the trial signaled to the monkey whether he would
receive one drop or three drops of juice after a fixed interval. The idea was that
neuronal activity related to expectation of reward would be greater after the promise
of three drops than after the promise of one. Spike counts from 54 neurons were
collected during the performance of both the serial order task and the variable reward
task, and indices rank selectivity in the serial order task and of selectivity for the
size of the anticipated reward in the variable reward task were computed. The rank
index was Irank = (f3−f1)

(f3+f1)
, where f1 and f3 were the mean firing rates measured at the

times of the first and third saccades respectively, the mean being taken across trials.
Similarly, the reward index was Ireward = (fb−fs)

(fb+fs)
where fb and fs were the mean

firing rates during the post-cue delay period on big-reward and small-reward trials
respectively. The indices Irank and Ireward turned out to be positively correlated,
but that the effect was smaller than expected, with r = 0.49. The correlation
between the rank and reward indices was expected to be larger because, from previous
research, it was known that (a) the expectation of reward increases over the course of
a serial order trial and (b) neuronal activity in the SEF is affected by the expectation
of reward. Behseta et al. speculated that the correlation between the two indices
had been attenuated by noise arising from trial-to-trial variations in neural activity.

Correction for attenuation gave a dramatically increased correlation, with the new
estimate of correlation becoming .83. Results given by Behseta et al. showed that
the new estimate may be considered much more reliable than the original r = .49.
We discuss this further in Chapter 16. 2

12.5 Multiple Linear Regression

The simple linear regression model (12.1) states that the response variable Y arises
when a linear function of a single predictive variable x is subjected to additive noise
ǫ. The idea is easily extended to two or more predictive variables. Let us write the
ith observation of the jth predictive variable as xji. Then, for p predictive variables
the linear regression model becomes

Yi = β0 + β1x1i + β2x2i + · · ·+ βpxpi + ǫi (12.42)

where the ǫi’s have the same assumptions as in (12.1).
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Just as y = β0 +β1x1 describes a line, the equation y = β0 +β1x1 +β2x2 describes
a plane. When only a single variable x1 is involved, the coefficient β1 is the slope:
β1 = ∆y/∆x. For example, if we increase x by ∆x = 2 then we increase y by
∆y = 2β1. In the case of the equation y = β0 + β1x1 + β2x2, if we increase x1 by
∆x1 = 2 and ask what happens to y, the answer will depend on how we change x2.
However, if we hold x2 fixed while we increase x1 by ∆x1 = 2 then we will increase
y by ∆y = 2β1. In general, when there are two variables, β1 is interpreted as the
change in y for a one-unit change in x1 when x2 is held fixed. Thus, linear regression
is often used as a way of assesssing what might happen if we were to hold one variable
fixed while allowing a different variable to fluctuate.

Example 12.4 Neural correlates of developmental change in working mem-
ory from fMRI Many studies have documented the way visuo-spatial working
memory (VSWM) changes during development. Kwon, Reiss, and Menon (2002;
Kwon, H., Reiss, A.L., and Menon, V. (2002) Neural basis of protracted develop-
mental changes in visuo-spatial working memory, Proc. Nat. Acad. Science, 99:
13336–13341.) used fMRI to examine neural correlates of these changes. These au-
thors studied 34 children and young adults, ranging in age from 7 to 22. Each subject
was given a VSWM task while being imaged. The task consisted of 12 alternating
36-second working memory (WM) and control epochs during which subjects viewed
items on a screen. During both the WM and control versions of the task the sub-
jects viewed the letter “O” once every 2 seconds at one of nine distinct locations on
the screen. In the WM task the subjects responded when the current location was
the same as it was when the symbol was presented two stimuli back. This required
the subjects to engage their working memory. In the control condition the subjects
responded when the “O” was in the center of the screen.

One of the y variables used in this study was the maximal BOLD activation (as a
difference between WM and control) among voxels within the right prefrontal cortex.
They were interested in the relationship of this variable with age (x1). However, it
is possible that Y would increase due to better performance of the task, and that
this would increase with age. Therefore, in principle, the authors wanted to “hold
fixed” the performance of task while age varied. This is, of course, impossible. What
they did instead was to introduce two measures of task performance: the subjects’
accuracy in performing the task (x2) and their mean reaction time (x3). 2

Example 12.1 (continued, see page 353) The firing rates in Figure 12.1
appear clearly to increase with size of reward, and the analysis the authors reported
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(see page 370) substantiated this impression. Platt and Glimcher also considered
whether other variables might be contributing to firing rate by fitting a multiple
regression model using, in addition to the normalized reward size, amplitude of each
eye saccade, average velocity of saccade, and latency of saccade. This allowed them
to check whether firing rate tended to increase with normalized reward size after
accounting for these eye saccade variables. 2

Equation (12.2) defined the least squares fit of a line. Let us rewrite it in the
form

n∑

i=1

(yi − ŷi)
2 = min

β∗

n∑

i=1

(yi − y∗i )2 (12.43)

where ŷi = β̂0 + β̂1xi, y
∗
i = β∗

0 + β∗
1xi and β∗ = (β∗

0 , β
∗
1). If we now re-define y∗i as

y∗i = β∗
0 + β∗

1xi + · · ·+ β∗
pxpi

with β∗ = (β∗
0 , β

∗
1 , . . . , β

∗
p), Equation (12.43) defines the least-squares multiple re-

gression problem. We write the solution in vector form as

β̂ = (β̂0, β̂1, . . . , β̂p), (12.44)

where the components satisfy (12.43) with the fitted values being

ŷi = β̂0 + β̂1xi + · · ·+ β̂pxpi. (12.45)

We interpret the multiple regression equation in Section 12.5.1 and discuss the de-
composition of sums of squares in Section 12.5.2. In Section 12.5.3 we show how
the multiple regression model may be written in matrix form, which helps in demon-
strating how it includes ANOVA models as special cases, and in Section 12.5.4 we
show that multiple regression also may be used to analyze certain nonlinear re-
lationships. In Section 12.5.5 we issue an important caveat concerning correlated
explanatory variables; in Section 12.5.6 we describe the way interaction effects are
fitted by multiple regression; and in Section 12.5.7 we provide a brief overview of the
way multiple regression is used when there are substantial numbers of alternative
explanatory variables.

12.5.1 Multiple regression estimates the linear relationship
of the response with each explanatory variable, while

adjusting for the other explanatory variables.

To demonstrate multiple regression in action we consider a simple example.
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Figure 12.6: Plot of log survival time (log(w/1000) where w was minutes survived)
versus log dose (1.5 plus log milligrams) of sodium asenate in silkwork larvae; data
from Bliss (1936). Lines are fits based on linear regression: solid line used the original
data shown in plot; dashed line after removing the two high values of survival at low
dose.

Example 12.5 Toxicity as a function of dose and weight rm In many stud-
ies of toxicity, including neurotoxicity (Makris et al., 2009), (Makris SL, Raffaele
K, Allen S, Bowers WJ, Hass U, Alleva E, et al. (2009) A Retrospective Perfor-
mance Assessment of the Developmental Neurotoxicity Study in Support of OECD
Test Guideline 426. Environ. Health Perspect. 117:17-25.) a drug or other agent is
given to an animal and toxicity is examined as a function of dose and animal weight.
A relatively early example was the study of sodium arsenate (arsenic) in silkworm
larvae (Bliss, 1936) (Bliss, C.I. (1936) The size factor in the action of arsenic upon
silkworm larvae, J. Exp. Biol. 13: 95-110.). We reanalyzed data reported there. The
response variable (y) was log(w/1000) where w was minutes survived, and the two
predictive variables were log weight, in log grams, and log dose, given in 1.5 plus log
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milligrams. A plot of log survival versus log dose is given in Figure 12.6. Because
there were two potential outliers that might affect the slope of the line fitted to the
plotted data we have provided in the plot the fitted regression lines with and without
those two data pairs. The results we discuss were based on the complete set of data.

The linear regression of log survival on log dose gave the fitted line

log survival = .120(±.056)− .704(±.078)log dose

which says that survival decreased roughly .704(±.078) log 1000 minutes for every log
milligram increase in dose. The regression was very highly significant (p = 10−12),
consistently with the obvious downward trend.

The linear regression of log survival on both log dose and log weight gave the fitted
line

log survival = .120(±.056)− .704(±.078)log dose + 1.07(±.16)log weight.

In this case, including weight in the regression does not change very much the rela-
tionship between dose and survival: the slope is nearly the same in both cases. 2

12.5.2 Response variation may be decomposed into signal

and noise sums of squares.

As in simple linear regression we define the sums of squares SSE and SSR, again
using (12.22) and (12.28) except that now ŷi is defined by (12.45). If we continue to
define the total sum of squares as in (12.24) we may again decompose it as

SST = SSR+ SSE

and we may again define R2 as in (12.25) or, equivalently, (12.27). In the multi-
ple regression context R2 is interpreted as a measure of the strength of the linear
relationship between y and the multiple explanatory variables.

With p variables we may again use the sum of squares of the residuals to estimate
the noise variation σ2 but we must change the degrees of freedom appearing in
(12.21). Because we again start with n− 1 degrees of freedom in total, we subtract
p to get n− 1− p degrees of freedom for error, and we have

s2 =
1

n− 1− pSSE (12.46)
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where SSE is defined by (12.22). In multiple regression the hypothesis of no linear
relationship between y and the x variables is H0: β1 = β2 = · · · = βp = 0. To
test this hypothesis we define and compare suitable versions of MSR and MSE,
the idea being that under H0, with no linear relationship at all, MSR and MSE
should be about the same size because both represent fluctuation due to noise. With
p explanatory variables there are p degrees of freedom for regression. We therefore
define the mean squared error for regression

MSR =
SSR

p
.

We use (12.46) in (12.23) for the mean squared error. We then form8 the F -ratio

F =
MSR

MSE
. (12.47)

In words, F is the ratio of the mean squared errors for regression and error, which
are obtained by dividing the respective sums of squares by the appropriate degrees
of freedom. Under the standard assumptions, if H0 holds this F -ratio follows an F
distribution.

To state the result formally we must define a theoretical counterpart to (12.47).
Let Ŷi be the random variable representing the least-squares fit under the linear
regression assumptions on page 360, i.e., it is the theoretical counterpart of (12.45).
We define

UMSE =
1

p

n∑

i=1

(Yi − Ŷi)
2 (12.48)

and

UMSR =
1

n− 1− p

n∑

i=1

(Ŷi − Ȳi)
2. (12.49)

8The letter F was chosen (by George Snedecor in 1934) to honor Fisher, who had first suggested
a log-transformed normalized ratio of sums of squares, and derived its distribution, in the context
of ANOVA, which we discuss in Chapter 13.



12.5. MULTIPLE LINEAR REGRESSION 383

Result: F -Test for Regression
Under the linear regression assumptions on page 360, with (12.42) re-
placing (12.1), if H0: β1 = β2 = · · · = βp = 0 holds then the F -statistic

F =
UMSR

UMSE

(12.50)

follows an Fν1,ν2 distribution, where ν1 = p and ν2 = n− 1− p.

Proof outline: If H0 is true, it may be shown that

∑

(Ŷi − Ȳ )2 ∼ χ2
ν1

and ∑

(Yi − Ŷi)
2 ∼ χ2

ν2

where ν2 = n − 1 − p is the degrees of freedom for error, and it may be shown
that these are independent. Therefore, the random variable F defined by (12.50)
is a ratio of independent chi-squared random variables divided by their degrees of
freedom, which, by the definition on page 150 has an Fν1,ν2 distribution. 2

We provide a geometrical interpretation of the sum of squares decomposition
below, in Figure 12.7 and Equation (12.55).

In simple linear regression, where there is only one explanatory variable, ν1 = 1
and F is equal to the square of the t-ratio. Because the square of a tν distributed
random variable has an F1,ν distribution, it follows that the t-test and the F -test
of H0: β1 = 0 are identical. In multiple regression, hypotheses may also be tested
about the individual coefficients, e.g., H0 : β2 = 0, using t-tests.

Variable Coefficient SE tobs p-value
(Intercept) .120 .057 2.1 .038
log dose -.704 .078 -9.1 10−12

Table 12.1: Simple linear regression results for Example 12.5.

Example 12.5 (continued) Returning to the toxicity data, the results for the
regression of log survival on log dose are given in Table 12.1. We also obtained
s = .17 and R2 = .59. The F -statistic was F = 82 on 1 and 58 degrees of freedom,
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Variable Coefficient SE tobs p-value
(Intercept) -.140 .057 -2.49 .017
log dose -.734 .058 -12.6 2× 10−16

log weight 1..07 .16 6.8 6× 10−9

Table 12.2: Multiple regression results for Example 12.5.

with p = 10−12 in agreement with the p-value for the t-test in Table 12.1. The results
for the regression of log survival on both log dose and log weight are in Table 12.2
and here s = .13 and R2 = .77, which is a much better fit. The F -statistic was
F = 97 on 2 and 57 degrees of freedom, with p = 2× 10−16.

We would interpret the t ratios and F -statistics as follows: there is very strong
evidence of a linear relationship between log survival and a linear combination of
log dose and log weight (F = 97, p << 10−5); given that log weight is included in
the regression model, there is very strong evidence (t = −12.6, p << 10−5) that log
survival has a decreasing linear trend with log dose; similarly, given that log dose is
in the model, there is very strong evidence (t = 6.8, p << 10−5) that survival has an
increasing linear trend with log weight. 2

Example: Neural correlates of developmental change in working mem-
ory from fMRI (continued from page 378) Recall that in one of their analyses
Kwon et al. defined Y to be the maximal BOLD activation (as a difference be-
tween WM and control) among voxels within the right prefrontal cortex, and they
considered its linear relationship with age (X1), accuracy (X2) and reaction time
(X3). They then performed multiple linear regression and found R2 = .53 with
β1 = .75(±.20), p < .001, β2 = −.21(±.19), p = .28, and β3 = −.15(±.17), p = .37.
They interpreted the results as showing that the right PFC tends to become much
more strongly activated in the VSWM task as the subjects’ age increases, and that
this is not due solely to improvement in performance of the task. 2

Example 12.1 (continued from 378) Platt and Glimcher fit a multiple regres-
sion model to the firing rate data using as explanatory variables normalized reward
size, amplitude of each eye saccade, average velocity of saccade, and latency of sac-
cade. They reported the results of the t-test for the normalized reward size coefficient
as p < .05, which indicates that firing rate tended to increase with normalized re-
ward size even after accounting for these eye saccade variables. A plot showing the
coefficient with SE makes it appear that actually p << .05, which is much more
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convincing. 2

The distributional results for the statistic F in (12.50) are based on the assump-
tion of normality of the errors. For sufficiently large samples the p-values for the
F -statistic, and the t-based p-values and confidence intervals, will be approximately
correct even if the errors are non-normal. This is due to the theorems on consistency
(page 363) and approximate normality (368), which extend to multiple regression
(page 390). However, the independence assumption is crucial. The standard errors
and other distributional results generally may be trusted for reasonably large sam-
ples when the errors are independent, but they require correction otherwise. The
assumptions should be examined using residual plots, as in simple linear regression.

12.5.3 Multiple regression may be formulated concisely us-

ing matrices.

Mathematical manipulations in multiple regression could get very complicated. A
great simplification is to collect multiple equations together and write them as single
equations in matrix form. We start by writing the n random variables Yi as an n×1
random vector

Y =








Y1

Y2
...
Yn








and then similarly write

β =








β0

β1
...
βp








ǫ =








ǫ1
ǫ2
...
ǫn
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and

X =








1 x11 x12 . . . x1p

1 x21 x22 . . . x2p
...

...
...

...
1 xn1 xn2 . . . xnp







.

The linear regression model may then be written in the form

Y = Xβ + ǫ (12.51)

where it is quickly checked that both left-hand side and right-hand side are n × 1
vectors. The usual assumptions may also be stated in matrix form. For example, we
have

ǫ ∼ Nn(0, σ2 · In) (12.52)

which says that ǫ has a multivariate normal distribution of dimension n, with mean
equal to the zero vector and variance matrix equal to σ2 times the n-dimensional
identity matrix, i.e.,

V (ǫ) = σ2 ·










1 0 0 · · · 0
0 1 · · · 0
...

. . .
...

0
. . . 0

0 · · · 0 1










.

Equation (12.51), together with the assumptions, is often called the general linear
model. It accommodates not only multiple regression but also a large variety of
models9 that compare experimental conditions, which arise in analysis of variance
(Chapter 13). For example, a standard approach to the analysis of fMRI data is
based on a suitable linear model.

Example 12.2 (continued from page 358) In Equation (12.20) we defined
a variable xi that could be used with simple linear regression to analyze the BOLD
response due to activity associated with a particular stimulus, according to an as-
sumed form for the hemodynamic response function.10 Suppose there are two stimuli
with uj = 1 corresponding to the first stimulus being on, with uj = 0 otherwise, and

9Sometimes when someone refers to the general linear model they may also allow the variance
matrix to be different, or they may allow for non-normal errors.

10Before regression is applied various pre-processing steps are usually followed to make the as-
sumptions of linear regression a reasonable representation of the variation in the fMRI data.
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vj = 1 corresponding to the second stimulus being on, with vj = 0 otherwise. We
then define

xi1 =
∑

j<i

h(i− j)uj

xi2 =
∑

j<i

h(i− j)vj

and set the X matrix equal to

X =








1 x11 x12

1 x21 x22
...

...
...

1 xn1 xn2







.

If we apply (12.51) with β = (β0, β1, β2)
T the coefficient β1 will represent the magni-

tude of the effect of the first stimulus on the BOLD response, the coefficient β2 will
represent the magnitude of the effect of the second stimulus on the BOLD response,
and the coefficient β0 will represent the baseline BOLD response. 2

Because X often reflects the design of an experiment, as in Example 12.2 above,
it is called the design matrix. The assumptions associated with (12.51) are essentially
the same as those enumerated (i)-(iv) for simple linear regression, where (i) becomes
the validity of Equation (12.51) and (ii)-(iv) refer to the components of ǫ.

In matrix form we may write the least-squares fit as ŷ according to

||y − ŷ||2 = min
β∗

||y − y∗||2

y∗ = Xβ∗

where ||w|| is used to indicate the length of the vector w. We assume here that XTX
is nonsingular (see the Appendix for a definition). The solution is found by solving
the equations

XTXβ = XTy (12.53)

numerically (by numerically stable methods) and the solution may be written in the
form11

β̂ = (XTX)−1XTy. (12.54)

11The equations are not solved merely by inverting the matrix XT X ; this can lead to grossly
incorrect answers due to seemingly innocuous round-off error. See Section 12.5.5.
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Figure 12.7: Orthogonal projection of the vector y onto the vector subspace V result-
ing in the vector ŷ in V . The residual vector y− ŷ is orthogonal to ŷ, which gives the
pythagorean relationship (12.55). This corresponds to the total sum of squares (the
squared length of y) equaling the sum of the regression sum of squares (the squared
length of ŷ) and the error sum of squares (the squared length of y − ŷ).

Formula (12.54) may be obtained by a simple geometrical argument. We begin by
thinking of y as a vector in n-dimensional space and we consider the subspace V
consisting of all linear combinations of the columns of X. We say that V is the
linear subspace spanned by the columns of X, which is the set of all vectors that
may be written in the form Xβ∗ for some β∗, i.e.,

V = {Xβ∗, β∗ ∈ Rp+1}

(see the Appendix). The subspace V is the space of all possible fitted vectors. The
problem of least squares, then, is to find the closest vector in V to the data vector
y, i.e., the problem is to minimize the Euclidean distance between y and V . The
solution to this minimization problem is the fitted vector ŷ = Xβ̂. See Figure 12.7.
This geometry also gives us the Pythagorean relationship

||y||2 = ||ŷ||2 + ||y − ŷ||2 (12.55)

which is the basis for the ANOVA decomposition SST = SSR + SSE.

Details: Euclidean geometry says that ŷ must be obtained by orthogonal
projection of y onto the subspace spanned by the columns of X and, as a
result, the residual y− ŷ must be orthogonal to the subspace spanned by
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the columns of X, which means that y− ŷ must be orthogonal to Xβ for
every β. This, in turn, may be written in the following form: for all β,

〈Xβ, y − ŷ〉 = 0 (12.56)

where 〈u, v〉 = uTv is the inner product of u and v. Substituting ŷ = Xβ̂
we have

〈Xβ, y −Xβ̂〉 = 0

for all β, and rewriting this we find that

βTXTy = βTXTXβ̂

for all β, which gives us Equation (12.53). Equation (12.53) is sometimes
called the set of normal equations (presumably using “normal” in the
sense of “orthogonal”; and plural because (12.53) is a vector equation
and therefore a set of scalar equations). Because (12.56) holds for all β,
it holds in particular for β = β̂, i.e.,

〈ŷ, y − ŷ〉 = 0

which, as illustrated in Figure 12.7, gives (12.55).

For the ANOVA decomposition we introduce the n× 1 vector having all
of its elements equal to 1, which we write 1vec = (1, 1, . . . , 1)T . In the
argument above we replace y by the residual following projection of y
onto 1vec,

ỹ = y − < y, 1vec >

< 1vec, 1vec >
1vec

= y − ȳ1vec

(which is the vector of residuals found by regressing y on 1vec) and sim-
ilarly for all j = 2, . . . , p + 1 replace the j column of X by its residual
following projection onto 1vec (which produces the vectors of residuals
found by regressing each x variable on 1vec). When we repeat the argu-
ment with these new variables we get a new fitted vector ˆ̃y and everything
goes through as before. We then obtain the version of (12.55) needed for
the ANOVA decomposition:

||ỹ||2 = ||ˆ̃y||2 + ||y − ŷ||2.
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It may be verified that this is the same as SST = SSR + SSE. For
example, ||ỹ||2 =

∑
(yi − ȳ)2. 2

The variance matrix of the least-squares estimator is easy to calculate using a
generalization of Equation (4.23): with a little algebra it may be shown that if W
is a p× 1 random vector with variance matrix V (W ) = Σ and A is a k × p matrix,
then the variance matrix of AW is

V (AW ) = AΣAT . (12.57)

Using (12.57) we obtain

V (β̂) = ((XTX)−1XT )σ2In((XTX)−1XT )T

= σ2 · (XTX)−1XTX(XTX)−1

= σ2 · (XTX)−1.

This variance matrix summarizes the variability of β̂. For instance, we have

V (β̂k) = σ2 · (XTX)−1
kk ,

which is the kth diagonal element of the variance matrix. To use such formulas with
data, however, we must substitute s for σ. We then have the estimated variance
matrix

V̂ (β̂) = s2 · (XTX)−1 (12.58)

and the standard errors are given by

SE(β̂k) =
√

s2 · (XTX)−1
kk . (12.59)

For example, (12.59) is the formula that was used to produce the standard errors in
Table 12.2, and to get the standard errors and t-ratios, and thus the p-values, in Ex-
ample 12.4 reported on page 384. For problems involving propagation of uncertainty
(Section 9.1) to function of β̂, the variance matrix in (12.58) would be used.

The estimator (12.58), and resulting inferences, may be justified by the analogue
to (12.35).

Theorem: Asymptotic normality of least squares estimators For the lin-
ear regression model (12.51) suppose conditions (i)-(iv) hold and letX1, X2, . . . , Xn, . . .
be a sequence of design matrices such that

1

n
XTX → C (12.60)
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for some positive definite matrix C, as n → ∞. Then the least-squares estimator
defined by (12.54) satisfies

1

s
(XT

nXn)1/2(β̂ − β)
D→ Np+1(0, Ip+1). (12.61)

Proof: See Wu (1981) for references. 2

A Detail: It is also possible to use the bootstrap in regression, but this
requires some care because under the assumptions (i)-(iv) the random
variables Yi have distinct expected values,

E(Yi) = (1, xi1, . . . , xip)
Tβ

and so are not i.i.d. The usual approach is to resample the studentized
residuals (see page 365), which are approximately i.i.d. See Davison
and Hinkley (1997, page 275). Alternatively, when each vector xi =
(xi1, . . . , xip) is observed, rather than chosen by the experimenter, it is
possible to treat xi as an observation from an unknown multivariate prob-
ability distribution, and thus (xi, yi) becomes an observation from un-
known distribution, and the data vectors ((x1, y1), . . . , (xn, yn)) may be
resampled.12 This was the boostrap procedure mentioned in Example 8.2
on page 278. For additional discussion see Davison and Hinkley (1997).
2

There are many conveniences of the matrix formulation of multiple regression
in (12.51) together with (12.52). One is that the independence and homogeneity
assumptions in (12.52) may be replaced. Those assumptions imply

V (ǫ) = σ2In,

as in (12.52). The analysis remains straightforward if we instead assume

V (ǫ) = R (12.62)

12Here, Equation (9.21) becomes

F̂n(x, y)
P→ F(X,Y )(x, y)

where F̂n is the empirical cdf computed from the random vectors ((X1, Y1), . . . , (Xn, Yn)).
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Figure 12.8: MEG gradiometer background noise covariance matrix. The light gray
corresponds to zero elements and darker images indicate non-zero elements.

where R can be any n×n variance matrix (i.e., a positive definite symmetric matrix).

Example 1.2 (continued from page 7) We previously noted that MEG imag-
ing requires sensor data to be obtained firt from background scanner noise, meaning
the sensor data must be obtained with nothing in the scanner. We displayed on
page 67 a histogram of such data, from a single sensor, as an example of a normal
distribution. The separate sensor readings are not independent but are, instead,
correlated. Figure 12.8 displays a representation of the background noise variance
matrix from 204 gradiometer sensors in a MEG scanner. MEG analysis is based on
(12.51) together with (12.62), with R being based on the background noise variance
matrix. 2

Given a matrix R in (12.62), and assuming it is positive definite, the least-squares
problem may be reformulated. Letting U = R−1/2Y and W = R−1/2X we have

R−1/2(Y −Xβ) = R−1/2ǫ ∼ Nn(0, In),

so that the new model
U = Wβ + δ,
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where δ = R−1/2ǫ, satisfies the usual assumptions in (12.51) together with (12.52).
Therefore, to fit the model (12.51) with (12.62) we may first transform Y and X
by pre-multiplying with R−1/2 and then can apply ordinary least squares to the
transformed variables. This is called weighted least squares and it arises in various
extensions of multiple regression. On page 247 we showed that the least-squares
estimator was also the MLE under the standard assumptions of regression, including
normality of the errors. More generally, the weighted least squares estimator of β is
the MLE under (12.51) with (12.62).

Example 1.2, above, provides a case in which the non-independence of the com-
ponents of ǫ is due to the spatial layout of the sensors, and the resulting dependence
among the magnetic field readings at different sensors. Neuroimaging also typically
generates temporal correlation in the measurements, i.e., the measurements are time
series with some dependence across time. Using auto-regressive time series models
described in Section 18.2.3 the variance matrix may be determined from the data
and this furnishes an R matrix in (12.62). The model (12.51) with (12.62) then leads
to regression with time series errors.

12.5.4 The linear regression model applies to polynomial re-
gression and cosine regression.

In many data sets the relationship of y and x is mildly nonlinear, and a quadratic in
x may offer better results than a line. Even though a quadratic is nonlinear, a neat
trick allows us to fit quadratic regression via multiple linear regression. The trick is
to set x1 = x and to define a new variable x2 = x2. Then, when y is regressed on both
x1 and x2 this amounts to fitting a general quadratic of the form y = a + bx + cx2,
where now a = β0, b = β1 and c = β2.

In quadratic regression there are several possibilities. First, there may be evidence
of a linear association between y and x (from the simple linear regression), but
the relationship appears nonlinear and there is also evidence of a linear association
between y and both x and x2 combined. This latter evidence would come from
the combined regression output of (i) a statistically significant F -ratio and (ii) a
significant t-ratio for the coefficient of x2. This case is illustrated below. Note that
it is possible for the coefficient of x in the combined regression to be non-significant.
This should not necessarily be taken to mean that there is no linear component to
the relationship: it is generally preferable to use the general form y = a + bx + cx2,
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which requires the bx term and thus the x variable. Actually, it is possible for the
coefficients of both x and x2 to be non-significant while the F -ratio is significant; this
occurs when the two variables are themselves so highly correlated that neither adds
anything to the regression when the other is already used.

As a second possibility, there may be evidence of a linear association between y
and x (from the simple linear regression), but there is no evidence of a quadratic
relationship. The latter would be apparent from (i) an OK (not curved) residual plot
in the simple linear regression and (ii) a non-significant t-ratio for the coefficient of
x2. The third possibility is that there may be no evidence of a relationship between
y and either x by itself or X combined with x2. This would be evident from an
insignificant t-ratio in the simple linear regression and an insignificant F -ratio in the
combined regression.

Let us now turn to an example.

Example 8.2 (continued from page 226) On page 226 we examined spike
train data recorded from a barrel cortex neuron in slice preparation, which was part
of a study on the effects of seizure-induced neural activity. Figure 8.5 displayed
the decreasing width of action potentials with increasing length of the interspike
interval. Figure 12.9 shows a plot of many action potential widths against preceding
interspike interval (ISI), where the data have been selected to include only ISIs of
length less than 120 milliseconds. In the plot, the downward trend begins to level
off near 100 milliseconds, and a quadratic curve fitted by linear regression is able to
capture the leveling off reasonably well within this range of ISI values. In this case the
linear and quadratic regression coefficients were both highly significant (p = 6×10−6

and p = .0017, respectively, with the overall F -statistic giving p = 8 × 10−14) and
R2 = .61. 2

In quadratic regression, illustrated in Example 8.2 above, we defined x1 = x and
x2 = x2. To fit cubic and higher-order polynomials we may continue the process
with x3 = x3, etc. An important caveat, however, is that the variables x1, x2, and
x3 defined in this way are likely to be highly correlated, which may cause difficulties
in interpretation and, in extreme cases, may cause the matrix XTX to be singular
(non-invertible), in which case least-squares software will fail to return a useful result.
We discuss this issue further in Section 12.5.5.

A second nonlinear function that may be fitted with linear regression is the cosine.
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Figure 12.9: Plot of action potential width against length of previous ISI, together
with quadratic fitted by linear regression.

Example 12.6 Directional Tuning in Motor Cortex In a well-known set of
experiments, Georgopolous, Schwartz and colleagues showed that motor cortex neu-
rons are directionally “tuned.” Figure 12.10 shows a set of PSTHs for a “center-out”
reaching task: the monkey reached to one of eight points on a circular image, and
this neuron was much more active for reaches in some directions than for others. The
bottom part of Figure 12.10 shows a cosine function that has been fitted to the mean
firing rate as a function of the angle around the circle, which indicates the direction
of reach. For example (and as is also shown in the PSTH diagrams), reaches at angles
near 180 degrees from the x-axis produced high firing rates, while those at angles
close to 0 degrees (movement to the right) produced much lower firing rates. The
angle at which the maximum firing rate occurs is called the “preferred direction” of
the cell. It is obtained from the cosine function.

To fit a cosine to a set of spike counts, multiple linear regression is used. Let
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Figure 12.10: Directional tuning of motor cortex neurons (from Georgopolous et al.,
1982). Top displays the PSTH for each of eight reaching directions. Bottom displays
corresponding mean firing rates.

v = (v1, v2) be the vector specifying the direction of movement and let d = (d1, d2)
be the preferred direction for the neuron. Both v and d are unit vectors. Assuming
cosine tuning, the firing depends only on cos θ, where θ is the angle between v and
d. We have

cos θ = v · d = v1d1 + v2d2.

Letting µ(v) be the mean firing rate in a given interval of time when the movement
is in direction v, if we let the minimal firing rate be Bmin and the maximal firing
rate be Bmax, then cosine tuning may be written as the requirement that

µ(v) = Bmin +
Bmax − Bmin

2
+
Bmax −Bmin

2
cos θ.

(Recall that the minimal value of the cosine is -1, and its maximal value is 1.) If
we now define β1 = Bmax−Bmin

2
d1, β2 = Bmax−Bmin

2
d2, and β0 = Bmin + Bmax−Bmin

2
we

obtain the linear form
µ(v) = β0 + β1v1 + β2v2. (12.63)



12.5. MULTIPLE LINEAR REGRESSION 397

Taking Ci(v) to be the spike count for the ith trial in direction v across a time interval
of length T , the observed spike count per unit time is

Yi(v) =
1

T
Ci(v).

and we have

Yi(v) = µ(v) + ǫi(v). (12.64)

Together, Equations (12.64) and (12.63) define a two-variable multiple linear regres-
sion model from which the tuning parameters may be obtained. 2

12.5.5 Effects of correlated explanatory variables can not be
interpreted separately.

On page 394 we used Example 8.2 to illustrate quadratic regression, and we then
issued a note of caution that x and x2 are often highly correlated. High correlation
among explanatory variables may cause numerical and inferential difficulties. Let us
first describe the numerical issue.

The least-squares solution (12.54) to Equation (12.53) results from multiplying
both sides of Equation (12.53) by (XTX)−1, under the assumption that XTX is non-
singular, i.e., that its inverse exists, which occurs when the columns of X are linearly
independent (see the Appendix). Linear independence fails when it is possible to
write some column of X as a linear combination of the other columns; in this case
a regression of that dependent column on the other columns would produce R2 = 1,
i.e., perfect multiple correlation. When the columns of X are very highly correlated,
even if they are mathematically linearly independent, they may be numerically es-
sentially dependent; for example, a regression of any one column on all the others
might produce R2 that is very nearly equal to 1 (e.g., R2 = .999). Because of this and
related considerations the details of the methods used to compute the least-squares
solution are important, as indicated in the footnote on page 387. In the quadratic
regression of Example 8.2 on page 394, for instance, the correlation between ISI and
its square was r = .98. An easy way to reduce correlation is to subtract the mean of
the x variable before squaring, i.e., take x1 = x and x2 = (x− x̄)2. With x1 and x2

defined in this way for x = ISI in the example above we obtained r = −.08. Good
numerical methods use general procedures that effectively transform the x variables
to reduce their correlations.
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A deeper issue involves interpretation of results. The potential confusion caused
by correlated explanatory variables may be appreciated from the following concocted
illustration.

Variable Coefficient SE tobs p-value
(Intercept) -2.4 2.5 -.95 .37
x 1.86 1.04 1.8 .12
x2 -.067 .092 -.73 .487

Table 12.3: Quadratic regression results for the artificial data in the illustration.

Illustration: Quadratic regression To demonstrate the interpretive subtlety
when explanatory variables are correlated we set x = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) and
then defined

yi = xi + ui

where ui ∼ N(0, 4). Regressing the variable y on both x and x2 we obtained the
results shown in Table 12.3, with R2 = .77, s = 2.1 and F = 11.9 on 2 and 7 degrees
of freedom, yielding p = .0056. From Table 12.3 alone this regression might appear
to provide no evidence that y was linearly related to either x nor x2. However,
regressing y on either x or x2 alone produces a highly significant linear regression.
Furthermore, the F -statistic from the regression on both variables together is highly
significant. These potentially puzzling results come from the high correlation of
explanatory variables: the correlation between x and x2 is r = .975. Keep in mind
that the t-statistic for x2 in Table 12.3 reflects the contribution of x2 after the variable
x has been used to explain y and likewise the t-statistic for x reflects the contribution
of x after the variable x2 has been used to explain y. 2

Let us consider this phenonomen further. Suppose we want to use linear re-
gression to say something about the degree to which a particular variable, say x1,
explains y (meaning the degree to which the variation in y is matched by the varia-
tion in the fit of x to y) but we are also considering other variables x2, . . . , xp. We
can regress y on x1 by itself. Let us denote the resulting regression coefficient by b.
Alternatively we can regress y on x1, . . . , xp and, after applying Equation (12.54),

the relevant regression coefficient would be β̂1, the first component of β̂. When the
explanatory variables are correlated, it is not generally true that b = β̂1 and, simi-
larly, the quantities that determine the proportion of variability explained by x1, the
squared magnitudes of the fitted vectors, are not generally equal. Thus, when the
explanatory variables are correlated, as is usually the case, it is impossible to supply
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a unique notion of the extent to which a particular variable explains the response—
one must instead be careful to say which other variables were also included in the
linear regression.

This lack of uniqueness in explanatory power of a particular variable may be
considered a consequence of the geometry of least squares.

Details: Let us return to the geometry depicted in Figure 12.7. As in
that figure we take V to be the linear subspace spanned by the columns
of X. Because the columns of X are vectors, let us write them in the
form v1, . . . , vp, and let us ignore the intercept (effectively assuming it
to be zero, as we did when we related the ANOVA decomposition to
the Pythagorean theorem). The observations on the first explanatory
variable x1 then make up the vector v1. The extent to which x1 “explains”
the response vector y now becomes the proportion of y that lies in the
direction v1. This is the length of the projection of y onto v1 divided by
the length of y. However, length of the projection of y onto v1 depends on
whether we do the calculation using v1 by itself or together with v2, . . . , vp.
Let us write the projection as cv1 for some constant c. If we consider v1

in isolation, we find

c =
〈v1, y〉
〈v1, v1〉

= b. (12.65)

If we consider v1 together with v2, . . . , vp, we must first project y onto V ,

and then find the component in the direction v1. The result is c = β̂1.
The exception to this bothersome reality occurs when v1 is orthogonal to
the span of v2, . . . , vp (i.e., 〈v1, v〉 = 0 for every vector v that is a linear
combination of v2, . . . , vp). In this special case of orthogonality we have

b = β̂, and we regain the interpretation that there is a proportion of y
that lies in the direction of v1. Specifically, in this orthogonal case we
may write the projection of y onto V as ŷ = c1v1 + v for some v in the
span of v2, . . . , vp. We then have

〈v1, ŷ〉 = 〈v1, c1v1 + v〉 = c1〈v1, v1〉

so that the projection is c1v1 where

c1 =
〈v1, ŷ〉
〈v1, v1〉

.
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On the other hand, we may reconsider the value c in (12.65). Because
y − ŷ is orthogonal to V when we write

〈v1, y〉 = 〈v1, ŷ + (y − ŷ)〉

we have 〈v1, y − ŷ〉 = 0. Therefore,

〈v1, ŷ〉 = 〈v1, y〉

so, in this case, c = c1. Thus, in this orthogonal case, b = β̂1. 2

12.5.6 In multiple linear regression interaction effects are
often important.

We saw earlier that it is possible to fit a quadratic in a variable x using linear re-
gression by defining a new variable x2 and then performing multiple linear regression
on x and x2 simultaneously. Now suppose we have variables x1 and x2. The general
quadratic in these two variables would have the form

y = a+ bx1 + cx2 + dx2
1 + ex1x2 + fx2

2.

Thus, we may again use multiple linear regression to fit a quadratic in these two
variables if, in addition to defining new variables x2

1 and x2
2 we also define the new

variable x1 · x2. This latter variable is often called the interaction between x1 and
x2. To see its effect consider the simpler equation

y = a+ bx1 + cx2 + dx1x2. (12.66)

Here, for instance, we have ∆y/∆x1 = b + dx2. That is, the slope for the linear
relationship between y and x1 depends on the value of x2 (and similarly the slope
for x2 depends on x1). When d = 0 and we graph y vs. x1 for two different values of
x2 we get two parallel lines, but when d 6= 0 the two lines are no longer parallel.

Interaction effects are especially important in analysis of variance models, which
we discuss in Chapter 13.
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12.5.7 Regression models with many explanatory variables
often can be simplified.

When one considers multiple explanatory variables it is possible that some of them
will have very little predictive benefit beyond what the others offer. In that eventu-
ality one typically removes from consideration the variables that seem redundant or
irrelevant, and then proceeds to fit a model using only the variables that help pre-
dict the response. When the number of variables p is small it is not difficult to sort
through such possibilities quickly, but sometimes there are much larger numbers of
variables, particularly if combinations of them, defining interactions as described in
Section 12.5.6, are considered. In this case choosing a suitable collection of variables
to fit is called the problem of model selection, and is based on model comparison
procedures such as those discussed in Section 11.1.6.

Example 12.7 Prediction of burden of disease in multiple sclerosis Li et al
(2006) investigated the relationship between a measure of severity of multiple sclero-
sis, known as burden of disease (BOD), and many clinical assessments. The response
variable, BOD, was based on MRI scans, and 18 different clinical measurements were
used as potential explanatory predictors, including such things as disease duration,
age at onset, and symptom types, as well as an important variable of interest the
Expanded Disability Status Scale (EDSS). One of their main analyses examined data
from an initial set of 1312 patients who had been entered into 11 clinical trials in
multiple centers. The problem they faced was to determine the variables to use as
predictors from among the 18, together with possible interactions. Note that there
are

(
18
2

)
= 153 possible pairwise interaction terms. (Li, D.K.B. et al. (2006) MRI T2

lesion burden in multiple sclerosis: A plateauing relationship with clinical disability,
Neurology, 66: 1384-1389.) 2

There is a huge literature on model selection in multiple regression. We very
briefly describe the ideas behind a few of the major methods, and then offer some
words of caution.

Let us begin with variables x1, x2, . . . , xp and the aim of selecting some subset
that predicts the response y well. Here, some of the x variables could be defined
as interaction terms. For example, if we had variables x1, . . . , xk and wanted to
consider all possible interaction effects, as defined in Section 12.5.6, then we would
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end up with p =
(

k
2

)
variables in total. A very simple veriable-selection algorithm is

as follows:

1. Regress y on each single variable xi and find the variable xa that gives the best
prediction (using R2).

2. Regress y on all two-variable models that include xa as one of the variables and
find the variable xb such that xa together with xb gives the best prediction.

3. Continue in this way: for k ≥ 3 and some set of variables we label xa1 , xa2 , . . . , xak−1

that have already been selected in previous steps, consider all regression models
that include, in addition, each of the remaining variables; find xj such that (1)
xa1 , xa2 , . . . , xak−1

, xj gives the best prediction and (2) the coefficient of xj is
statistically significant.

Note that criterion (2) provides a way of stopping the process with k < p.

This algorithm is an example of forward selection. It is also called a greedy algorithm
(because at every step in the process it is taking an apparently best next step). In the
form given above it is not yet completely specified because the level of significance, or
the value of the t-ratio, must be chosen; this will determine the number of variables
k that are selected. It is also possible to reverse the process by starting with a
regression based on all variables x1, . . . , xp and then choosing, analogously to step
1 above, one variable to drop, and then repeatedly finding variables to drop until a
satisfactory model is found in which all variables are statistically significant. This
is called backward elimination. An algorithm that alternates between forward and
backward steps is called stepwise regression.

Within model selection algorithms, including forward selection, backward elimi-
nation, or stepwise regression, it is also possible to use criteria such as AIC and BIC
(see Section 11.1.6) to evaluate alternative regression models. (In regression, AIC
is very similar to another popular criterion known as Mallow’s Cp.) In principle,
one would examine all possible models and pick the one that is optimal with respect
to the chosen criterion, such as AIC. However, because each variable may be either
included in a model, or excluded from the model, there are 2p possible models and
it quickly becomes prohibitive to examine all possible models as p grows. Model
selection algorithms, therefore, provide search strategies but can not guarantee that
the optimal model is found.
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Example 12.7 (continued) In their study, Li et al. used a stepwise procedure
based on AIC to select variables for predicting BOD. 2

An additional, widely-used criterion for model selection is cross-validation. The
idea begins by considering the prediction of y by each model. Let us define an
observation from all the variables x1, . . . , xp to be a vector x. Then we are predicting
y by some function f(x). In the case of linear regression,

f(x) = β0 +

p
∑

j=1

βjxj

where each model fixes some of the coefficients βj to be 0 (these are the coefficients
corresponding to variables excluded from the model). The corresponding theoretical
problem is to predict Y by some function f(x) of a random vector X, and we may
evaluate the prediction using mean squared error (MSE), E((Y −f(X))2). According
to the prediction theorem on page 107 the MSE is minimized by the conditional ex-
pectation E(Y |X = x), and we would, in principle, find this conditional expectation
through model selection and fitting. One possibility would be to attempt to choose
the model that gives the smallest MSE. However, because the MSE will depend on
unknown values of the coefficients, we must estimate it from the data. If we use the
same data both to fit models and to evaluate how well the models fit, we necessarily
obtain an overly optimistic answer for the MSE: we will have optimized the fit for
the particular data values at hand; if we were to get new data we probably would
not do as well. In other words, the estimated MSE will tend to be too small; it will
be downwardly biased. Furthermore, the amount of downward bias in the estimated
MSE will vary with the model, so the estimated MSE will not be a reliable model
comparison procedure.

Cross-validation attempts to get around the problem of optimistic MSE assess-
ment by splitting the n observations yi into a set of K groups, each group having the
same number of observations, or nearly the same number. Let us label the kth group
Gk. Then, for k = 1, . . . , K, we pick group Gk and call its observations “test data”
and the remainder of the observations “training data.” We use the training data to
fit models and we use the test data to evaluate the fits. Specifically, an observation
yi ∈ Gk is predicted by the fit from the training data in the K− 1 groups containing
all yi /∈ Gk. Letting ŷi,CV denote the fit of yi based on the training data that excludes
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group Gk, the cross-validated estimate of MSE is

M̂SE =
1

n

K∑

k=1

∑

yi∈Gk

(yi − ŷi,CV )2.

This represents the quality of “out of sample” fit; conceptually, MSE is the average
squared error we would expect, theoretically, if we were to apply the fit on entirely
new data collected under precisely the same conditions. The model with the best

cross-validation performance M̂SE is the model selected by K-fold cross-validation.
Cross-validation should, in principle, provide good estimates of MSE as K gets large
(so that the estimates of MSE will have good statistical properties). For any given
sample size n the largest possible value of K is K = n. This results in leave-one-out
cross validation, a method recommended by Frederick Mosteller and John Tukey in
an influential book (Mosteller and Tukey, 1968). Here is an example.

Example 12.8 Prediction of fMRI face selectivity using anatomical con-
nectivity Saygin et al. (2011) used anatomical connectivities established from
diffusion-weighted imaging to predict differential responses to faces and objects in
fMRI. It is highly intuitive that functional activity in the brain, as measured by
fMRI, should depend on anatomical structure. Saygin et al. examined fMRI re-
sponses in the fusiform face area of the temporal lobe, an area known to respond
more strongly when a subject is shown pictures of faces than when the same subject
is shown pictures of objects. They considered the response to pictures of faces, and
to objects, at every voxel in the fusiform face area and took as their yi variable in
regression analyses the normalized ratio of face response to object response for voxel
i. The xi vector of variables was made up of connectivities to 84 brain regions, which
were found using diffusion weighted imaging. This constituted their “connectivity”
model. Leave-one-out cross-validation was used across 23 subjects to compare this
model with two other models that did not involve connectivity information. One
model defined the xi variables to be physical distances to the 84 brain regions. This
was the “distance” model. The other used the group average among all the other
subjects, as a single predictor xi. This was the “group average” model. For each
subject the authors fit these models to the other 22 subjects, then used the fits to
predict the fMRI responses among all the voxels for each subject. These authors
used mean absolute error instead of MSE. (We comment on this below.) Thus, they
computed the sample mean absolute error across all voxels for each subject. The
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cross-validated estimate of mean absolute error was the sample mean13 of these 23
values. The results were as follows: connectivity model, .65; distance model, 1.06;
group average model, .78. This provided evidence that the connectivity model pre-
dicts fMRI activity better than either physical distances or group averaged responses.
(Saygin, Z.M., Osher, D.E., Koldewyn, K., Reynolds, G., Gabrieli, J.D., and Saxe,
R.R. (2011) Anatomical connectivity patterns predict face selectivity in fusiform
gyrus, Nature Neurosci., 15: 321-327.) 2

In some problems it is computationally expensive to obtain n distinct fits, one
for each of the n training data sets needed for leave-one-out cross-validation. In such
cases, K is chosen to be much smaller, so that only K fits need to be computed. The
most popular value in this context is K = 10.

Cross-validation has been studied extensively (see Efron, 2004; Arlot and Celisse,
2010; and references therein). (Mosteller, F. and Tukey, J.W. (1968) Data Anal-
ysis and Regression: A Second Course in Statistics, Addison-Wesley. Efron, B.
(2004) The estimation of prediction error: Covariance penalties and cross-validation
(with discussion), J. Amer. Statist. Assoc., 99: 619-642. Arlot, S. and Celisse, A.
(2010) A survey of cross-validation procedures for model selection, Statistics Sur-
veys, 4: 40-79.) The argument that cross-validation should provide a correction
for a downwardly biased estimate of MSE is reminiscent of the motivation for AIC
given in Section 11.1.6. There, AIC was introduced to correct the bias in estimating
the Kullback-Liebler discrepancy between fitted model and true model. In regres-
sion, minimizing the Kullback-Liebler discrepancy corresponds to minimizing MSE
and, for large samples, AIC and leave-one-out cross-validation agree (Stone, 1974).
(Stone, M. (1974) Cross-validatory choice and assessment of statistical predictions
(with discussion), J. Royal Statist. Soc., B, 36: 111-147.) The great advantage
of cross-validation is that it furnishes an estimate of MSE even if the relationship
between Y and X does not follow the assumed linear model. On the other hand,
if the linear model assumptions are roughly correct then AIC tends to outperform
cross-validation (Efron, 2004).

13In K-fold cross-validation it is tempting to regard the average of the n MSE estimates as
an ordinary mean, and to apply the usual standard error formula (7.17). This does not work
correctly, however, because the n separate evaluations are not independent. Instead, the square of
the standard error in (7.17) is an underestimate of the variance. In fact, it is not possible to provide
a simple evaluation of the uncertainty attached to the cross-validation estimate of MSE, or risk (see
Bengio and Granvalet, 2004). (Bengio, Y. and Granvalet, Y. (2004) No unbiased estimator of the
variance of K-fold cross-validation, J. Machine Learning Res., 5: 1089-1105.)
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Let us make two additional remarks. First, we phrased our comments above
in terms of MSE but, more generally, cross-validation provides an estimate of risk
(see page 121) using loss functions other than that defined by squared error. In
Example 12.8 absolute error was used. Second, cross-validation is not a substitute
for replication of experiments. Experimental replication provides much stronger evi-
dence than any statistical manipulation can create: new data will inevitably involve
both small and, sometimes, substantial changes in details of experimental design and
data collection; to be trustworthy, findings should be robust to such modifications
and should therefore be confirmed in subsequent investigations.

There is a different approach to the problem of using multiple regression in the
presence of a large number of possible predictor variables. Instead of thinking that
some variables are irrelevant, and trying to identify and remove them, one might
say that the coefficients are noisy and, therefore, on aggregate, likely to be too large
in magnitude. This suggests reducing the overall magnitude of the coefficients, a
process usually called shrinkage. We replace the least squares criterion (12.43) with

n∑

i=1

(yi − ŷi,p)
2 = min

β∗

(
n∑

i=1

(yi − y∗i )2 + λ magnitude(β∗)

)

(12.67)

where magnitude(β) is some measure of the overall size of β and is called a penalty.
The number λ is an adjustable constant and is chosen based on the data, often by
cross-validation (or, for some penalties, AIC or BIC). The criterion to be minimized
in (12.67) is penalized least squares and the solution ŷi,p is called penalized regression.
The two most common penalties are

magnitude(β) =

p
∑

j=1

β2
j (12.68)

and

magnitude(β) =

p
∑

j=1

|βj |. (12.69)

These penalties are also called, respectively, L2 and L1 penalties.14 In the statistics
literature L2 penalized regression is often called15 ridge regression and L1 penalized

14The penalty in (12.68) may also be written magnitude(β) = ||β||2 and in mathematical
analysis the Euclidean length is called an L2 norm. The penalty (12.69) is called an L1 penalty
because it is based, analogously, on the L1 norm.

15Strictly speaking ridge regression refers to L2 penalized regression after the x variables are
normalized.
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regression is called the LASSO (see Tibshirani, 2011, and references therein). (Tib-
shirani, R. (2011) Regression shrinkage and selection via the lasso: a retrospective
(with discussion), J. Royal Statist. Assoc., B: 73: 273-282.)

Example 12.9 MEG source localization In Example 1.2 we described, briefly,
the way MEG signals are generated and detected, and we discussed an application
in Example 5.7. There are 306 sensors and the sensor data may be analyzed directly
or, alternatively, an attempt may be made to identify the brain sources that produce
the sensor signals, a process known as source localization. One class of methods
overlays a large grid of possible sources on a representation of the cortex, and then
applies Maxwell’s equations in what is known as a “forward solution” that predicts
the sensor signals for any particular set of source activities. This resuls in a linear
model of the form (12.51) where X is determined by Maxwell’s equations and β
represents the source activity. A typical number of sources might be 5,000, so this
becomes a large problem. Furthermore, because n = 306 we have p > n which makes
the matrix XTX singular (non-invertible) and some alternative to least squares must
be used. The most common solutions involve L2 and L1 penalized least squares,16

which are used in the minimum norm estimate MNE and minimum current estimate
MCE methods of source localization in MEG. 2

12.5.8 Multiple regression can be treacherous.

Multiple linear regression is a wonderful technique, of wide-ranging applicability. It
is important to bear in mind, however, the cautions we raised in the context of simple
linear regression, especially in our discussion of Figure 12.5. With many explanatory
variables, the inadequacies of the linear model illustrated in Figure 12.5 could be
present for any of the y versus xj relationships, for j = 1, . . . , p, and there are similar
but more complex possibilities when we use the multiple variables simultaneously.
Furthermore, it is no longer possible to plot the data in the form y versus x when
x = (x1, x2, . . . , xp) and p > 2. The assumption of linearity of the relationship
between y and x is crucial, and with multiple variables it is difficult to check.

An additional issue involves one of the most useful features of multiple regres-
sion, that it allows an investigator to examine the relationship of y versus x while
adjusting for another variable u. This was discussed in Section 12.5.1 and its use in

16Actually, the penalty is applied to weighted least squares as described on page 393.
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the interpretation of neural data was described in Examples 12.4 and 12.1. In this
context, however, the phenomenon of attenuation of correlation, discussed in Sec-
tion 12.4.4, must be considered. In Example 12.4, for instance, the authors wanted
to examine the effect of age on BOLD activity while adjusting for task performance.
The variables used for adjustment were accuracy (x2) and mean reaction time (x3).
For each subject, the numbers x2 and x3 obtained for these variables were based on
limited data and therefore represent accuracy and reaction time with some uncer-
tainty, which could be summarized by standard errors. These standard errors were
not reported by the authors, and probably were small, but suppose, hypothetically,
that the x2 and x3 measurements had large standard errors. In this case, according
to the result in Section 12.5.1, the correlation of these noisy variables with BOLD
activity would be less than it would have been if accuracy and reaction time had
been measured perfectly. Therefore, the adjustment made with x2 and x3 would also
be less than the adjustment that would have been made in the absence of noise.

A similar concern arises when the measured variables capture imperfectly the
key features of the phenomenon they are supposed to represent. In Example 12.1,
the authors wanted to adjust the effect of reward size on firing rate for relevant
features of each eye saccade. They did this by introducing eye saccade amplitude,
velocity, and latency. If, however, a different feature of eye saccades was crucial in
determining firing rate (e.g., acceleration), then these measurements would only be
correlated with the key feature and would represent it imperfectly. In this sense, the
measured variables would again be noisy representations of the ideal variables. The
fundamental issue for adjustment is whether the measured variables used in a regres-
sion analysis correctly represent the possible additional explanatory factors, which
are often called confounding variables. We discuss confounding variables further in
Section 13.4. The general problem of mismeasured explanatory variables is discussed
in the statistics and epidemiology literature under the rubric of errors in variables.
When multiple regression is used to provide statistical adjustments, the accuracy of
explanatory variables should be considered.

Finally, in Section 12.5.7 we noted the many alternative regression models that
present themselves when there are multiple possible explanatory variables, and we
described very briefly some of the methods used for grappling with the problem of
model determination. These approaches can be very successful in certain circum-
stances. However, there is often enormous uncertainty concerning the model that
best represents the data. A careful analyst will consider whether interpretations are
consistent across all plausible models.



Chapter 13

Analysis of Variance

c©2010 SPRINGER SCIENCE+BUSINESS MEDIA, LLC. All rights reserved. No
part of this work may be reproduced in any form without the written permission of
SPRINGER SCIENCE+BUSINESS MEDIA, LLC.

Many experiments examine the effects of multiple experimental conditions. When
each measured response from a subject is a single-number, the data are usually
analyzed with analysis of variance (ANOVA). The name has a certain logic because,
as we will see, the technique rests on a breakdown of sums of squares (assessing
variation), but the null hypothesis typically takes the theoretical means to be equal
among the experimental conditions, specifying no treatment effect, so that one may
think of the methodology as an investigation of means. The general ideas developed
in Chapters 10 and 11 carry over to ANOVA. One additional, very important notion
involves the structure of the experiment. This is spelled out in Section 13.1. In
Section 13.2 we indicate the way standard ANOVA models may be considered special
cases of linear regression, as treated in Section 12.5. This is important conceptually
and computationally. In Section 13.3 we take up nonparametric methods in ANOVA
and in Section 13.4 we discuss causality and the role of randomization, which is
especially relevant in clinical studies.

409



410 CHAPTER 13. ANALYSIS OF VARIANCE

13.1 One-Way and Two-Way ANOVA

ANOVA can take many forms, depending on the design of the experiment and the
resulting structure of the data. We consider here only the two simplest kinds of
ANOVA and introduce them with a pair of examples.

Example 13.1 Stimulation and development of motor control Zelazo, Ze-
lazo, and Kolb (1972, Science, 176:314-315) conducted a study to see whether stim-
ulation of infants during the first eight weeks of life could make them walk earlier.
The stimulation involved a simulation of walking in which a parent held the baby in
a manner that would make it respond reflexively with walking-type leg movements.
The data in Table 13.1 are ages in months at which 24 infants were judged to be-
gin walking.1 Each 1-week-old infant was assigned to one of four groups, namely,
an experimental group (active-exercise) and three control groups (passive-exercise,
no-exercise, 8-week control).2 The issue is whether the active-exercise group walked
earlier than the controls. From Figure 13.1 it may be seen that the active-exercise
group infants had somewhat earlier reported ages of walking than those in the three
control groups. However, there is quite a bit of variability, with one of the 6 infants
in the active group being relatively late (13.0) and one in the no-exercise group being
quite early (9.0). Thus, it’s hard to tell whether there is a consistent pattern. 2

Notice the layout of the data in the example above: it makes sense to display
them in columns, with each column identified with a different treatment. The next
example is different.

1For pedagogical simplicity, we wanted the number of subjects per group to be equal. This is
not required for ANOVA; it merely makes things a bit easier to discuss. In the original data there
were only 5 subjects in the 8-week control group. We therefore added the 12.35 value to the 8-week
control group.

2Infants in the active-exercise group received stimulation of the walking and placing reflexes
during four 3-minute sessions that were held each day from the beginning of the second week until
the end of the eighth week. The infants in the passive-exercise group received equal amounts of
gross motor and social stimulation as those who received active-exercise, but unlike the active-
exercise group, these infants had neither the walking nor placing reflex exercised. Infants in the
no-exercise group did not receive any special training, but were tested along with the active-exercise
and passive-exercise subjects. The 8-week control group was tested only when they were 8 weeks
of age; this group served as a control for the possible helpful effects of repeated examination.
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Active-exercise Passive-exercise No-exercise 8-week Control
Group Group Group Group

9.00 11.00 11.50 13.25
9.50 10.00 12.00 11.50
9.75 10.00 9.00 12.00

10.00 11.75 11.50 13.50
13.00 10.50 13.25 11.50
9.50 15.00 13.00 12.35

Table 13.1: Data from motor control experiment of Zelazo et al. (1972). Entries
are ages at which each of 24 infants began walking. The treatment group is “active-
exercise” and the other three groups served as controls.

8 10 12 14 16
Age (months)

 

1

2

3

4

Figure 13.1: Display of data from Table 13.1. The age of walking is shown for each
of the four conditions, with 1 being active exercise, 2 being passive exercise, 3 being
no exercise, and 4 being the 8-week control. Each extra circle around a plotted dot
indicates the presence of 2 identical values of age within a given condition (so that
for each condition there are 6 observations at 5 locations on the graph).
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Example 13.2 Finger tapping in response to stimulants Scott and Chen
(1944; J. Pharmacol. Exptl. Therap., 82: 89-97) conducted an experiment on fin-
ger tapping in response to orally-administered stimulants. Four subjects were each
given three different treatments and then their finger-tapping rates were analyzed.
The treatments were caffeine (Ca), 1-ethyltheobromine (Th); this is the stimulant in
chocolate, and it is very similar to caffeine, and a placebo (Pl). The tapping rates
(rate minus 440, with “rate” not defined but possibly taps per minute) are shown in
Table 13.2.

In this case we would be interested in comparing the three treatments. The mean
tapping rates for Pl, Th, and Ca are 22, 39, and 41. Is this evidence that theobromine
and caffeine led to increased tapping rates? 2

Subject No.
DRUG 1 2 3 4

Pl 11 56 15 6
Th 26 83 34 13
Ca 20 71 41 32

Table 13.2: Data from finger tapping experiment of Scott and Chen (1944). Entries
are tapping rates. Each of 4 subjects received all 3 treatments (drugs): placebo,
theobromine, and caffeine.

An important distinction between the two experiments above is that in the finger
tapping experiment in Example 13.2 each subject received all of the treatments.
Thus, the 12 data values were produced by only 4 subjects in the experiment, not
12. In the motor control experiment of Example 13.1, each subject received only one
treatment, and the 24 data values came from 24 subjects. The two situations require
related but different statistical methods. Table 13.1 is sometimes called a one-way
table and is treated by one-way ANOVA while Table 13.2 is called a two-way table
and is treated by two-way ANOVA.

13.1.1 ANOVA is based on a linear model.

The one-way ANOVA model is

Yij = µ+ αi + ǫij , (13.1)
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where Yij is the j-th observation in the i-th group, µ + αi is the mean for the i-th
group and ǫij is the error for the j-th observation in the i-th group (the discrepancy
between Yij and µ + αi). Here, µ is the overall mean (the “grand mean”) and αi is
the increment added to that overall mean in obtaining the mean for the i-th group.
We take the number of groups to be I, so that i = 1, 2, . . . , I, and write the number
of observations in group i as ni. In some places we also write the ith group mean as

µi = µ+ αi

but the notation µ+ αi is useful in comparing one-way and two-way ANOVA.

The one-way ANOVA assumptions are

(i) the ANOVA model (13.1) holds;

(ii) the errors satisfy E(ǫi) = 0 for all i;

(iii) the errors ǫi are independent of each other;

(iv) V (ǫi) = σ2 for all i (homogeneity of error variances), and

(v) ǫi ∼ N(0, σ2) (normality of the errors).

Note that these are the same assumptions as those used in linear regression (apart
from the replacement of (12.1) with (13.1); see page 360). As a result, residual analy-
sis may be used in very much the same way as in regression. Indeed, mathematically,
analysis of variance may be considered a special case of linear regression. We return
to this in Section 13.2.

The purpose of this model is to provide a basis for statistical comparison of the
group means µ + αi. That is, we ask whether there is evidence that the means are
different and, if so, we can estimate how different they are. Formally, we want to
test the null hypothesis that the groups means are equal:

µ+ α1 = µ+ α2 = · · · = µ+ αI .

The usual way the hypothesis is stated is as follows:

H0 : αi = 0 (13.2)

for all i, which implies that the group means are equal. It also satisfies the condition
that the grand mean µ remains the expectation of Yij under H0.
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13.1.2 One-way ANOVA decomposes total variability into
average group variability and average individual vari-

ability, which would be roughly equal under the null
hypothesis.

At the beginning of Section 12.5.2 we wrote the basic signal and noise decomposition
for regression,

SST = SSR + SSE.

In ANOVA we decompose the variability in the data similarly into two pieces, replac-
ing SSR with a treatment or “group” sum of squares SSgroup. To test H0 defined by
(13.2) we compute a measure of the average amount of variability due to the groups,
and an average amount of variability due to error, then compare these. Under the
null hypothesis that the group means are equal, there should be no systematic vari-
ability due to groups, so that the variability we see in our “average variability due to
groups” is the result of background variability in the measurements themselves, that
is, the error variability. In other words, the average variability due to groups should
be about the same size as the average variability due to error. Thus, to test H0 we
use a ratio of these measures of average variability and when the ratio is much larger
than 1 there is evidence against H0, in favor of there being differences among the
groups. We first specify and illustrate the procedure and then indicate its motivation
as a likelihood ratio test.

We begin with the total sum of squares

SST =
∑

(yij − ȳ..)
2

where the double dots in the subscript on y.. indicate that the mean is being taken
over all the values of y, averaging across both rows and columns. In the infant
exercise example we average across all 24 values. We also define the error (residual)
sum of squares to be

SSE =
∑

(yij − ȳi.)
2

where the single dot in the subscript on yi. indicates that the mean is being taken
within the i-th group. In the infant exercise example there would be 4 means ȳi.

for i = 1, 2, 3, 4 and each would be an average across all 6 values in the appropriate
column. The group sum of squares is then

SSgroup = SST − SSE.



13.1. ONE-WAY AND TWO-WAY ANOVA 415

We next obtain averages of the group and error sums of squares by dividing by their
respective degrees of freedom, dfgroup = I − 1 and dferror = n − I, where n is the
total number of observations. These averages, called the group mean square and the
mean squared error, are defined by

MSgroup = SSgroup/dfgroup

MSE = SSE/dferror. (13.3)

Finally, we obtain from these the F -ratio

F = MSgroup/MSE. (13.4)

Under the null hypothesis this ratio follows an Fν1,ν2 distribution, where ν1 = dfgroup

and ν2 = dferror which is used to compute the p-value. Equations (13.3) and (13.4)
should be compared with Equation (12.47).

Note that in a certain sense “analysis of variance” is a misnomer. We are really
analyzing several means, and determining whether there’s evidence that they are
different. However, the basic tool for doing so is a comparison of sums of squares, that
is, a comparison of different sources of variability, which explains the terminology.

GROUP N MEAN ST. DEV.
Active exercise 6 10.1 1.5
Passive exercise 6 11.3 1.9
No exercise 6 11.7 1.5
8-week control 6 12.35 .86

Table 13.3: Group means and standard deviations for the data in Example 13.1.

SOURCE DF SS MS F p-value
Groups 3 15.74 5.25 2.40 0.098
Error 20 43.69 2.18
Total 23 59.43

Table 13.4: Analysis of Variance table for data in Example 13.1. The table lists each
source of variability, the degrees of freedom for that source, and the sum of squares.
For the groups and errors sources the mean squares (given by (13.3)) are also shown,
and the F -statistic (given by (13.4)) and p-value are shown on the groups line.
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Example 13.1 (continued from page 410) The means and standard devia-
tions for the 4 groups are shown in Table 13.3, and the basic ANOVA breakdown is
given in Table 13.4. The pooled standard deviation is s =

√
2.18 = 1.48. Because

F = 2.40 on 3 and 20 d.f. with p = .098 there is no evidence of any differences
among the means. Although from the sample means it may appear that the mean
age of walking is somewhat smaller for the first group than those for the control
groups, according to the the ANOVA F -test there is enough variability in the data
that any differences among the means are consistent with chance fluctuation. As
we mentioned on page 410, there are a couple of points visible in Figure 13.1 that
increase the variability and, thus, the denominator of the F -ratio. We will analyze
these data further on page 418. 2

We now indicate how the F -test in (13.3) and (13.4) arises as a likelihood ratio
test by considering the simpler ANOVA problem in which σ is known. Let us write
the group means in the form µi = µ+ αi. The pdf for observation yij is

f(yij) =
1√
2πσ

e−
1
2

(yij−µi)
2

σ2

and from the joint pdf

f(y11, y12, . . . , yInI
) =

∏

ij

1√
2πσ

e−
1
2

(yij−µi)
2

σ2

the loglikelihood function (after dropping the constant involving
√

2πσ) is

ℓ(µ1, . . . , µI) = − 1

2σ2

∑

i,j

(yij − µi)
2. (13.5)

Under H0 we have µi = µ, for i = 1, . . . , I and the loglikelihood function becomes

ℓ(µ) = − 1

2σ2

∑

i,j

(yij − µ)2. (13.6)

When we maximize the loglikelihood in (13.5) we get

µ̂i = ȳi.

and

ℓ(µ̂1, . . . , µ̂I) = − 1

2σ2

∑

i,j

(yij − ȳi.)
2

= − 1

2σ2
SSE.
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When we maximize the loglikelihood in (13.6) we get

µ̂i = ȳ..

and

ℓ(µ̂) = − 1

2σ2

∑

i,j

(yij − ȳ..)
2

= − 1

2σ2
SST.

The log of the likelihood ratio LR in (11.6) is

logLR = ℓ(µ̂)− ℓ(µ̂1, . . . , µ̂I)

and multiplying this by −2, and combining with (13.6) and (13.5) after inserting the
MLEs we get

−2 logLR =
1

σ2
SST − 1

σ2
SSE

=
SSgroup

σ2
. (13.7)

From (13.7), the likelihood ratio test will reject H0 when SSgroup is sufficiently large
relative to σ2.

The ANOVA F -statistic (13.4) arises from3 (13.7) when we estimate σ2 by MSE
and normalize SSgroup by its degrees of freedom, which is done for mathematical
convenience (the ratio of MSgroup to MSE follows an Fν1,ν2 distribution).

13.1.3 When there are only two groups, the ANOVA F -test
reduces to a t-test.

In the special case of only two groups with two means µ1 and µ2, the null hypothesis
H0: µ1 = µ2 may be tested with a t-test. This turns out to be equivalent to the

3When σ is unknown the derivation is slightly different because σ must be included among the
parameters in the loglikelihood function, so its MLE must be found and the likelihood ratio is
different; but the end result is equivalent to the F -test.
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ANOVA F test and, in fact, the square of the t-statistic is equal to the F -statistic
(compare the similar statements about regression on page 383).

Example 13.1 (continued from page 416) From the pooled standard de-
viation s = 1.48 reported on page 416 we get the standard error of each mean
SE = s/

√
6 = .60. Comparing the active exercise group mean with the eight-week

control we have a difference of 12.35−10.1 = 2.25. Using the pooled estimate s, this

difference has a standard error of SE(X̄4− X̄1) = s
√

1
6

+ 1
6

= .853 and the t ratio is

tobs = 2.25/.853 = 2.6

analogously with Equation (10.17). Here, however, we are using all the data from the
4 groups to compute s, rather than only the data from two groups we are currently
comparing. Therefore, we have 20 degrees of freedom going into s and thus 20 degrees
of freedom for the t-test (rather than 10 degrees of freedom if we were using only the
2 groups). We obtain p = .017.

An alternative analysis compares the active exercise group with the other three
groups, all of which could be considered controls. In this case, we would combine
the data from the 3 control groups and thereby end up with two groups: the active
excercise group and a single control group, the latter now having 18 observations.
We would then use the “two-sample t” analysis, as in (10.19). Carrying this out, we
obtain (i) a test of the null hypothesis that the means for these two groups are equal,
which we may write as H0: µactive−µcontrols = 0, and (ii) a 95% CI for the difference
between the means µactive − µcontrols.

First, we find the two means and standard errors to be 10.12±.59 and 11.81±.34,
which gives a t-ratio of 2.46 on 22 degrees of freedom and p = .022. Second, applying
the formula for the 95% CI in Equation (7.29) we find our 95% CI for the decrease
in mean age of walking for the active group compared with controls to be (.26,3.1)
months.

The conclusions from this analysis are different from those on page 416, based on
the F -test. We summarize on page 424. 2
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13.1.4 Two-way ANOVA assesses the effects of one factor
while adjusting for the other factor.

On page 412 we described the distinction between one-way and two-way tables by
contrasting Examples 13.1 and 13.2. To introduce the two-way analysis let us first
look further at the data in Example 13.2.

Figure 13.2: Tapping rates displayed with identifiers “Pl” for placebo, “Ca” for
caffeine, and “Th” for theobromine.

Example 13.2 (continued from page 412) Figure 13.2 displays the tapping
rates for the three drugs across the four subjects. We can see that the subjects have
very different tapping rates, but for all four of them the placebo rate is noticeably
lower than that obtained with theobromine or caffeine. Also, the comparison of
rates for theobromine and caffeine is inconsistent across subjects. The quantitative
analysis, below, will support these qualitative observations. 2

The two-way ANOVA model is

Yij = µ+ αi + βj + ǫij ,
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SOURCE DF SS MS F p-value
Drugs 2 872 436 7.88 .021
Subjects 3 5478 1826 33 .0004
Error 6 332 55.3
Total 11 6682

Table 13.5: Analysis of Variance table for data in Example 13.2. The form of the
table is similar to that in Table 13.4, except there are now F -ratios and p-values for
both drugs and subjects.

where Yij is the observation for the i-th treatment on the j-th subject, µ+αi + βj is
its mean, and ǫij is the error for the i-th treatment and j-th subject. Here, αi is the
increment added to the overall mean µ in obtaining the mean for the i-th treatment
while βj is the increment added to overall mean in obtaining the mean for the j-th
subject. We say that αi is the effect for the ith treatment and βj the effect for the
jth subject. A common terminology replaces the subjects with blocks, so that one
would say βj is the effect for the jth block. This terminology comes from the origin
of ANOVA in agricultural field trials, where it referred to a block of land in a field.

As in one-way ANOVA, in two-way models the null hypothesis of interest is
H0: αi = 0 for all i. In the two-way case it is also possible to formulate the hypothesis
that all the βj’s are zero, as well. This is not usually an object of investigation in
experiments on multiple subjects because it would typically not be plausible for the
subjects all to react the same way to the various treatments. However, statistics
packages print out F -statistics and p-values for both hypotheses, so it’s important
to keep them straight.

Example 13.2 (continued from page 419) In the ANOVA for the finger
tapping data there are two “factors” to be considered, drugs and subjects. Here,
F = 7.88 on 2 and 6 d.f. with p = .021 indicates some evidence that the treatment
means are different. There is also an F -ratio for subjects, which in fact is much larger
and has a considerably smaller p-value: in this example, there is a very substantial
difference among the subjects. In particular, the second subject has a much higher
tapping rate than the others. The variability among subjects might be important to
the conclusions one would wish to draw.

We may say something about the means, as well. For the three groups the mean
tapping rates are, respectively, 22, 39, and 41. Standard errors are found by plugging
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in an estimate s of σ and again applying SE = s/
√
n. We have s =

√
MSE =√

55.3 = 7.44. Since there are 4 observations per treatment group, we use n = 4 and
get 22 ± 3.7, 39 ± 3.7 and 41 ± 3.7. Clearly, the caffeine and theobromine groups
have tapping rates substantially above that for the placebo group. 2

13.1.5 When the variances are inhomogeneous across condi-
tions a likelihood ratio test may be used.

The ANOVA F -test remains accurate for modest deviations from the homogeneity of
variance assumption, which is assumption (iv) on page 413. A rough rule of thumb is
that as long as each ratio of pairs of standard deviations for two different groups is less
than 3, the F -test should be accurate. However, in extreme cases where group i has
a standard deviation σi that is much larger than the standard deviation σk for group
k, there will be much more information in an observation yij about µi than in ykj

about µk. In such situations the usual F -statistic fails to take account of the differing
contributions of data from different groups to the assessment of H0 and it no longer
has an F distribution. The problem may be fixed by re-deriving the likelihood ratio
statistic and applying a permutation or bootstrap test. See Behseta et al. (2007)
and references therein. (Behseta, S., Kass, R.E., Moorman, D. and Olson, C. (2007)
Testing equality of several functions: Analysis of single-unit firing rate curves across
multiple experimental conditions, Statist. Medicine, 26: 3958-3975.)

Example 5.7 (continued from page 350) In examining directional informa-
tion at each MEG brain source Wang et al (2010) found grossly different standard
deviations for the 4 different movement directions. They therefore applied the pro-
cedure of Behseta et al. (2007) to get likelihood ratio test statistics at every source
and every time point. This was also used by Xu et al. (2011) within the permutation
test described briefly on page 350. 2

13.1.6 More complicated experimental designs may be ac-
commodated by ANOVA.

We have reviewed the fundamental ideas in ANOVA but have specified the procedures
only in the two simplest cases involving one or two experimental factors. In many
studies, especially involving human subjects, the designs can be more complicated.
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Sometimes they involve multiple factors, e.g., when there are 3 factors the analysis
involves 3-way ANOVA. In Example 13.2 each subject’s tapping rate was measured
repeatedly, across 3 conditions. This is a special case of a repeated measures design.
In many situations each subject is measured for all treatment conditions, but there
is another factor, such as gender, that applies to groups of subjects. Such repeated-
measures designs require specialized ANOVA methods. An additional possibility is
that subjects, or other factors, may be considered themselves to provide an interesting
source of variation. In this case their effects may be modeled as random variables.
This generates random-effects models and they too require specialized techniques.
We discuss random-effects models briefly in Chapter 16.

13.1.7 Additional analyses, involving multiple comparisons,
may require adjustments to p-values.

Because ANOVA involves comparison of several means, many possible hypotheses
may be of interest.

Example 13.1 (continued from page 418) We have already looked at the
data on development of motor control in two different ways. On page 416 we used
ANOVA to test the hypothesis of no differences among the mean age of walking,
H0: µ1 = µ2 = µ3 = µ4. Then, on page 418, we reported two further analyses.
The first used a t-test to the null hypothesis of no difference between the active
exercise group and the eight-week control group mean ages of walking, H0: µ1 = µ4.
The second used a t-test to the null hypothesis of no difference between the mean
age of walking in the active exercise group and that in the three control groups
combined, H0: µ1 = 1

3
(µ2 + µ3 + µ4). We also could have singled out the other

control groups and tested H0: µ1 = µ2 and H0: µ1 = µ3. Furthermore, because
the p-value quantifies the rarity, or surprise, of the results, we ought to ask what
other results might have been as surprising as those we actually observed. What
if the passive exercise group had produced apparent earlier walking, similar to the
active exercise group, by comparison with the eight-week control group? Wouldn’t
that have been a result we would have found interesting? Once we admit that this,
too, would have been reported as a finding, then we realize that we were, effectively,
testing many possible null hypotheses. The problem of testing multiple hypotheses
was discussed in Section 11.4. 2

As illustrated in Example 13.1, above, ANOVA often generates many plausible
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null hypotheses and, in this context, the problem of multiple hypothesis testing is
also called the problem of multiple comparisons. In Section 11.4 we presented the
Bonferroni correction, which can be applied when the number of comparisons (null
hypotheses) is easily enumerated. We commented that the Bonferroni method is
conservative, in the sense of yielding adjusted p-values that sometimes seem unnec-
essarily large, making it relatively difficult to obtain statistically significant results.
This has spawned a large literature on multiple comparison procedures, most of which
aim to provide smaller p-values under specific circumstances, so that it becomes eas-
ier to declare statistical signficance. For example, a method due to Dunnett assumes
there is a single control group with mean µc and considers all null hypotheses of
the form H0: µi = µc, for i 6= c. When there are I means, there are I − 1 such
null hypotheses and, under the standard ANOVA assumptions it is possible to find
an exact p-value for this case. Similarly, when there is no single control group, a
method due to Tukey examines all pairs of means, i.e., all null hypotheses of the
form H0: µi = µj for distinct i and j. When there are I means, this narrows the
number of hypotheses down to

(
I
2

)
and, again, an exact p-value can be obtained.

We have two general comments on the problem of multiple comparisons in ANOVA.
First, permutation tests discussed in Chapter 11 can be used to obtain p-values that
take account of multiple testing procedures, as illustrated in Example 5.7 on page 350.
In Example 13.1, for instance, we might want to compare each of the 3 control groups
to the active exercise group, using 3 t-tests. We then might focus on the t-test having
the largest t-value. To obtain a p-value for this comparison we could create permuta-
tion pseudo-data and for each set of pseudo-data we could test all 3 null hypotheses
of equality between mean of the active exercise group and the mean of each of the
three control groups and we could store the largest of the 3 t-statistics based on the
pseudo-data. A comparison of the largest t-statistic computed from the real data
with those computed from the pseudo-data would give us a p-value, as in the cases
examined in Section 11.2.1.

A second point is that multiple comparisons procedures in ANOVA are different
than those arising in the neuroimaging of Example 11.3, which was used to motivate
the multiple testing procedures discussed in Section 11.4.2. In neuroimaging there
are typically thousands of null hypotheses, while in ANOVA, even when considering
many possible combinations, the number is usually much smaller. The adjustments in
ANOVA, including the Bonferroni correction, are therefore less severe. Importantly,
when different multiple comparison methods lead to inconsistent conclusions it is
an indication that the result are equivocal. In fact, in many ANOVA settings a
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very workable way to proceed is to begin by relying on the F test. If one obtains
a significant F -statistic there is evidence for a difference among the means, and it
therefore makes sense to go ahead and examine whichever means happen to look
interesting, without worrying much about the process of selecting them. In other
words, a widely-advocated method, sometimes called the protected least-significant
difference, is to require a significant F statistic and then to report results from the
many t tests, or any of them that seem to be of interest.

Details: A contrast among the means is a linear combination
∑

i ciµi

for which
∑
ci = 0. For example, when I = 4, the contrast vector

c = (1,−1, 0, 0) would define the contrast µ1− µ2. Corresponding to any
contrast we have the null hypothesis that the contrast is zero, i.e.,

H0:
I∑

i=1

ciµi = 0. (13.8)

It is possible to define a test of this null hypothesis with a p-value that
adjusts for examining all possible contrasts. In other words, the null
hypothesis being tested is that H0 in (13.8) holds for all contrast vectors
c. This is usually called the Scheffé test. In terms of linear combinations
of the means, this is a maximally protective procedure: it guards against
spurious results from examining all possible linear comparisons. Under
the standard assumptions, it may be shown that the F -test is significant
at level α if and only if there exists a linear contrast for which a test of
H0 defined by (13.8) is significant at level α according to the Scheffé test.
2

Example 13.1 (continued from page 418) Where does all this leave us in this
example? We may summarise by saying that there is some evidence, but not strong
evidence, that the active group mean age of walking is a bit younger than that for the
control groups. The marginal nature of this evidence becomes clear when we ignore
the special feature that the latter three groups are all controls and look for differences
among all four groups: we find no evidence for this, according to the F -test. Given
that it may be difficult to determine exactly when a given child walks, and it is not
clear that the parents made this determination in the absence of knowledge about
what to expect based on the experimental hypothesis, some skepticism would seem
appropriate.4 2

4On the other hand, the paper by Zelazo et al. presented an additional measure where the
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13.2 ANOVA as Regression

13.2.1 The general linear model includes both regression

and ANOVA models.

We now return to the matrix formulation of multiple regression, discussed in Sec-
tion 12.5.3, and show how linear regression may be used to solve problems of analysis
of variance.

ANOVA concerns the comparison of means among several groups, corresponding
to experimental conditions. Let us consider two simple examples. Suppose X is the
n× 1 vector of 1s

X =








1
1
...
1







.

We then compute XTX = n and XTY =
∑
yi and find

(XTX)−1XTy = ȳ.

Therefore, the sample mean may be found by applying regression with this very
special version of the design matrix X.

Next, consider two groups ofm values y11, . . . , y1m and y21, . . . , y2m, corresponding
to two experimental conditions, having sample means ȳ1 and ȳ2. We define

y =












y11
...
y1m

y21
...
y2m












(13.9)

results were more striking. On this subject, see Adolph (2002). (Adolph, K.E (2002), Babies steps
make giant strides toward a science of development Infant Behavior and Development, 25: 86–90.)
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and

X =
















1 0
1 0
...

...
1 0
0 1
0 1
...

...
0 1
















(13.10)

where the first column contains m rows of 1s followed by m rows of 0s and the second
column contains m rows of 0s followed by m rows of 1s. The first column of X is
an indicator variable, indicating membership in the first group, i.e., the ith element
of the first column of X is 1 if the ith element of y is in the first group and is 0
otherwise. The second column of X is an indicator variable indicating membership
in the second group. We compute

XTX =

(
m 0
0 m

)

XTy =

( ∑
y1i∑
y2i

)

and

(XTX)−1XTy =

(
ȳ1

ȳ2

)

.

Thus, the sample means are obtained from multiple regression based on the design
matrix in (13.10). In a similar manner we may use linear regression to compute means
across several expermental conditions: for each condition we introduce an additional
indicator variable as an additional column of the design matrix. The ANOVA from
this regression becomes the same as the ANOVA table used in 1-way ANOVA.

Before leaving the subject of indicator variables, let us make the further point
that there are typically many reasonable choices of the way to code the columns of
the X matrix. For example, if we reconsider two groups of m values y11, . . . , y1m and
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y21, . . . , y2m, we could take

X =
















1 1
1 1
...

...
1 1
1 −1
1 −1
...

...
1 −1
















. (13.11)

In this case, X is no longer made up of indicator variables, but its columns span the
same space as that spanned by the indicator variables given in (13.10). That is, a
vector v is a linear combination of the columns of X using (13.11) if and only if it
is a linear combination of the columns of X using (13.10), though the coefficients of
the linear combinations will be different in the two cases. Another way to say this is
that the space of fitted values V = {Xβ∗, β∗ ∈ R2}, defined in Section 12.5.3, is the
same regardless of whether the design matrix X takes the form of (13.10) or (13.11).
Using (13.11) we obtain

XTX =

(
2m 0
0 2m

)

XTY =

( ∑
y1i +

∑
y2i∑

y1i −
∑
y2i

)

and

(XTX)−1XTY =

(
ȳ

(ȳ1 − ȳ2)/2

)

where ȳ is the overall mean. The second component (ȳ1 − ȳ2)/2 is often called a
contrast, because it is “contrasting” the means of the groups. Generally speaking,
a contrast vector (leading to a contrast estimate) is one whose components add to
zero; see the discussion surrounding (13.8). In ANOVA settings, where there are
multiple groups, it is often of interest to define an X matrix made up of contrast
vectors, together with the vector 1vec whose components are all equal to 1.5

A different way to represent ANOVA data is also useful, especially with statistical
software. The input to software is typically a vector of data, such as represented in

5It is also convenient to require the vectors to be orthogonal to one another, in which case
they are called orthogonal contrasts. For orthogonal contrasts, each estimate is independent of the
others. This is a topic discussed in many books on regression analysis and experimental design.
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(13.9), and the software must be informed which observations correspond to different
groups. In conjunction with the data in (13.9) we define

L =
















1
1
...
1
2
2
...
2
















(13.12)

where the firstm rows are 1s and the lastm rows are 2s. The values 1 and 2 in the vec-
tor L in (13.12) are called the levels of the conditions or factor. In the case of the fin-
ger tapping data in Example 13.2 we could define y = (11, 26, 15, 6, 26, 83, 34, 13, 20, 71, 41, 32)T

and then set

L =























1 1
1 2
1 3
1 4
2 1
2 2
2 3
2 4
3 1
3 2
3 3
3 4























(13.13)

so that the first column of the level matrix L represents the “levels” of the drugs (1
for Placebo, 2 for Theobromine, 3 for Caffeine) and the second column represents
“levels” of the subjects (1 for first subject, etc.). Statistical software used for 1-way
or 2-way ANOVA requires some identifier of group structure, such as (13.12) and
(13.13). It is possible to produce a design matrix X from a level matrix L, and
vice-versa. ANOVA software often provides functions for this purpose.
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13.2.2 In multi-way ANOVA, interactions are often of inter-
est.

In Section 12.5.6 we described the way interactions between explanatory variables
arise in multiple regression. Interactions play an important role in many ANOVA
settings. Here we consider the simplest case of interactions between two conditions
that each have two levels and then connect the ANOVA and regression contexts.

angle from fixation
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Figure 13.3: Hypothetical plots of mean saccadic reaction time when angular distance
from fixation to target is either -15 or -5 degrees, i.e., when the eyes fixate either
15 or 5 degrees to the right of the target. Solid lines correspond to patients; dashed
correspond to controls. In the left plot the lines are parallel, indicating the reaction
time is longer among patients by the same amount for both angular distances; there
is no interaction between angular distance and subject classification. In the right
plot the increase reaction time among patients is greater at -15 degrees than at -5
degrees, so the lines are no longer parallel; this represents an interaction between
angular distance and subject classification.

Example 2.1 (continued) In the experiment on saccadic reaction time, Behrmann
et al. sought to characterize the way eye saccades differed among patients with hemis-
patial neglect compared with control subjects.6 We use this context to illustrate

6The purpose of the study was to distinguish responses based on eye-centered coordinates, head-
centered coordinates, and trunk-centered coordinates.
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presence and absence of interaction. Let Y be saccadic reaction time, x1 represent
the distance from eye fixation to target, measured in degrees of angle to the right.
When the target was on the left side of fixation, which was the neglected side for the
patients, the angle was negative. We let x1 = 1 when the target was at −15 degrees
(15 degrees to the left of fixation) and x1 = 0 when the target was at −5 degrees.
We also let x2 be an indicator variable indicating patients, i.e., x2 = 1 for patients
and x2 = 0 for control subjects. These variables define 4 mean saccadic reaction
times: µ11 is the mean reaction time among patients when the target was at −15
degrees; µ10 is the mean reaction time among controls when the target was at −15
degrees; µ01 is the mean reaction time among patients when the target was at −5
degrees; and µ00 is the mean reaction time among controls when the target was at
−5 degrees. If patients and controls reacted similarly, except that patients had a
fixed latency of response, then the means would satisfy

H0: µ11 − µ10 = µ01 − µ00 (13.14)

which is the null hypothesis of no interaction. The left side of Figure 13.3 displays a
possible set of four means satisfying H0 in (13.14). On the other hand, if the patients
also moved their eyes more slowly then their mean response would be even longer at
-15 than at -5, and we would have

µ11 − µ10 > µ01 − µ00,

as shown on the right side of Figure 13.3. The second case, but not the first, corre-
sponds to the presence of an interaction effect between x1 and x2. Statistical evidence
of an interaction effect would be found by obtaining a statistically significant inter-
action of x1 and x2. 2

In Section 12.5.6 we said that in regression based on explanatory variables x1 and
x2 the variable defined as the product x1x2 represents the interaction between these
variables. In the equation

y = a+ bx1 + cx2 + dx1x2, (13.15)

which was Equation (12.66), we noted that when d = 0 the graphs of y vs. x1 for two
different values of x2 produce two parallel lines, but when d 6= 0 the two lines are no
longer parallel. Figure 13.3 displays an example of this phenomenon. In ANOVA the
variables correspond to the experimental design, as outlined briefly in Section 13.2.1,
and interaction effects are found via least-squares regression.7 We omit details. Here

7ANOVA may also be applied, as a special case of regression, when one explanatory variable is
quantitative and another variable is an ANOVA indicator variable. This is usually called analysis of

covariance or ANCOVA. Its purpose is to adjust the ANOVA for effects of the quantitative variable.



13.3. NONPARAMETRIC METHODS 431

is a neuroimaging example.

Example 13.3 Neural correlates of delay of gratification Successful decision
making often requires an ability to forgo immediate gain in favor of increased future
reward. Casey et al. (2011) reported fMRI results for group of individuals who had
been studied 40 years earlier, as preschool children, for their ability to delay grati-
fication. Previously it had been shown that performance on a delay-of-gratification
task during childhood predicted ability to perform on a go/no-go task as adults. The
authors imaged their subjects during go/no-go tasks. One of their findings involved
the inferior prefrontal gyrus, an area thought to be involved in impulse control during
similar tasks. Based on the childhood results, the authors categorized the subjects
has either “low” or “high” childhood ability to delay gratification. The question was
whether the two groups had different neural activity in the inferior prefrontal gyrus
40 years later, and the experimental prediction was that in the low ability group
neural activity in the inferior prefrontal gyrus would be similar on go and no-go
trials, but for the high ability group there would be much stronger activity on no-go
trials (when impulse control is operative) than on go trials. This corresponds to an
interaction between trial type (“go” versus “no-go”) and subject group (low or high
childhood ability). Let us write the means of the neural activity in go and no-go

trials8 for the low and high ability groups as µlow
go , µlow

nogo, µ
high
go , µ

high
nogo. The null

hypothesis of no interaction would be

H0: µ
low
nogo − µlow

go = µ
high
nogo − µ

high
go .

Casey et al. found evidence against H0, reporting a statistically significant interac-
tion (p = .014) between trial type and subject group. (Casey BJ, Somerville LH,
Gotlib IH, Ayduk O, Franklin NT, Askren MK, Jonides J, Berman MG, Wilson
NL, Teslovich T, Glover G, Zayas V, Mischel W, Shoda Y. (2011) Behavioral and
neural correlates of delay of gratification 40 years later. Proc. Natl. Acad. Sci.,
108:14998-5003.) 2

13.3 Nonparametric Methods

ANOVA assumption (v) on page 413, normality, is often suspect. Because ANOVA is
a special case of regression and, under weak conditions, the least-squares estimates

8We are here simplifying by ignoring some aspects of the experimental design.
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are asymptotically normal according to (12.61), the ordinary ANOVA procedures
work well with large samples even for non-normal data. Sometimes, however, the
sample size may be modest while the data appear grossly non-normal. In the next
two subsections we discuss two approaches to ANOVA for non-normal data. The first,
in Section 13.3.1, is based on ranks, and the idea is to replace each data value by
its rank within the whole data set. Rank-based procedures remove the assumption
of a specific distributional form. The second approach involves permutation and
bootstrap tests, as discussed in Sections 11.2.1 and 11.2.2. We describe these very
briefly in Section 13.3.2.

The body of ANOVA methods under the assumption of normality are called
parametric, meaning that they are based on probability models characterized by a
small number of parameters. The methods in Sections 13.3.1 and 13.3.2 are non-
parametric. Please note, however, that all these procedures continue to make the
more consequential assumptions of additivity and independence of the errors.

13.3.1 Distribution-free nonparametric tests may be obtained
by replacing data values with their ranks.

To describe rank-based ANOVA we begin with an example.

Example 13.4 Alcohol metabolism among men and women Women seem to
have a lower tolerance for alcohol than men, and are more prone to develop alcohol-
related diseases. When men and women of the same size and history of drinking
consume equal amounts of alcohol, the alcohol in the bloodstream of the women
tends to be higher. In research by Frezza, et al. (1990, New England Journal of
Medicine, 322: 95-99), the “first-pass” metabolism of alcohol in the stomach was
studied. The data shown in Table 13.6 come from 18 women and 14 men who
volunteered to be studied. Each subject was given two doses of .3 grams ethanol
per kilogram of body weight, one orally and one intraveneously on two different
days. The difference in concentrations of alcohol in the blood (at some fixed time
after administration), between the intraveneous dose and the oral dose, provides a
measure of first-pass metabolism in the digestive system and liver; this defines the
response variable in the table, with units in mmols per liter per hour. If first-pass
metabolism were more effective in men than women, the difference in levels following
intraveneous and oral administration would tend to be higher among men.
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Alcoholic Non-alcoholic Alcoholic Non-alcoholic
Women Women Men Men

0.6 0.4 1.5 0.3
0.6 0.1 1.9 2.5
1.5 0.2 2.7 2.7

0.3 3.0 3.0
0.3 3.7 4.0
0.4 4.5
1.0 6.1
1.1 9.5
1.2 12.3
1.3
1.6
1.8
2.0
2.5
2.9

Table 13.6: Data from Frezza et al. (1990) on first-pass alcohol metabolism.
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We begin by ignoring the distinction between alcoholic and non-alcoholic subjects.
This reduces the data to two groups: women and men. The data in Table 13.6 are
strikingly skewed toward high values. One possibility would be transform the data
and apply the usual t-test. Instead, we describe a rank-based analysis.

The data are printed out again in Table 13.7, with each rank listed at the end.
The rank goes from 1 up to 32, with the smallest value getting the rank 1 and the
largest value getting the rank 32. Ranks ending in .5 represent ties, i.e., cases in
which some data value appears twice. The women in the study have a 1 in the
“females” column. 2

Rank-sum methods compare the ranks of the two groups. That is, if one group
has values of its ranks that are sufficiently much larger than those of the other
group, there will be evidence that the means of the two groups are different. More
specifically, we may find the sum of the ranks from one of the groups and see whether
it is either much larger or much smaller than would be expected if, in fact, the
two groups followed the same distribution. Based on the null hypothesis that the
probability distributions for the two groups are the same, we can get a p-value. The
test statistic W is the sum of the ranks from one of the two groups. This is the
rank-sum test. It is sometimes called the Wilcoxin rank-sum test, and it is also often
called the Mann-Whitney test. Let us write the distribution functions for males and
females as Fmales(x) and Ffemales(x). The rank-sum test tests the null hypothesis
is

H0: Fmales(x) = Ffemales(x)

for all x.

To be specific about the procedure, suppose the alcohol metabolism data consisted
only of the four observations in Table 13.8. In this case we would rank the data as 1,
3, 2, 4 (0.6 is the smallest, 2.9 is the third smallest, 1.5 is the second smallest, and
12.3 is the fourth smallest). Then we would add up the values of the ranks for the
females to get the statistic W = 1 + 3 = 4.

Example 13.4 (continued) For the data in Table 13.7 we obtained the rank-
sum test statistic Wobs = 330 with p = .0002 This may be compared with the
usual t-based method gave Tobs = 3.41 with p = .0042. In this case, we get similar
conclusions and are reassured that the assumption of normality is not crucial. In
fact, if we first transform the data by taking logs, the usual t-test gives p = .0002. 2
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case difference female rank
1 0.6 1 8.5
2 0.6 1 8.5
3 1.5 1 14.5
4 0.4 1 6.5
5 0.1 1 1.0
6 0.2 1 2.0
7 0.3 1 4.0
8 0.3 1 4.0
9 0.4 1 6.5
10 1.0 1 10.0
11 1.1 1 11.0
12 1.2 1 12.0
13 1.3 1 13.0
14 1.6 1 16.0
15 1.8 1 17.0
16 2.0 1 19.0
17 2.5 1 20.5
18 2.9 1 24.0
19 1.5 0 14.5
20 1.9 0 18.0
21 2.7 0 22.5
22 3.0 0 25.5
23 3.7 0 27.0
24 0.3 0 4.0
25 2.5 0 20.5
26 2.7 0 22.5
27 3.0 0 25.5
28 4.0 0 28.0
29 4.5 0 29.0
30 6.1 0 30.0
31 9.5 0 31.0
32 12.3 0 32.0

Table 13.7: Data from Table 13.6 together with corresponding ranks, where the small-
est observation has rank 1 and the largest has rank n = 32.
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case difference female rank
1 0.6 1 1
18 2.9 1 3
19 1.5 0 2
32 12.3 0 4

Table 13.8: Four observations from Table 13.7.

An analogous procedure for several groups is called the Kruskal-Wallis test. It
may be used in place of the usual F -statistic from an ANOVA.

Example 13.4 (continued) When all four groups are used and the data are
transformed by logs we find p = .003 from the usual ANOVA F -test. In fact,
the residual analysis for the log-transformed data looks pretty good and we would
find little reason to worry about the assumption of normality. However, using the
Kruskal-Wallis test we get p = .002, which again corroborates the conclusion.

In using this example to describe rank-based methods we have concentrated on
technique, but a more basic concern lurks here: we must wonder about the extent to
which the volunteers represent the population as a whole, and whether the particular
men and women in the study might for some reason self-select in a manner that was
related to their alcohol metabolism. We return to such considerations in Section 13.4.
2

13.3.2 Permutation and bootstrap tests may be used to test
ANOVA hypotheses.

In Section 11.2 we described how permutation and bootstrap tests may be used as an
alternative to the t-distribution for computing a p-value in order to test H0: µ1 = µ2

based on data involving sample sizes n1 and n2. The essential method was to (i)
merge the data, then (ii) repeatedly resample the n1 + n2 data values, putting them
arbitrarily into groups of size n1 and n2 to create pseudo-data, (iii) to each pseudo-
data pair of samples apply the t-statistic, and finally (iv) see what proportion of the
pseudo-data give t-statistic values greater than that observed in the real data. When
the sampling is done without replacement the method is a permutation test, and
with replacement it becomes a bootstrap test.
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For one-way ANOVA the procedure is exactly analogous. For instance, with 3
conditions we would have data with sample sizes n1, n2, and n3; we would follow
step (i) then in (ii) resample the n1 + n2 + n3 data values and put them into groups
of sizes n1, n2, n3; in (iii) we would get the F -statistic, and likewise in (iv) we would
see what proportion of the pseudo-data F values exceed the F obtained for the real
data.

Two-way ANOVA is more complicated because the two-way structure must be
respected, but the concept is the same. See Manly, B.J. (2007). (Manly, B.F.J.
(2007) Randomization, Bootstrap, and Monte Carlo Methods in Biology (3rd ed.).
Chapman & Hall.)

13.4 Causation, Randomization, and Observational

Studies

Most studies aim to provide causal explanations of observed phenomena. To claim
causality, investigators must argue that alternative explanations of an observed re-
lationship are implausible.

Example 13.5 IQ and breast milk Lucas et al. (1992) obtained IQ test scores
were obtained from 300 children who had been premature infants and initially fed
milk by a tube. (Lucas, A., Morley, R., Cole, T.J., Lister, G., and Leeson-Payne, C.
(1992) Lancet, 339: 261-64.) The children were 8 years old when they took the IQ
test. The milk they were fed by tube was either breast milk or prepared formula, or
some combination of the two. Of interest was the relationship between IQ test scores
and the proportion of milk the infants received that was breast milk. The amount of
breast milk a baby drank was determined by whether or not the mother wished to
feed the infant by breast milk, and how much milk the mother was able to express.
2

In Example 13.5, immediately we must be aware of possible confounding factors.
The decision to administer the treatment, i.e., to use breast milk or not, was the
mother’s; whatever might determine that decision and also be related to susequent
IQ would affect the observed relationship between IQ and consumption of breast
milk. If, for example, mothers who chose to breast feed were also more likely to
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Explanatory Variable Estimated Coefficient p-Value

Social class -3.5 .0004
Mother’s education 2.0 .01

Female or not 4.2 .01
Days of ventilation -2.6 .02

Received breast milk or not 8.3 < .0001

Table 13.9: Regression results from Lucas et al. (1992). The increase in IQ after
adjusting for the other variables was 8.3 points (with p < .0001).

provide intellectual stimulation to their young children then the decision to breast
feed could appear to raise IQ even though it was the increased stimulation that had
the greater impact. The study would be free of these concerns if babies instead
received a randomly-determined percentage of breast milk, but few mothers would
give up this decision in order to be part of a scientific investigation.

Example 13.5 (continued) In an attempt to control confounding factors, and
to reduce variability and make the comparisons more sensitive, the researchers per-
formed a regression that included characteristics of both the mothers and the babies:
social class (ordered from 1 to 5 with 5 being highest), mother’s education (ordered
from 1 to 5 with 5 being highest), whether or not the child was a female (1 if female,
0 if male), the number of days of ventilation of the baby after birth, and whether or
not the baby received any breast milk (1 if yes, 0 if no). The results of the regression
are as follows:

Let us begin by interpreting the main finding. If we hold fixed social class,
mother’s education, sex of the baby, and days of ventilation, there is a highly sig-
nificant effect of whether or not the baby received breast milk, with breast milk
increasing subsequent IQ, on average, by 8.3 points. This is quite a large effect. If
it were felt appropriate to generalize from these data to the population at large, this
effect would certainly be something the pediatric professions would pay attention to.

Should we believe that early consumption of breast milk would tend to increase
IQ in the general population? 2

To analyze the possibility of confounding factors it is useful to introduce some
terminology and list some basic points.
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In both experiments and observational studies, we are typically interested in ef-
fects of some explanatory variable or treatment on a response variable. A study is
called an experiment when it imposes treatment conditions on some subjects; mea-
surements on that subject are called the response variable. On the other hand,
observational studies examine relationships between response variables and potential
explanatory variables, which could become treatments, but there is no active ad-
ministration of a treatment. A confounding factor (or confounding variable) is one
that affects both the response variable and an explanatory variable; its effects on
the response can not be distinguished from the effects of the explanatory variable of
interest on the response.

The particular subjects being experimented upon may have special characteristics
that make them different than those about which one may wish to draw conclusions.
In many situations, carefully designed experiments can avoid these difficulties. Ran-
domization, meaning the random allocation of the treatment to the subject provides
a way of avoiding confounding variables; double-blind experiments can avoid hidden
biases in the response measurements.

It is also important to keep in mind that response variables and explanatory
variables may not accurately capture what they are purported to be measuring. Strict
adherence to the experimental protocol can also help avoid mismeasured variables.

Well-designed, randomized experiments can support causal explanations for as-
sociations between response and explanatory variables. More specifically, based on a
well-designed experiment, it may be possible to say that, up to some degree of statis-
tical uncertainty (represented by a standard error or confidence interval), a response
will on average increase or decrease by a particular amount when an explanatory
variable changes its value by some number of units (including being present rather
than absent, as is the case for typical treatments). However, there are situations
in which it is impossible to randomly assign subjects to treatments. For example,
one can not tell people whether they will be in “smoking” or “non-smoking” groups.
Still, very convincing evidence can accumulate from observational studies—as in fact
has happened in the case of smoking. Several observed patterns may increase the
plausibility of an explanatory variable as a cause of a response variable:9

• The explanatory variable or treatment precedes observation of the response,

9A widely-cited source for many of these ideas is A.B. Hill, Principles of Medical Statistics, ninth
edition, Oxford University Press, 1971.
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and in terms of timing can thus act as a cause.

• Large effects are observed; this makes it less likely that the association is due to
a confounding variable. One often-cited example is that mortality due to scro-
tum cancer among chimney sweeps was about 200 times above the population
levels early in the 20th century.

• A quantitative “dose-response” relationship is observed, in which an increase in
an exposure to the explanatory variable increases (or decreases) the observed
response, as opposed to simply an observation of an effect when a treatment is
applied versus not applied.

• There is physiological evidence to support a theory that could explain the
putative causal relationship.

• There are no anomalous results that seem difficult to explain; anomalous results
may signal the presence of confounding variables.

• Similar results are obtained under differing experimental studies; confounding
variables are often less likely to be present in each of the different studies.

Example 13.5 (continued) Now, let us reexamine the IQ and breast milk
results with these principles in mind. First, the study is prospective, in the sense
that children received some percentage of breast milk and then were followed over
time to see what IQ score they got many years later. Second, the estimated effect is
reasonably large—8 IQ points is about half of a standard deviation in the population
as a whole. Third, there is physiological relevance: pediatricians recommend that
mothers breast-feed their babies for nutritional reasons. We have not done a careful
review of the literature, however, and do not have the expertise to comment critically
on this basic scientfic issue.

Concerning the dose-response relationship, in the regression reported above the
breast milk variable merely indicates whether or not the infant received breast milk;
but the authors reported a similar regression using instead percentage breast milk
where the regression coefficient was .09, which says that holding the same variables
fixed, for every 10% increase in breast milk the subsequent IQ would go up on average
by nearly a full point. This last result is important: by removing the decision
of whether or not to use breast milk as an explanatory variable, the confounding
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variables associated with that decision are no longer a concern.10 Now we must shift
to the question of whether some confounding variables may affect both the amount
of milk a mother can express and the subsequent IQ of the child. If not, we would
be regarding the percentage breast milk actually delivered as if it were a randomly-
determined percentage. One possible confounding variable would be the health of
the mother during pregancy: mothers who are unable to express much milk might
conceivably have been providing worse nutrition to the fetus.

As far as anomalous results are concerned, here are two possibilities: first, given
the other variables, subsequent IQ decreases as social class increases, which is sur-
prising; second, given the other variables, female babies have higher subsequent IQs.
There should be explanations for these outcomes. Otherwise, they raise doubts.11

Overall, from the report of this study we have given here, there is clearly a
substantial association between increased administration of breast milk and increased
IQ, when social class (measured in the way the authors did), mother’s education, and
days of ventilation are held fixed. However, it remains possible that some confounding
variables affect breast-milk expression and IQ. As we write this, twenty years has
passed since the publication of the 1992 paper. While the topic remains controvertial,
subsequent research has been informative. For further information see Brion et al.
(2011) and the references therein. (Brion MJ, Lawlor DA, Matijasevich A, Horta B,
Anselmi L, Arajo CL, Menezes AM, Victora CG, Smith GD (2011) What are the
causal effects of breastfeeding on IQ, obesity and blood pressure? Evidence from
comparing high-income with middle-income cohorts. Int. J. Epidemiol., 40:670-80.)
2

Example 13.4 (continued) Returning to the alcohol metabolism example, let
us now consider the possibility of confounding due to the use of volunteers in the
study. The chief concern is whether volunteers are different than the rest of the
population with respect to alcohol metabolism. This is at least plausible, though in
order to affect the study, the volunteer men and women would have to be different.
For example, if the women who volunteered tended to have trouble with alcohol
metabolism (perhaps they thought the study sounded interesting because they knew
they had a high susceptibility to the effects of alcohol) but men just wanted the

10We are here assuming that the reported regression is not being driven primarily by inclusion
of lots of babies with zero percent breast milk, but rather holds among the non-zero percentage
babies.

11We do not have the full results when percentage breast milk is used, so we don’t know whether
these assocations diminish or change sign in that case.



442 CHAPTER 13. ANALYSIS OF VARIANCE

money, then the differential effect would tend to be larger in this sample than in the
population. Is this kind of hypothetical scenario reasonable, or really a stretch of
the imagination? Your answer to this question determines how much faith you will
put in the results. 2



Chapter 14

Generalized Linear and Nonlinear
Regression

c©2010 SPRINGER SCIENCE+BUSINESS MEDIA, LLC. All rights reserved. No
part of this work may be reproduced in any form without the written permission of
SPRINGER SCIENCE+BUSINESS MEDIA, LLC.

Multiple linear regression is a powerful method of exploring relationship between
a response Y and a set of potential explanatory variables x1, . . . , xp, but it has an
obvious limitation: it assumes the predictive relationship is, on average, linear. In
addition, in its standard form it assumes that the noise contributions are homo-
geneous and follow, roughly, a normal distribution. During the latter part of the
20th century a great deal of attention was directed toward the development of gen-
eralized regression methods that could be applied to nonlinear relationships, with
non-constant and non-normal noise variation. In this chapter and in Chapter 15 we
discuss several of the most common techniques that come under the heading modern
regression.

We alluded to modern regression in Chapter 12 by displaying diagram (12.18),

Y ←
{

noise
f(x1, . . . , xp).

To be more specific about the models involved in modern regression let us write the
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multiple linear regression model (12.42) in the form

Yi = µi + ǫi (14.1)

µi = β0 + β1x1i + · · ·+ βpxpi (14.2)

where ǫi ∼ N(0, σ2). The point here, is that we are separating the linear, deter-
ministic part of the model in Equation (14.2) from the probabilistic part in (14.1),
which represents deviations from the systematic relationship in (14.1) as additive
noise. Modern regression models have the more general form

Yi ∼ fYi
(yi|θi) (14.3)

θi = f(x1i, . . . , xpi) (14.4)

where fYi
(y|θ) is some family of pdfs that depend on a parameter θ, which1 is related

to x1, . . . , xp according to a function f(x1, . . . , xp). Here, not only is f(x1, . . . , xp) in
(14.4) allowed to be nonlinear, but also the probabilistic representation of noise in
(14.3) is more general than in (14.1). The family of pdfs fYi

(y|θ) must be specified. In
Sections 14.1.1-14.1.3 and 14.1.4-14.1.5 we take the response distributions in (14.3) to
be binomial and Poisson, respectively, but in (14.4) we retain the linear dependence
on x1, . . . , xp for suitable parameters θi. In Section 14.1.6 we discuss the formal frame-
work known as generalized linear models that encompasses methods based on normal,
binomial, and Poisson distributions, along with several others. In Section 14.2 we
describe the use of nonlinear functions f(x1, . . . , xp) = f(x1, . . . , xp; θ) that remain
determined by a specified vector of parameters θ (such as f(x; θ) = θ1 exp(−θ2x)).

14.1 Logistic Regression, Poisson Regression, and

Generalized Linear Models

14.1.1 Logistic regression may be used to analyze binary
responses.

There are many situations where some y should be a noisy representation of some
function of x1, . . . , xp, but the response outcomes y are binary. For instance, behav-
ioral responses are sometimes either correct or incorrect and we may wish to consider

1We apologize for the double use of f to mean both a pdf in fYi
(y|θ) and a general function

in f(x1, . . . , xp). These two distinct uses of f are very common. We hope by pointing them out
explicitly we will avoid confusion.
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the probability of correct response as a function of some explanatory variable or vari-
ables, or across experimental conditions. Sometimes groups of binary responses are
collected into proportions.

Example 5.5 (continued from page 270) In Figure 8.9 we displayed a sig-
moidal curve fitted to the classic psychophysical data of Hecht et al. on perception
of dim light. There, each response was binary and the 50 binary responses at a given
light intensity could be collected into a proportion out of 50 that resulted in per-
ception. We fit the data by applying maximum likelihood estimation to the logistic
regression model in (8.42) and (8.43). This2 is known as logistic regression. 2

Example 2.1 (continued from page 429) In Section 13.2.2 we discussed
ANOVA interactions in the context of the study by Behrmann et al. (2002) on
hemispatial neglect, where the response was saccadic reaction time and one of the
explanatory variables was angle of the starting fixation point of the eyes away from
“straight ahead.” A second response variable of interest in that study was saccadic
error, i.e., whether the patient failed to execute the saccade within a given time
window. Errors may be coded as 0 and successful execution as 1. Behrmann et al.
used logistic regression to analyze the error rate as a function of the same explanatory
variables. They found, for example, that the probability of error increased as eyes
fixated further to the right. 2

From (14.1) and (14.2) together with normality, for a single explanatory variable
x, in linear regression we assume

Yi ∼ N(β0 + β1xi, σ
2).

There are three problems in applying ordinary linear regression with binary responses

2The analysis of Hecht et al. was different, but related. They wished to obtain the minimum
number of quanta, n, that would produce perception. Because quanta are considered to follow
a Poisson distribution, in the notation we used above, they took W ∼ P (λ) and c = n, with λ,
the mean number of quanta falling on the retina, being proportional to the intensity. This latter
statement may be rewritten in the form log λ = β0 + x, with x again being the log intensity. Then
Y = 1 (light is perceived) if W ≥ n which occurs with probability p = 1 − P (W ≤ n − 1) =
1 − F (n − 1|λ), where F is the Poisson cdf. This is yet another latent-variable model for the
proportional data. It could be fitted by finding the MLE of β0, though Hecht et al. apparently did
the fitting by eye. Hecht et al. then determined the value of n that provided the best fit. They
concluded that a very small number of quanta sufficed to produce perception. (Hecht, S., Schlaer,
S. and Pirenne, M. (1942) Energy, quanta and vision. J. General Physiology, 25: 819–40; but see
also Teich MC, Prucnal PR, Vannucci G, Breton ME, McGill WJ (1982) Multiplication noise in
the human visual system at threshold. 3. The role of non-Poisson quantum fluctuations, Biol.

Cybernetics 44:157-65.)
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to obtain fitted probabilities: (i) a line won’t be constrained to (0,1), (ii) the variances
are not equal, and (iii) the responses are not normal (unless we have proportions
among large samples, in which case the proportions would be binomial for large n
and thus would be approximately normal, as in Section 5.2.2). The first problem,
illustrated in Figure 8.9, is that the linear regression may not make sense beyond a
limited range of x values: if y = a+bx and b > 0 then y must become infinitely large,
or small, as x does. In many data sets with dichotomous or proportional responses
there is a clear sigmoidal shape to the relationship with x. The second problem was
discussed in the simpler context of estimating a mean, in Section 8.1.3. There we
derived the best set of weights to be used for that problem, and showed that an
esimator that omits weights can be very much more variable, effectively throwing
away a substantial portion of the data. Much more generally it is also possible to
solve problem (ii) by using weighted least squares, as discussed surrounding Equation
(12.62), and such solutions apply to the logistic regression setting. The third problem
can make distributional results (standard errors and p-values) suspect. The method
of logistic regression, which applies maximum likelihood to the logistic regression
model, fixes all three problems.

The logistic regression model begins with the log-odds transformation. Recall
that when p is a probability the associated odds are p/(1 − p). The number p lies
in the range (0,1) while the associated odds is in the range (0,∞). If we then take
logs, the number log(p/(1− p)) will lie in the range (−∞,∞), which corresponds to
what we need for in infinite straight line. Therefore, instead of taking the expected
value of Y to be linear in x (E(Yi) = β0 + β1xi) we note that when Yi ∼ B(ni, pi) we
have E(Yi/ni) = pi and we apply log(pi/(1− pi)) = β0 + β1xi. First, from

z = log(
w

1− w )⇐⇒ ez =
w

1− w
together with

1 +
w

1− w =
1

1− w
we obtain

z = log(
w

1− w )⇐⇒ w =
exp(z)

1 + exp(z)
. (14.5)

In (14.5) we replace w with pi and z with β0 + β1xi. The logistic regression model
(8.42) and (8.43) may then be written in the form

Yi ∼ B(ni, pi)

log
pi

1− pi
= β0 + β1xi.
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The log-odds (or logit) transformation is helpful in interpreting results. The log odds
(of a response) are linear in x. Thus, β1 is the change in the log odds for a unit
change in x.

The log odds scale itself is a bit awkward to think about, though if the base of
the logarithm is changed from e to 2 or 10 it becomes easier. It is often useful to
transform back to the odds scale, where an increase of 1 unit in x is associated with
an increase in the odds (that Y = 1) by a factor of exp(β1). If we wish to interpret
the change in probabilities, we must pick a particular probability p and conclude
that a unit increase in x is associated with an increase from p to expit(logit(p)+β1),
where logit(z) = log(z/(1− z)) and expit(w) = exp(w)/(1 + exp(w)). To illustrate,
we provide some interpretation in the context of Example 5.5.

Example 5.5 (continued) On page 248 we found β̂1 = 10.7 with standard error
SE = 1.2. We interpret the fitted model as saying that, on average, for every increase
of intensity by a factor of 10 (1 unit on the scale of the explanatory variable) there
is a 10.7± 1.2 increase in the log odds of a response. To get an approximate 95% CI
for the factor by which the odds increase we exponentiate, exp(10.7 ± 2(1.2)), i.e.,
(4023,489000). A more interpretable intensity change, perhaps, would be doubling.
An increase in intensity by a factor of 2 corresponds to .30 units on the scale of the
explanatory variable (because log10(2) = .301). For an increase of intensity by a
factor of 2 the log odds thus increase by 3.22 ± .72 (where 3.22 = (.301)(10.7) and
.72 = (.301)(2.4)). This gives an approximate 95% CI for the factor by which the
odds increase, when the intensity doubles, of exp(3.22± .72) = (12.2, 51.4).

We can go somewhat further by converting odds to the probability scale by in-
verting

odds =
p

1− p
to get

p =
odds

1 + odds
.

Let us pick p = .5, so that the odds are 1. If we increase the odds by a factor ranging
from 12.2 to 51.4 then the probability would go from .5 to somewhere between .92
and .98 (where .92 = 12.2/(1 + 12.2) and .98 = 51.4/(1 + 51.4)). Thus, if we begin
at the x50 intensity (where p = .5) and then double the intensity, we would obtain
a probability of perception between .92 and .98, with 95% confidence. This kind of
calculation may help indicate what the fitted model implies. 2
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Logistic regression extends immediately to multiple explanatory variables: for m
variables x1, . . . , xm we write

log
pi

1− pi
= β0 + β1x1i + . . .+ βmxmi.

The multiple logistic regression model may be written in the form

Yi ∼ B(ni, pi)

log
pi

1− pi

= xT
i β

where β is the coefficient vector and xi is the vector of values of the several explana-
tory variables corresponding the ith unit under study.

14.1.2 In logistic regression, ML is used to estimate the re-
gression coefficients and the likelihood ratio test is
used to assess evidence of a logistic-linear trend with

x.

It is not hard to write down the likelihood function for logistic reqression. The
responses Yi are independent observations from B(ni, pi) distributions, so each pdf
has the form

(
ni

yi

)
pyi

i (1− pi)
ni−yi and the likelihood function is

L(β0, β1) =
n∏

i=1

pyi

i (1− pi)
ni−yi

pi =
exp(β0 + β1xi)

1 + exp(β0 + β1xi)

where the second equation is substituted into the first. Standard statistical software
may be used to maximize this likelihood. The standard errors are obtained from the
observed information matrix.

For a single explanatory variable, the likelihood ratio test of Section 11.1.3 may
be used to test H0 : β1 = 0. More generally, if there are variables x1, . . . , xp in model
1 and additional variable xp+1, . . . , xp+m in model 2, then the likelihood ratio test
may again be applied to test H0 : βp+1 = · · · = βp+m = 0. The log likelihood ratio
has the form

−2 logLR = −2[log(L̂1)− log(L̂2)]
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where L̂i is the maximum value of the likelihood under model i. For large samples,
under H0, −2 logLR follows the χ2 distribution with m degrees of freedom.

In some software, the results are given in terms of “deviance.” The deviance for a
given model is −2 log(L̂). The null deviance is the deviance for the “intercept-only”
model. Often, the deviance from the full fitted model is called the residual deviance.
In this terminology, the usual test of H0 : β1 = 0 is based on the difference between
the null deviance and the residual deviance.

Variable Coefficients SE tobs p-value
intercept -1.78 .30 -5.9 .0042
intensity 1.20 .16 7.5 .0017

Table 14.1: Linear regression results for data from subject S.S. in Example 5.5.

Variable Coefficients SE tobs p-value
intercept -20.5 2.4 -8.6 p < 10−6

intensity 10.7 1.2 8.6 p < 10−6

Table 14.2: Logistic regression results for data from subject S.S. in Example 5.5.

Example 5.5 (continued) The output from least-squares regression software is
given in Table 14.1. The F statistic in this case is the square of tobs and gives the
p = .0017, as in Table 14.1. The results for logistic regression are given in Table 14.2.
The null deviance was 257.3 on 5 degrees of freedom and the residual deviance was
2.9 on 4 degrees of freedom. The difference in deviance is

null deviance - residual deviance = 257.3− 2.9 = 256.4

which should be compared to the chi-squared distribution on 1 degree of freedom. It
is very highly significant, consistently with the result in Table 14.2. 2

Polynomial terms in x may be handled in logistic regression just as they are in
linear regression (Section 12.5.4).

Example 5.5 (continued) To consider whether an additional, nonlinear compo-
nent might contribute usefully to the linear logistic regression model, we may square
the intensity and try including it in a two-variable logistic regression model. In this
case it is interesting to note that intensity and its square are highly correlated. To



450CHAPTER 14. GENERALIZED LINEAR AND NONLINEAR REGRESSION

Variable Coefficients SE tobs p-value
intercept -4.3 15.8 -.27 .78
intensity -6.6 17.0 -.39 .70
intsq 4.6 4.6 1.0 .31

Table 14.3: Quadratic logistic regression results for data from subject S.S. in Example
5.5.

Variable Coefficient SE tobs p-value
intercept -20.3 2.3 -8.7 p < 10−6

intensity 10.5 1.2 8.6 p < 10−6

int2 4.6 4.6 1.0 .31

Table 14.4: Quadratic logistic regression results for data from subject S.S. in Example
5.5, after first centering the intensity variable.

reduce the correlation it helps to subtract the mean before squaring. Thus, we define
intsq = (intensity)2 and int2 = (intensity−mean(intensity))2. The results using the
alternative variables intsq and int2 are shown in Table 14.3 and Table 14.4, respec-
tively. Using either of these two logistic regression summaries we would conclude the
quadratic term does not improve the fit. The results in Table 14.3 might, at first, be
confusing because of the nonsignificant p-values. As we noted in Section 12.5.5, this
is a fairly common occurrence with highly correlated explanatory variables, as x and
x2 often are. Recall that each nonsignificant p-value leads to the conclusion that its
corresponding variable contributes little in addition to the other variable. Since we
already found a very highly significant logistic linear relationship, we would conclude
that the quadratic doesn’t improve the fit. Again, though, the interpretation appears
cleaner in the second formulation. 2

14.1.3 The logit transformation is one among many that

may be used for binomial responses, but it is the
most commonly applied.

The expit function exp(x)/(1 + exp(x)), defined in Section 14.1.1, is one of many
possible sigmoidal curves and thus logistic regression is only one of many possible
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Figure 14.1: Two curves fitted to the data in Figure 8.9. The fitted curve from probit
regression (dashed line) is shown together with the fitted curve from logistic regression.
The fits are very close to each other.

models for binary or proportion data. In fact, expit(x) has an asymptote at 0 as
x → −∞ and at 1 as x → ∞, and is increasing, so it is a cumulative distribution
function. The distribution having expit(x) as its cdf is called the logistic distribution,
but the cdf of any continuous distribution could be used instead. One important
alternative to logistic regression is the Probit regression model, which substitutes
the normal cdf in place of the expit: specifically, the probit model is

Yi ∼ B(ni, pi)

Φ−1(pi) = β0 + β1xi

where Φ(z) = P (Z ≤ z), with Z ∼ N(0, 1). The fitted curve is then obtained from
y = Φ(β̂0 + β̂1x).

Example 5.5 (continued) Figure 14.1 displays the fitted curves from probit
and logistic regression for the data shown previously in Figure 8.9. The two models
produce nearly identical fitted curves. 2

As with the threshold data, the fitted curves from probit and logistic regression
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are generally very close to each other. This is because the graph of the logistic
cdf (the expit function) is close to the graph of the normal cdf. Two things are
special about the logistic regression model. First, it gives a nice interpretation of
the coefficients in terms of log odds. Second, in the logistic regression model (but
not the Probit or other versions) the loglikelihood function is necessarily concave
(as long as there are at least two distinct values of x). This means that there is a
unique MLE, which can be obtained from an arbitrary starting value in the iterative
algorithm. Logistic regression is the standard method for analyzing dichotomous or
proportional data, though in some contexts probit regression remains popular.3

An interesting interpretation of binary phenomena involves the introduction of
latent variables, meaning random variables that become part of the statistical model
but are never observed. Let us discuss this in terms of perception, and let us imagine
that the binary experience of perception, as “perceived” or “not perceived” is con-
trolled by an underlying continuous random variable, which we label W . We may
think of W as summarizing the transduction process (from light striking the retina
to firing rate among multiple ganglion cells), so that perception occurs whenever
W > c for some constant c. Neither the precise meaning of W , nor the units of c
need concern us. Let us take W to be normally distributed and, because the units
are arbitrary, we take its standard deviation to be 1. Finally, we take this latent
transduction variable, on average, to be a linear function of the log intensity of light
x and we write this in the form µW = c+β0+β1x. We now have the probit regression
model: Y = 1 when W > c but, defining −Z = W − µW (so that −Z ∼ N(0, 1) and
Z ∼ N(0, 1)),

W > c⇐⇒ W − µW > c− µW ⇐⇒ −Z > c− µW ⇐⇒ Z < µW − c.
In other words, Y = 1 when Z < β0 + β1x, which occurs with probability p =
Φ(β0 + β1x).

This latent-variable interpretation helps transfer the intuition of linear regression
models over to the binary case, and provides an appealing way to think about many
phenomena. Note that logistic regression is obtained by taking W to have a logistic
distribution,4 having cdf

F (w) =
1

1 + e−w
.

3We have not discussed residual analysis here. It may be performed using deviance residuals, or
other forms of residuals. See Agresti (1990) or McCullagh and Nelder (1989).

4Probit regression was introduced by Bliss in 1934, but the latent variable idea and normal
cdf-transformation was part of Fechner’s thinking about psychophysics in 1860; logistic regression
was apparently discussed first by Fisher and Yates in 1938. See Agresti (1990) (Agresti, A. (1990)
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14.1.4 The usual Poisson regression model transforms the
mean λ to logλ.

The simplest distribution for counts is Poisson, Y ∼ P (λ). Here, the Poisson mean
must be positive and it is therefore natural to introduce dependence on explanatory
variables through log λ. In Section 14.1.6 we will note that models defined in terms
log λ have special properties. The usual multiple Poisson regression model is

Yi ∼ P (λi)

log λi = xT
i β

where β is the coefficient vector and xi is the vector of values of the explanatory
variables corresponding to the ith unit under study. Poisson regression is useful
when we have counts depending on one or more explanatory variables.

left 9 6 9 9 6 6 8 5 7 9 4 8 8 3 6
up 2 0 6 4 4 0 0 0 5 2 1 0 3 0
right 4 8 2 2 4 0 3 4 1 1 0 3 4 0 2
down 1 5 1 2 0 4 4 4 4 3 6 1 1 1

Table 14.5: Spike counts from an SEF neuron during directional saccades.

Example 14.1 Directional sensitivity of an SEF neuron Olson et al. (2000,
J. Neurophys.) reported data collected from many individually-recorded neurons in
the supplementary eye field (SEF). In this experiment, a monkey was to trained to
translate one of four possible icons displayed at the fixation point into an instruction
of a location to which he was to move his eyes: either left, up, right, or down. SEF
neurons tend to be directionally sensitive. To establish direction sensitivity, Olson
et al. examined the number of spikes occurring 600 to 750 ms after presentation of
the cue. The spike count data for one neuron across the various trials are given in
Table 14.5. Is this neuron directionally sensitive?

By eye it appears that the firing rate is higher for the “left” condition than for the
other conditions. There are various versions of ANOVA that may be used to check
this. Analysis of spiking activity from these SEF neurons revealed that while the

Categorical Data Analysis, Wiley.) for much more extensive discussion of the methods described
briefly here.
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spike counts deviated from that predicted by a Poisson distribution, the deviation
was small (Ventura et al., 2001). Here we will use the data to illustrate a version of
ANOVA based on Poisson regression. Note that in Table 14.5 there are a total of 58
spike counts, from 58 trials. 2

The problem of fitting counts is analogous to, though less extreme than, that
of fitting proportions. For proportions, the (0,1) range could make linear regression
clearly inappropriate. Counts have a range of (0,∞). Because the ordinary regression
line is not constrained, it will eventually go negative. The simple solution is to use
a log transformation of the underlying mean. The usual Poisson regression model is

Yi ∼ P (λi) (14.6)

λi = exp(β0 + β1xi). (14.7)

To interpret the model we use the log transformation:

log λi = β0 + β1xi.

For example, in the SEF data log λi is the spike count and xi is the experimental
condition (up, down, left, right) for the ith trial. The advantage of viewing ANOVA
as a special case of regression is apparent: we immediately generalize Poisson ANOVA
by applying our generalization of linear regression to the Poisson regression model
above.

14.1.5 In Poisson regression, ML is used to estimate coeffi-
cients and the likelihood ratio test is used to examine
trends.

As in logistic regression we use ML estimation and the likelihood ratio test (“analysis
of deviance”).

Example 14.1 (continued) We perform Poisson regression using indicator
variables as described in Section 13.2.1 to achieve an ANOVA-like model. Specifically,
we concatenate the data in Table 14.5 so that the counts form a 58× 1 vector and
define a variable left to be 1 for all data corresponding to the left saccade direction
and 0 otherwise, and similarly define vectors up and right. The results from ordinary
least-squares regression are shown in Table 14.6. The F -statistic was 18.76 on 3 and
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Variable Coefficient SE tobs p-value
intercept 3.49 .26 13.2 p < 10−6

left 2.11 .37 5.6 p < 10−6

up -.74 .21 -3.5 .0011
right -.52 0.15 -3.4 .0014

Table 14.6: ANOVA Results for the SEF data in Table 14.5 shown in the form of
regression output.

Variable Coefficients SE tobs p-value
intercept 1.12 .079 14.2 p < 10−6

left .475 .096 4.9 3× 10−6

up -.173 .063 -2.76 .0039
right -.155 .052 -2.96 .0023

Table 14.7: Poisson regression results for the SEF data in Table 14.5. The form of
the results is similar to that given in Table 14.6.

54 degrees of freedom, giving p < 10−6. The Poisson regression output, shown in
Table 14.7 is similar in structure. Here the null Deviance was 149.8 on 57 degrees of
freedom and the residual Deviance was 92.5 on 54 degrees of freedom. The difference
in deviances is

null deviance - residual deviance = 149.8− 92.5 = 57.3

which should be compared to the chi-squared distribution on 3 degrees of freedom.
It is very highly significant. 2

In Example 14.1 the results from Poisson regression were the same as with or-
dinary linear regression (standard ANOVA), but the details are different. In some
situations the conclusions drawn from the two methods could be different.
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14.1.6 Generalized linear models extend regression methods
to response distributions from exponential families.

We began this chapter by saying that modern regression models have the form given
by (14.3) and (14.4), which for convenience we repeat:

Yi ∼ p(yi|θi)

θi = f(xi).

The simple logistic regression model may be put into this form by writing

Yi ∼ B(ni, pi)

θi = β0 + xiβ1

where
θi = log

pi

1− pi

or, more succinctly,

Yi ∼ B(ni, pi)

log
pi

1− pi
= β0 + xiβ1.

Similarly, the simple Poisson regression model may be written

Yi ∼ P (λi)

log λi = β0 + xiβ1.

Logistic and Poisson regression are special cases of generalized linear models. These
generalize linear regression by allowing the response variable to follow a distribution
from a certain class known as exponential families. They also use a link function that
links the expected value (the mean) µi of the data with the linear model β0 + β1xi.
For example, the usual link functions for binomial and Poisson data are the log odds
and the log, respectively, as shown above.

Exponential families have pdfs of the form

fY (y|η(θ)) = h(y) exp(η(θ)T (y)− B(θ)). (14.8)

For instance, in the Poisson case Y ∼ P (λ), the pdf (from Chapter 5, page 132) is

P (Y = y) =
1

y!
λye−λ.
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We can rewrite this in the form

1

y!
λye−λ =

1

y!
exp(y log λ− λ)

If we let θ = λ, η(θ) = log λ, B(λ) = λ, T (y) = y and h(y) = 1/y! we obtain (14.8).
Now, with µ = λ, if we define the link function to be

g(µ) = log µ (14.9)

the simple Poisson regression model becomes

g(µ) = β0 + β1xi.

Here, the log provides the link in the sense that it is the function by which the mean
is transformed before being equated to the linear model.

We may rewrite (14.8) in the form

fY (y|η) = h(y) exp(ηT (y)− A(η))

in which case η = η(θ) is called the natural parameter (or canonical parameter).
In the Poisson case the natural parameter is log λ. The logarithmic link function
is thus often called the canonical link. In the binomial case the log odds function
becomes the canonical link. The statistic T (y) is sufficient in the sense described
on page 234. The extension to the multiparameter case, in which η and T (y) are
vectors, is immediate:

fY (y|η) = h(y) exp(ηTT (y)− A(η)). (14.10)

Assuming that Yi comes from an exponential family, we obtain a generalized linear
model by writing

g(µi) = β0 + β1xi, (14.11)

where µi = E(Yi). Equation (14.9) provided an example in the Poisson case, but in
(14.11) g(µ) may be any link function.

Common distributions forming exponential families include binomial, multino-
mial, Poisson, normal, inverse Gaussian, gamma, and beta. The introduction of
generalized linear models allowed regression methods to be extended immediately to
all of these families, and a multiple-variable generalized linear model may be written

Yi ∼ fYi
(yi|ηi)

g(µi) = xT
i β (14.12)
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where fYi
(yi|ηi) is an exponential family pdf as in (14.10), µi = E(Yi), and g(µ) is

the link function. The unification of mathematical form meant that implementation
of maximum likelihood, and likelihood ratio tests, could use the same algorithms
with only minor changes in each particular case. Furthermore, for the canonical link
it turns out (under relatively mild conditions on the x and y variables5) that the
loglikelihood function is concave so that the MLE is unique. This guarantees that
the maximum of the loglikelihood function will be found by the function maximizer
(using Newton’s method, i.e., iterative quadratic approximation) beginning with any
starting value, and convergence will tend to be fast. Generalized linear models are
part of most statistical software.

In addition to the canonical link, several other link functions are usually available
in software. For example, it is usually possible to perform binomial regression using
the probit link instead of the log odds, or logit link. Similarly, a Poisson regression
could be performed using the identity link so that

log λi = β0 + β1xi

is replaced by
λi = β0 + β1xi.

Occasionally, the identity link provides a better description of the data than the
canonical link, as in Example 14.3 on page 460.

Exponential families have special structure that make them easy to handle for
theoretical purposes.6 Their most important property in applications to generalized
linear models is that, under relatively mild restrictions on the x and y values, with
the canonical link the loglikelihood function is concave and the β paramer vector has
a unique MLE. This means that the algorithms used to fit generalized linear models
with the canonical link are very robust.

The terminology “generalized linear model” should not to be confused with “the
general linear model,” which is the matrix form of regression and includes ANOVA.
Also, the “linear” part of the terminology is misleading because the framework re-
ally includes nonlinear and nonparametric models, as well. Specifically, while linear

5The regularity conditions insure non-degeneracy. For example, if there is only one x variable,
it must take on at least 2 distinct values so that a line may be fitted. The y observations also
must correspond to values that are possible according to the model; in dealing with proportions,
for instance, the observed proportions can not all be zero.

6See Barndorff-Nielsen, O.E. (1978) Information and Exponential Families in Statistical Theory,
Wiley.
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models with the canonical link have especially nice properties, more generally in
Equation (14.4) f(xi) does not need to be linear. See Example 14.3.

14.2 Nonlinear Regression

14.2.1 Nonlinear regression models may be fitted by least
squares.

In Section 12.5.4 we pointed out that when f(x) is a polynomial in x, linear regression
could be used to fit a function of the form y = f(x) to (x, y) data. This involved the
“trick” of starting with an initial definition of x, relabeling it as x1 and then defining
the new variable x2 = x2

1, and so on for higher-order polynomials. The resulting
expectation of Y ,

E(Y ) = β0 + β1x1 + β2x2,

followed the form required in the linear regression model. In particular, although
the relationship of Y and x, on average, was nonlinear, the coefficients entered lin-
early into the model and therefore—as in any linear regression model—the likelihood
equations could be solved easily by linear algebra. A similar trick was used to fit
directional tuning data with a cosine function.

There are, however, many nonlinear relationships where this sort of manipulation
does not apply. For example, if

E(Y ) = θ1e
−θ2x

it is not possible to redefine the x variable so that the form becomes linear in the
parameters. Instead, we have the nonlinear regression model,

Yi = f(xi; θ) + ǫi (14.13)

f(xi; θ) = θ1e
θ2x. (14.14)

Here, the usual assumption is ǫi ∼ N(0, σ2), independently (though, again, normality
is not crucial).

Models of the form (14.13) may still be fit by least-squares and, in fact, least
squares remains a special case of ML estimation. What is different is that the
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equations defining the least-squares solution (the likelihood equations) are no longer
solved by a single linear algebraic step. Instead, they must be solved iteratively. The
problem is thus usually called nonlinear least squares.

Nonlinear least squares is especially common in pharmacokinetic studies.

Example 14.2 Magnesium block of NMDA receptors rm NMDA receptors,
which are ubiquitous in the vertebrate central nervous system, may be blocked by
Magnesium ions (Mg2+). To investigate the quantitative dependence of NMDA-
receptor currents on the concentration of Mg2+, Qian, Buller, and Johnson (2005)
measured currents at various concentrations, then summarized the data using the
equation

I

I0
=

1

1 + ( [Mg2+]
IC50

)nH

where the measurements are the current I and the Magnesium concentration [Mg2+],
I0 being the current in the absence of Mg2+. The free parameters are the “Hille
constant” nH and the 50% inhibition concentration IC50 (when [Mg2+] = IC50 we get
I/I0 = .5). (Qian A., Buller, A.L., Johnson, J.W. (2005) NR2 subunit dependence
of NMDA receptor channel block by external Mg2+, J. Physiol. 562: 319-331.) The
authors examined IC50 across voltages, and across receptor subunit types. 2

The term “nonlinear regression” usually refers to models of the form (14.13).
However, similar models may be used with binomial or Poisson responses, and may
be fit using ML. The next example illustrates nonlinear regression models using both
normal and Poisson distributions.

Example 14.3 Non-cosine directional tuning of motor cortical neurons
Amerikian and Georgopoulos (2002) (Amirikian B. and Georgopoulos, A.P. (2000)
Directional tuning profiles of motor cortical cells, Neurosci. Research, 36:73-79)
investigated cosine and non-cosine directional tuning for 2-dimensional hand move-
ment among motor cortical neurons. In Section 12.5.4 we considered the cosine
tuning model given by (12.63) and (12.64) where, according to (12.63), a neuron’s
firing rate µ(v) when the movement is in direction v was linear in the components v1

and v2 and the model could be fit using linear regression. To investigate departures
from cosine tuning, Amirikian and Georgopoulos used a class of functions involving
exponentials that are not amenable to reconfiguration in a linear model and, as a
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result, reported that the tuning curves in motor cortical neurons, for 2-dimensional
hand movement, tend to be substantially narrower than cosine tuning curves.

An example of nonlinear fits to data from two neurons are shown in Figure 14.2.
The functions fitted were

µ(v) = µ+ β exp(κ cos(θ − τ + η cos(θ − τ))) (14.15)

for the first neuron, where θ = arctan(v2/v1), and

µ(v) = µ+ β1 exp(κ1 cos(θ − τ1)) + β2 exp(κ2 cos(θ − τ2)) (14.16)

for the second neuron. These results come from Kaufman, Ventura, and Kass (2005,
Statistics in Medicine), who also considered nonparametric methods, discussed Chap-
ter 15. The function in (14.15) includes parameters corresponding roughly to the
baseline firing rate, the amplitude, width, and location of the mode, and the skew-
ness about the mode. The function in (14.16) includes parameters corresponding
to two modes, one of which is constrained to be in the positive direction and the
other in the negative direction. This is of use in fitting the data for the Neuron 2
in Figure 14.2. For both neurons the data indicate mild but noticeable departures
from cosine tuning.

In fact, the data in Figure 14.2 coming from Neuron 1 exhibited roughly Poisson
variation. The fits shown there were based on Yi ∼ P (µi) with µi = µ(v) given by
Equation (14.15). This is a Poisson nonlinear regression model (with the identity
link, as defined in Section 14.1.6). 2

Another example of nonlinear least squares has been discussed in earlier chapters.
We provide some more details here.

Example 8.2 (continued from page 278) In presenting this example on page
226 we said the model took Y to be the spike width and x the preceding ISI length,
and assumed there was an ISI length τ such that, on average, Y is quadratic for
x < τ and constant for all x ≥ τ . Specifically, the statistical model was

Yi ∼ N(µ(xi), σ
2) (14.17)

independently for i = 1, . . . , n where

µ(x; β0, β1, τ) =

{
β0 + β1(x− τ)2 if x < τ

β0 if x ≥ τ
(14.18)
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Figure 14.2: Fits to activity of two neurons in primate motor cortex (from Kaufman,
Ventura, and Kass, 2005, Statistics in Medicine). Each datapoint represents the
observed firing rate of a neuron in the motor cortex of a monkey during one repetition
of a wrist movement to a particular target. The cosine fits use the cosine function
in Equation (12.63) and the von Mises fits use more complicated parametric forms
given by Equation (14.15), for Neuron 1, and Equation (14.16) for Neuron 2. The
cosine and von Mises parametric fits use Poisson maximum likelihood for Neuron 1
and least squares for Neuron 2. Also shown is the fit from a nonparametric regression
method called cBARS, described by Kaufman, Ventura, and Kass.
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and the least-squares estimate (β̂1, β̂1, τ̂ ) becomes defined by

n∑

i=1

(

yi − µ(xi; β̂0, β̂1, τ̂ )
)2

= min
β0,β1,τ

n∑

i=1

(yi − µ(xi; β0, β1, τ))
2 . (14.19)

The parameter τ enters nonlinearly into the statistical model, and this makes (14.19)
a nonlinear least squares problem. Nonlinear least squares is discussed in Sec-
tion 14.2. However, for every value of τ we may formulate a simple linear regression
problem as follows. Let us define new values u1(τ), . . . , un(τ) by

ui(τ) =

{
(xi − τ)2 if xi < τ

0 if x ≥ τ

so that µ(xi) in (14.18) may be rewritten as

µ(xi; β0, β1, τ) = β0(τ) + β1(τ)ui(τ).

We then define (β̂0(τ), β̂1(τ)) by

n∑

i=1

(

yi − (β̂0(τ) + β̂1(τ)ui)
)2

= min
β0(τ),β1(τ)

n∑

i=1

(yi − (β0(τ) + β1(τ)ui))
2

which has the form of the simple least-squares regression problem on page 16 and
thus is easily solved. Finally, defining

g(τ) =

n∑

i=1

(

yi − (β̂0(τ) + β̂1(τ)ui)
)2

,

the nonlinear least squares problem in (14.19) is found by minimizing g(τ). This can
be achieved in software (e.g., in Matlab) with one-dimensional nonlinear minimiza-
tion. Therefore, it was easy to implement nonlinear least squares for this change-
point problem. 2

Here is a change-point application based on Poisson regression.

Example 14.4 Onset latency in a basal ganglia neuron. An unfortunate symp-
tom of Parkinson’s disease (PD) is muscular rigidity. This has been associated with
increased gain and inappropriate timing of the long latency component of the stretch
reflex, which is a muscular response to sudden perturbations of limb position. One of
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Figure 14.3: Initiation of firing in a neuron from the basal ganglia: change-point and
bootstrap confidence intervals when a quadratic model is used for the post-change-
point firing rate. Two forms of approximate 95% confidence intervals are shown. The
first is the usual estimate ±2SE interval. The second is the interval formed by the
.025 and .975 quantiles among the bootstrap samples. The latter typically performs
somewhat better, in the sense of having coverage probability closer to .95.

the important components of the stretch reflex is mediated by a trans-cortical reflex,
probably via cortico-spinal neurons in primary motor cortex that are sensitive to
kinesthetic input. To investigate the neural correlates of degradation in stretch re-
flex, Dr. Robert Turner and colleagues at the University of Pittsburgh have recorded
neurons in primary motor cortex of monkeys before and after experimental produc-
tion of PD-like symptoms. One part of this line of work aims at characterizing
neuronal response latency following a limb perturbation. Figure 14.3 displays a
PSTH from one neuron prior to drug-induced PD symptoms. The statistical prob-
lem is to identify the time at which the neuron begins to increase its firing rate, with
the goal being to compare these latencies in the population of neurons before and
after induction of PD.

To solve this problem we used a change-point model similar to that used in
Example 8.2 on page 461. In this case, we assume the counts within the PSTH
time bins—after pooling the data across trials—follow Poisson distributions. Let Yt

be the pooled spike count in the bin centered at time t and let µ(t) be its mean.
The change-point model assumes the mean counts are constant up until time t = τ ,
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at which time they increase. For simplicity, we assume the count increases as a
quadratic. This gives us the Poisson change-point model

Yt ∼ P (µ(t))

with

µ(t) =

{
β0 if t ≤ τ

β0 + β1(t− τ)2 if t > τ

The value τ is the change point. For any fixed τ the change-point model becomes
simply a Poisson regression model. Specifically, for a given τ we define

x =

{
0 if t ≤ τ

(t− τ)2 if t > τ

We then apply Poisson regression with the regression variable x.

However, the parameter τ is unknown and is, in fact, the object of interest. We
may maximize the likelihood function iteratively over τ . That is, in R or Matlab we
set up a loop within which, for a fixed τ , we perform Poisson regression and obtain
the value of the loglikelihood. We then iterate until we maximize the loglikelihood
across values of τ . This gives us the MLE of τ . We may then obtain a SE for τ by
applying a parametric bootstrap. Results are given in Figure 14.3. 2

Example 14.5 A Poisson regression model for a hippocampal place cell
Neurons in rodent hippocampus have spatially specific firing properties, whereby the
spiking intensity is highest when the animal is at a specific location in an environ-
ment, and falls off as the animal moves further away from that point. Such receptive
fields are called place fields, and neurons that have such firing properties are called
place cells. Panel A of Figure 14.4 shows an example of the spiking activity of one
such place cell, as a rat executes a free-foraging task in a circular environment. The
rat’s path through this environment is shown in blue, and the location of the animal
at spike times is overlain in red. It is clear that the firing intensity is highest slightly
to the southwest of the center of the environment, and decreases when the rat moves
away from this point.

One very simple way to describe this hippocampal neural activity is to use a
Poisson generalized linear model for spike counts in successive time bins while the
rat forages, and to assume that the spike count depends on location in the environ-
ment based on a 2-dimensional bell-shaped curve. For this purpose of specifying the
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dependence of spiking activity on location a normal pdf may be used. Let us take
Yt ∼ P (λt), with t signifying time, and then define

λt = exp

{

α− 1

2

(
x(t)− µx y(t) − µy

)
(

σ2
x σxy

σxy σ2
y

)−1(
x(t)− µx

y(t)− µy

)}

.

(14.20)
The explanatory variables in this model are x(t) and y(t), the animal’s x and y-
position. The model parameters are (α, µx, µy, σ

2
x, σ

2
y, σxy), where (µx, µy) is the

center of the place field, expα is the maximum firing intensity at that point, and
σ2

x, σ
2
y , and σxy express how the intensity drops off away from the center. Note that

it is the shape of the place field that is assumed normal, not the distribution of the
spiking activity. Panel B of Figure 14.4 displays a fit of the place field to the data
in panel A. We will discuss models of this sort when we discuss point processes in
Chapter 19. 2

Figure 14.4: Spiking activity of a rat Hippocampal place cell during a free-foraging
task in a circular environment. (A) Visualization of animal’s path and locations of
spikes. (B) Gaussian place field model for this neuron, with parameters fit by the
method of maximum likelihood.

14.2.2 In solving nonlinear least-squares problems, good start-

ing values are important, and it can be helpful to
reparameterize.

As in maximization of any likelihood, use of the numerical procedures require care.
Two important issues are the choice of initial values, and of parameterization. Both
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of these may be illustrated with the exponential model (14.14).

Illustration: Exponential regression To fit the exponential model (14.14) a
first step is to reparameterized from θ to ω using ω1 = log(θ1) and ω2 = θ2 so that
the expected values have the form

E(Y ) = exp(ω1 + ω2x).

The loglikelihood is typically closer to being quadratic as a function of ω than as a
function of θ. Taking logs of both sides of this expectation equation gives

logE(Y ) = ω1 + ω2x.

This suggests we may define Ui = log(Yi) and apply the linear model,

Ui = β0 + β1xi + εi. (14.21)

The resulting fitted values β̂0 β̂1 make good starting values for the iterative procedure
used to obtain ω1 and ω2. 2

It is important to recognize the distinction between the exponential model in
(14.13) and (14.14) and the linearized version (14.21). Either could be used to fit
data, but they make different assumptions about the way the noise contributes.
In many examples, the fits based on (14.13) and (14.21) would be very close, but
sometimes the resulting inferences would be different. It is an empirical question
which model does a better job of describing the data. The point here, however, is that
if the exponential form is preferred, the log-linear form may still be used to obtain
starting values for the parameters. The linearization method of obtaining starting
values is frequently used in fitting nonlinear models. (See Bates and Watts (1988)
for further discussion.) (Bates, D.M. and Watts, D.G. (1988) Nonlinear Regression
Analysis and its Applications, Wiley.)
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Chapter 15

Nonparametric Regression

Copyright, 2010, R.E. Kass, E.N. Brown, and U. Eden
REPRODUCTION OR CIRCULATION REQUIRES PERMISSION OF
THE AUTHORS

At the beginning of Chapter 14 we said that modern regression applies models
displayed in Equations (14.3) and (14.4):

Yi ∼ fYi
(yi|θi)

θi = f(x1i, . . . , xpi)

where fYi
(y|θ) is some family of pdfs that depend on a parameter θ, which is related

to x1, . . . , xp according to a function f(x1, . . . , xp). In Section 14.1 we discussed the
replacement of the normal assumption in (14.3) with binomial, Poisson, or other
exponential-family assumptions. In Section 14.2 we showed how the linear assump-
tion for f(x1, . . . , xp) in (14.4) may be replaced with a specified nonlinear modeling
assumption. What if we are unable or unwilling to specify the form of the function
f(x1, . . . , xp)? In this chapter we consider fitting general functions, which are cho-
sen to provide flexibility for fitting purposes. This is the subject of nonparametric
regression. The terminology “nonparametric” refers to the absence of a specified
parametric form, such as in (14.14). We focus almost exclusively on the simplest
case of a single explanatory variable x, and thus consider functions f(x). Here is an
example.

Example 15.1 Peak minus trough differences in response of an IT neuron

469
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Figure 15.1: (A) PSTHs and BARS fits for an IT neuron recorded by Rollenhagen
and Olson (2005) under two conditions. (B) The two BARS fits are overlaid for ease
of comparison. See text for explanation.

Some neurons in the inferotemporal cortex (IT) of the macaque monkey respond
to visual stimuli by firing action potentials in a series of sharply defined bursts.
Rollenhagen and Olson (2005, J Neurophysiology) found that displaying an object
image in the presence of a different, already-visible “flanker” image could enhance the
strength of the oscillatory bursts. Figure 15.1 displays data (in the form of PSTHs)
from an IT neuron under two conditions: in the first, a black patterned object was
displayed as the stimulus for 600 milliseconds; in the second condition, prior to
the display of the stimulus a pair of blue rectangles appeared (as a flanker image)
and these remained illuminated while the patterned-object stimulus was displayed.
Overlaid on the PSTHs are fits obtained by the nonparametric regression method
BARS, which will be explained briefly in Section 15.2.6. In part B of Figure 15.1
the BARS fits are displayed together, to highlight the differential response. One way
to quantify the comparison is to estimate the drop in firing rate from its peak (the
maximal firing rate) to the trough immediately following the peak in each condition.
Let us call these peak minus trough differences, under the two conditions, φ1 and φ2.
BARS was used to propagate the error (see DiMatteo, Genovese, and Kass, 2001,
Biometrika). The results, for this neuron, were φ̂1 = 131.8(±4.4), φ̂2 = 181.8(±20.4)
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spikes per second, and φ̂1− φ̂2 = 50.0(±20.8) spikes per second (where parenthetical
values are SEs). 2

There are two general approaches to nonparametric regression. The first attempts
to represent a function f(x) in terms of a set of more primitive functions, such as
polynomials, which are often called basis functions. The methods following the sec-
ond approach estimate f(x) by weighting the data (xi, yi) according to the proximity
of xi to x, a process called local fitting. We take up these two topics in Sections 15.2
and 15.3. The fitted values ŷi = f̂(xi) produce fitted points (xi, ŷi) which collectively
become a smoothed version of the original data points. Thus, the nonparametric re-
gression algorithm that is applied to the data is often called a smoother. The problem
of smoothing (xi, yi) data to obtain a curve y = f̂(x) is also called curve-fitting.

15.1 Smoothers

As always, we are concerned with the use of statistical models both to generate esti-
mates of scientifically interesting quantities and to provide measures of uncertainty.
For both purposes we need to begin by defining the quantities we want to know
about. In linear regression and generalized linear models, and in their nonlinear
counterparts, these are usually coefficients or simple functions of them such as x50

in Example 5.5 of Chapter 9, where we discussed propagation of uncertainty. With
nonparametric regression the trick is to phrase inferential problems in terms of the
function values themselves, which avoids any reference to a specific functional form.
In fact, x50 in Example 5.5 could be considered an example of this, because even if
some other function (some nonlinear, nonparametric function) were used to link log
odds of perception with light intensity, that function would necessarily define a value
x50 of the intensity at which the probability of perception would be 50%.

A variety of nonparametric regression methods have been proposed. Some are
linear and some nonlinear in a sense spelled out in Section 15.1.1.
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15.1.1 Linear smoothers are fast.

We say that a nonparametric regression method results from a linear smoother if
the fitted function values f̂(xi) are obtained by linear operations on the data vector
y = (y1, . . . , yn)

T , that is, if we can write

(f̂(x1), f̂(x2), . . . , f̂(xn))T = Hy (15.1)

for a suitable matrix H . In other words, according to (15.1), for these linear
smoothers, each fitted value is a linear combination of the data values yi. The
only nonlinear smoothing method we mention is that used in Example 15.1, BARS,
and we defer our explanation of BARS until Chapter 16.

Because the multiplication in (15.1) involves relatively few arithmetic operations,
linear smoothers are fast. They are therefore advantageous especially for large data
sets, where computational speed becomes important,

15.1.2 For linear smoothers, the fitted function values are

obtained via a “hat matrix,” and it is easy to apply
propagation of uncertainty.

The matrixH in (15.1) is called the hat matrix, because it produces estimates denoted
with “hats.” For example, in linear regression we have

β̂ = (XTX)−1XTy

(see Chapter 12) so that

(f̂(x1), f̂(x2), . . . , f̂(xn))T = Xβ̂

= X(XTX)−1XTy

and the hat matrix is H = X(XTX)−1XT . In the case of linear regression we are
able to propagate uncertainty using the distribution of β̂ (as we did, similarly, for
logistic regression in Chapter 9), but we could instead propagate the uncertainty
from the distributions of the fitted values Xβ̂: we simply need the variance

V ((f̂(x1), f̂(x2), . . . , f̂(xn))T ) = HV (Y )HT

= σ2HHT . (15.2)
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In the case of linear regression this simplifies because (as is easily checked) HT = H
and HHT = H so that

V ((f̂(x1), f̂(x2), . . . , f̂(xn))T ) = σ2H.

For linear smoothers more generally, H 6= HHT but, in the case of data for which
V (Yi) = σ2 with the Yis being independent of each other, the variance formula (15.2)
continues to hold, and it remains easy to apply propagation of uncertainty. In other
words, even though we do not have an estimated parameter vector, such as β̂, from
which to compute quantities of interest and their SEs, we can often compute quanti-
ties of interest directly from the fitted values, as in the peak minus trough example
above, and can then obtain SEs from the variance formula (15.2) together with the
large-sample result that the fitted values are approximately normally distributed.
Similarly, when linear smoothing methods extend to logistic or Poisson regression it
again remains easy to propagate uncertainty.

15.2 Splines

15.2.1 Splines may be used to represent complicated func-

tions.

Suppose f(x) is a continuous function on an interval [a, b]. A famous theorem in
mathematical analysis, the Weierstrass Approximation Theorem, says that f(x) may
be approximated arbitrarily well by a polynomial of sufficiently high order. One
might therefore think that polynomials could be effective for curve fitting. It turns
out that they tend to perform rather badly, however. As illustrated in Figure 15.2,
even a twentieth-order polynomial can fail to represent adequately a relatively well-
behaved function in the presence of minimal noise.

The problem in Figure 15.2 is that the function f(x) is not very close to being
a low-order polynomial; in particular, it has a different form near x = 0 than it
does as the magnitude of x increases. A possible solution here, and in other prob-
lems, is to glue together several pieces of polynomials. If the pieces are joined in
such a way that the resulting function remains smooth, then it is called a spline.
We will discuss cubic splines. Let [a, b] be an interval and suppose we have values
ξ1, ξ2, . . . , ξp, where a < ξ1 < ξ2 < · · · < ξp < b. There are then p + 2 sub-intervals
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Figure 15.2: Data simulated from function f(x) = sin(x) + 2 exp(−30x2) together
with twentieth-order polynomial fit (shown as line). Note that the polynomial is
over-fitting (under-smoothing) in the relatively smooth regions of f(x), and under-
fitting (over-smoothing) in the peak. (In the data shown here, the noise standard
deviation is 1/50 times the standard deviation of the function values.)

[a, ξ1], [ξ1, ξ2], . . . , [ξp−1, ξp], [ξp, b]. A function f(x) on [a, b] is a cubic spline with knots
ξ1, ξ2, . . . , ξp if f(x) is a cubic polynomial on each of the p+2 sub-intervals defined by
the knots such that f(x) is continuous and its first two derivatives f ′(x), and f ′′(x)
are also continuous. This restriction of continuity, and continuity of derivative, ap-
plies at the knots; in between the knots, each cubic polynomial is already continuous
with continuous derivatives. A cubic spline is shown in Figure 15.3, and the result of
fitting a cubic spline to the data of Figure 15.2 is shown in Figure 15.4. In contrast
to the 20th order polynomial in Figure 15.2, the cubic spline in Figure 15.4 fits the
data remarkably well.
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Figure 15.3: A cubic spline with three knots, on an interval [0, T ]. The function
f(x) depicted here is made up of distinct cubic polynomials (cubic polynomials with
different coefficients) on each sub-interval [0, ξ1], [ξ1, ξ2], [ξ2, ξ3], [ξ3, T ].

15.2.2 Splines may be fit to data using linear models.

It is easy to define a cubic spline having knots at ξ1, ξ2, . . . , ξp. Let (x−ξj)+ be equal
to x− ξj for x ≥ ξj and 0 otherwise. Then the function

f(x) = β0 + β1x+ β2x
2 + β3x

3

+ β4(x− ξ1)3
+ + β5(x− ξ2)3

+ + · · ·+ βp+3(x− ξp)3
+ (15.3)



476 CHAPTER 15. NONPARAMETRIC REGRESSION

−2 −1 0 1 2

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

x

y

Figure 15.4: A cubic spline fit to the data from Figure 15.2. The spline has knots
(ξ1, ξ2, . . . , ξ7) = (−1.8,−.4,−.2, 0, .2, .4, 1.8).

is twice continuously differentiable, and is a cubic polynomial on each segment
[ξj, ξj+1]. Furthermore, with f(x) defined by (15.3),

Yi = f(xi) + ǫi

becomes an instance of the usual linear regression model (assuming ǫi ∼ N(0, σ2),
independently), so that regression software may be used to obtain spline-based curve
fitting. Specifically, we define x1 = x, x2 = x2, x3 = x3, x4 = (x − ξ1)

3
+, . . . ,

xp+3 = (x − ξp)
3
+ and then regress Y on x1, x2, . . . , xp+3. To be concrete, let us

take a simple special case. Suppose we have 7 data values y1, . . . , y7 observed at 7 x
values, (x1, . . . , x6) = (−3,−2,−1, 0, 1, 2, 3) and we want to fit a spline with knots at
ξ1 = −1 and ξ2 = 1. Then we define y = (y1, . . . , y7)

T , x1 = (−3,−2,−1, 0, 1, 2, 3)T ,
x2 = (9, 4, 1, 0, 1, 4, 9)T , x3 = (−27,−8,−1, 0, 1, 8, 27)T . The variables x1, x2, x3

represent x, x2, x3. We continue by defining x4 = (0, 0, 0, 1, 8, 27, 64)T and x5 =
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(0, 0, 0, 0, 0, 1, 8)T , which represent (x − ξ1)3
+ (which takes the value 0 for x ≤ −1)

and (x − ξ2)3
+ (which takes the value 0 for x ≤ 1). Having defined these variables

we regress y on x1, x2, x3, x4, x5. When (15.3) is used the variables x, x2, x3, (x −
ξ1)

3
+, . . . , (x− ξp)3

+ are said to form the power basis for the set of cubic splines with
knot set ξ1, . . . , ξp. This terminology indicates that any cubic spline with knots
ξ1, . . . , ξp may be represented in the form (15.3), which is a linear combination of
x, x2, x3, (x− ξ1)3

+, . . . , (x− ξp)3
+ (together with the constant intercept).

An important caveat in applying (15.3), however, is that the variables x1, x2, . . . , xp+3

will be highly correlated. The possibility of polynomial x variables being correlated
was considered in Section 12.5.4 and again in Section 14.1.2. Here there are two good
solutions to this problem. The first is to orthogonalize the x variables. The trick of
subtracting the mean, used in the earlier sections, is a special case of orthogonaliza-
tion. The general method is to first replace x with x∗1 = x − x̄; then regress (x∗1)

2

on x∗1 and replace x2 with x∗2 defined to be the residual from that regression; then
regress (x∗1)

3 on x∗1 and x∗2 and replace x3 with x∗3 defined to be the residual from that
regression; etc., continuing through the remainder of the regression variables to get
a new set of variables x∗1, x

∗
2, . . . , x

∗
p+3 which are used instead of x1, x2, . . . , xp+3. The

second, more commonly-applied alternative is to use a different version of splines,
known as B-splines. B-splines may be used to form an alternative basis with which
to represent cubic splines having knots ξ1, . . . , ξp, replacing the power basis in (15.3).
The power basis and the B-spline basis represent the same set of cubic splines, but
the B-spline basis offers better numerical stability. A variant of B-splines, known as
natural splines, assumes the function is linear for x outside a specified range—which
is often taken to be the range of the data (i.e., the function is linear for x < xmin

and x > xmax where xmin and xmax are the smallest and largest values of x in the
data). Because there is very little data near xmin and xmax, and none outside the
range of the data, the fits based on the power basis and B-spline basis are often
highly variable near the extremes of x. By introducing a strong assumption, natu-
ral splines are much less variable at the extreme values of x and typically provide
nicer-looking fits. Natural splines are often recommended, and are an option in most
statistical curve-fitting software. The power basis and B-spline basis each have p+4
free parameters. Due to the additional constraints at each end of the range of x, the
natural spline basis has p+ 2 free parameters.

Example 15.2 Local field potential in primary visual cortex Kelly et al.
(2010) (Kelly, R.C., Smith, M.A., Kass, R.E., and Lee, T.S. (2010) Local field poten-
tials indicate network state and account for neuronal response variability, J. Compu-
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Figure 15.5: LFP and smoothed version representing slowly-varying trend. A 1 sec-
ond sample of data is shown together with a smooth fit using natural splines.

tational Neuroscience, 29, 567-579.) examined the activity of multiple, simultaneously-
recorded neurons in primary visual cortex in response to visual stimuli under anaes-
thesia. As we noted in Example 2.2, under anesthesia the EEG displays strong delta
range (1-4 Hz) wave-like activity. It is also common to see even lower frequency
activity (less than 1 Hz), often called “slow waves,” the effects of which are visible
in Figure 2.2. This activity appears in local field potential (LFP) recordings as well.
In the data analyzed by Kelly et al., waves of firing activity were observed across the
population of recorded neurons, and these were correlated with the waves of activity
in the LFP. A short snippet of LFP is displayed in Figure 15.5. In Chapter 18 we
will examine the oscillatory content of this sample of the LFP. A preliminary step,
discussed on page 518, is to remove any slow trends in the data. Spline-based regres-
sion is useful for this purpose. A fit based on the natural-spline basis using knots at
time points 200, 400, 600, 800 is shown in Figure 15.5. 2
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15.2.3 Splines are also easy to use in binomial or Poisson
regression models.

Splines may also be used with logistic regression or Poisson regression. When splines
are used in regression models, they are often called regression splines.

Example 1.1 (continued from page 218) In Chapter 1, page 3, we discussed
the problem of describing a neural response to a stimulus under two different exper-
imental conditions in the context of recordings made from the SEF. In Chapter 8
we returned to the example to describe the value of smoothing the PSTH, using
Figure 8.3, in page 219 to illustrate. We did not, however, say specifically how the
smoothing was done. We obtained the smooth curve in Part B of Figure 8.3 by fitting
a Poisson regression spline. Specifically, spike counts Y were pooled across trials in
10 millisecond bins centered at times x = −295,−285,−275, . . . , 635, 645 relative to
appearance of the cue at time x = 0. Then the statistical model was

Yi ∼ P (λi)

log λi = f(xi)

with f(x) being a regression spline having knots at −200, 200. The fitted values f̂(xi)
were obtained using generalized linear model software and xmax was the value of xi

at which maximum among the f̂(xi) values occurred. (Interpolation could be have
been used to get a more refined maximum, but this was not considered necessary.)
In Figure 8.3, the arrow indicating the maximum of the fitted curve was plotted
at x = xmax. It is straightforward to obtain a SE for x = xmax by propagation of
uncertainty. 2

15.2.4 With regression splines, the number and location of
knots controls the smoothness of the fit.

Splines are very easy to use because the problem of spline fitting may be formulated
in terms of a linear model. This, however, assumes that the knot set ξ1, ξ2, . . . , ξp
has been determined. The choice of knots can be consequential: with more knots,
the spline has greater flexibility, but also provides less smoothness. In addition, the
placement of knots can be important. Figure 15.6 displays three alternative spline
fits. The first two use splines with 5 and 15 knots having locations that are equally-
spaced according to the quantiles of x so, for example, 5 knots would be placed at
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Figure 15.6: Three cubic spline fits to data generated from the same test function
as Figure 15.2, but with more noise. Splines with 5 and 15 knots are shown (dashed
and dotted lines), with knot locations selected by default in R. The spline with 5
knots provides more smoothing than the spline with 15 knots and, as a result, does
a poorer job of capturing the peak in the function. The spline shown in the solid
line has 7 knots chosen to be ξ = (−1.8,−.4,−.2, 0, .2, .4, 1.8).
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quantiles. Spacing the knots according to the quantiles of x allows

more knots to be placed where there are more data values. The third spline uses 7
knots chosen by eye. The spline with 7 knots fits well because 5 knots are placed in
the middle of the range, where the function variation is large, while only 2 are placed
on the flanks where the variation is small.
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15.2.5 Smoothing splines are splines with knots at each xi,
but with reduced coefficients obtained by penalized

ML.

The problem of choosing knots may be solved in various ways, and in many situations
it is adequate to select knots based on preliminary examination of the data and/or
some knowledge of the way the function f(x) is likely to behave. This is admitedly
somewhat arbitrary, and two kinds of alternatives have been proposed that are more
automated.

The first approach is to use a large number of knots, but to reduce, or “shrink,”
the values of the coefficients. One intuition here is that using a large number of knots
in a regression spline would allow it to follow the function well, but would make it
very wiggly; reducing the size of the coefficients will tend to smooth out the wiggles.
A second intuition is obtained by replacing the least-squares problem of minimizing
the sum of squares

SS =

n∑

i=1

(yi − f(xi))
2

with the penalized least squares problem of minimizing the penalized sum of squares

PSS =

n∑

i=1

(yi − f(xi))
2 + λ

∫

(f ′′(x))2dx

where λ is a constant. The problem of minimizing PSS is similar to that of mini-
mizing the penalized regression sum of squares in (12.67). Here, the squared second
derivative is a roughness penalty: wherever (f ′′(x))2 is large, the function is fluc-
tuating substantially, and the integral of this quantity is a measure of the total
fluctuation, or roughness. Thus, the value of the coefficient vector β∗ that minimizes
PSS will achieve some compromise between fitting the yi values and keeping the
function smooth. As λ increases, the resulting fit becomes increasingly smooth, and
in the limit λ→∞ it becomes a line. It turns out that the solution to the penalized
least squares problem is a cubic spline with knots at every value of xi, but with
coefficients that are smaller in magnitude than those of the regression spline with
knots at every xi (which would correspond to taking λ = 0). This solution is called
a smoothing spline.

Smoothing spline technology has a strong theoretical foundation, and is among
the most widely-used methods for nonparametric regression. There is also much
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well-developed software for smoothing splines. In the case of binomial or Poisson
regression, the smoothing spline will maximize a penalized likelihood.

There remains the problem of choosing λ. Various alternative choices of λ may be
tried. Statistical software typically provides options for choosing λ automatically by
a variant of cross-validation (see page 404) known as generalized cross-validation or
by variants of ML called generalized maximum likelihood or restricted maximum like-
lihood. A smoothing spline fit to the data of Figure 15.2 is visually indistinguishable
from the spline fit in Figure 15.4.

15.2.6 A method called BARS chooses knot sets automati-
cally, according to a Bayesian criterion.

One defect of smoothing spline technology, and many other nonparametric methods,
is that it assumes the degree of smoothness of f(x) remains about the same across
its domain, i.e., throughout the range of x values. An alternative is to devise a
method that selects good knot sets based on the data. One of the most successful
such procedures is called BARS (DiMatteo, Genovese, and Kass, 2001, Biometrika).
In Figure 1.7 of Example 1.7 BARS was applied to data from an electrooculogram,
which produces voltage traces that are similar to many others, including EEG, ECoG,
and LFP. There, BARS was able to retain the high-frequency signal (the sudden
drop and sudden increase in voltage associated with an eye blink) while filtering
high-frequency noise. In Figure 15.1 of Section 15.1 we displayed BARS fits to
two peristimulus time histograms. BARS uses a Bayesian framework, and produces
a posterior probability distribution on knot sets; knot sets are then generated by
simulation from the posterior distribution; based on each simulated knot set a fitted
curve is obtained (the mean of these fitted curves is used for displays, as in Figures 1.7
and 15.1); and propagation of uncertainty is used to provide standard errors or
intervals for quantities of interest. Figure 15.7 compares BARS and smoothing spline
fits to the data from Figure 15.6. We discuss BARS again briefly in Chapter 16.
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Figure 15.7: Data from the test function of Figure 15.2, but with more noise, as
in Figure 15.6, together with smoothing spline fit (dotted line) and BARS fit (solid
line).

15.2.7 Spline smoothing may be used with multiple explana-
tory variables.

At the beginning of this chapter we recalled Equations (14.3) and (14.4), which we
had used to define modern regression. In Section 15.2.2 we showed how splines are
used to define a function f(x) in ordinary linear regresssion and in Section 15.2.3
we gave the extension to binomial and Poisson regression. Those sections involved
a single explanatory variable x. With p variables x1, . . . , xp it is too difficult to fit a
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function f(x1, . . . , xp) in full generality: there are too many possible ways that the
variables may interact in defining f(x1, . . . , xp). However, a useful way to proceed is
to make the strong assumption of an additive form:

f(x1, . . . , xp) =

p
∑

j=1

fj(xj). (15.4)

With this restriction, spline smoothing (or alternative smoothing methods) may be
applied to each variable successively in order to fit the model

Yi =

p
∑

j=1

fj(xj) + ǫi (15.5)

under the usual assumptions for linear regression. More specifically, an iterative
algorithm may be used1 to find the least-squares fit when a spline basis represents
each function fj(xj).

Figure 15.8: Examples of Gabor wavelets at 8 orientations (columns) and 6 spatial
scales (rows). From Vu et al. (2011), with permission.

Example 15.3 Decoding natural images from V1 fMRI rm Kay et al. (2008)
showed that natural images could be identified with above-chance accuracy from V1

1One method, known as backfitting, cycles through the variables xj , using smoothing (here,
spline smoothing) to fit the residuals from a regression on all other variables.
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Figure 15.9: Plots of residuals versus fitted values at four selected voxels for the model
based on

√
xj(v). Solid curve is a local linear fit, as outlined in Section 15.3.2. From

Vu et al. (2011), with permission.

Figure 15.10: Plots of residuals versus fitted values at the same four voxels as in
Figure 15.9, but using the model based on the additive model. Solid curve is a local
linear fit, as outlined in Section 15.3.2. From Vu et al. (2011), with permission.

activity picked up in fMRI responses. Vu et al. (2011) re-analyzed the data and
showed how decoding accuracy could be improved by 30% when additive models of the
general form (15.5) were used. Kay et al. had applied a model of fMRI activity in
a V1 voxel based on Gabor wavelet filters. Briefly, a Gabor wavelet is a product of
a sinusoidal factor and a factor based on a Gaussian (normal) pdf. The Gaussian
factor is similar to that used in the hippocampal place cell model in (14.20). It has the
effect of producing a response, for a particular voxel, based only on a small region in
the visual image. The sinusoidal factor produces a central peak together with neigh-
boring troughs that represent lateral inhibition, as is characteristic of the response of
V1 neurons. The response due to each filter also has a particular orientation. See
Figure 15.8. The activity of each voxel was represented by a set of 48 Gabor filters
at 8 orientations and 6 spatial scales, as shown in Figure 15.8. Each image in the
stimulus set produced a set of magnitudes xj(v), with j = 1, . . . , 48, corresponding to
the 48 filters, for each voxel v. Due to visible nonlinearities, Kay et al. performed
a version of least squares based on

√
xj(v). Vu et al. found substantial nonlinearity

in the residuals from the model of Kay et al., see Figure 15.9. They applied a model
of the form (15.5) based on splines having 9 knots placed at the 10th, 20th, . . ., 90th
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percentiles of each explanatory variable. Because they had relatively large numbers of
regression variables for each voxel, they applied a version of L1 penalized regression
(see page 407). The resulting additive model greatly improved the residual plots, see2

Figure 15.10. Vu et al. also showed that the additive model is more sensitive to weak
stimuli, and this has the effect of brodening voxel tuning in space, frequency, and con-
trast. This, presumably, was the main source of improved performance. (Kay, K.N.,
Naselaris, T., Prenger, R.J., and Gallant, J. (2008) Identifying natural images from
human brain activity. Nature, 452: 352-355. Vu, V.Q., Ravikumar, P., Naselaris,
T., Kay, K.N., Gallant, J.L., and Yu, B. (2011) Encoding and decoding V1 fMRI re-
sponses to natural images with sparse nonparametric models, Ann. Applied Statist.,
5: 1159-1182.) 2

Equation (14.12) may be generalized to

Yi ∼ fYi
(yi|ηi)

g(µi) =

p
∑

j=1

fj(xj) (15.6)

where fYi
(yi|ηi) is an exponential family pdf as in (14.10), µi = E(Yi), and g(µ) is

the link function. The model (15.6) is known as a generalized additive model.

15.3 Local Fitting

The second general approach to nonparametric regression is to use local fitting.
Recall that in ordinary linear regression, the regression line is the expectation of
Y as a function of x: we have E(Yi) = β0 + β1xi and could extend this to some
newly-observed value of x by writing

E(Y |x) = β0 + β1x. (15.7)

In (15.7) we mean to include the case in which the data collection process makes it
more reasonable to think of x as non-random. However, we have written E(Y |x) to
be reminiscent of our discussion, in Section 4.2.4, where we said that the regression

2There remain upward trends in the residual plots. This is due to the penalized fitting, which
induces correlation of residuals and fitted values.
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Figure 15.11: Data simulated from function f(x) = sin(x) + 2 exp(−30x2) (shown
as dark line). The idea of local fitting begins with the notion that, just as in linear
regression, for large data sets, the regression curve f(x) at x = 1.5 should average
the y-values among the points within the dashed lines. However, for smaller data
sets, like that shown here, the region within the dashed lines contains relatively few
points.
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of Y on a random variable X is the conditional expectation of Y given X = x. See
the prediction theorem on page 107.

Now, just as the expectation of a random variable is generally estimated by a
sample mean, so the conditional expectation in (15.7) may be estimated as the mean
of yi values for which X = xi, at least approximately. This is indicated in Figure
4.3. When we generalize (15.7) to

E(Y |x) = f(x) (15.8)

we may, in principle, also estimate f(x) by averaging yi values for X = xi, ap-
proximately, as illustrated in Figure 15.11. For large data sets the average gives an
answer very close to the expectation. An immediate issue, however, is how to choose
the size of the window (between the dashed lines in Figure 15.11). Furthermore, in
estimating f(x) even with moderate-size data sets, it is possible to improve on the
arithmetic mean among yi values corresponding to xi near x. For instance, in Figure
15.11, there are not many values of xi that are very close to any particular x. The
idea of local fitting is to consider xi values that are somewhat more distant from x,
but to weight the various xi values according to their proximity to x.

Two different ways to accomplish local fitting are distinguished by the names
kernel regression and local polynomial regression.

15.3.1 Kernel regression estimates f(x) with a weighted mean
defined by a pdf.

In Section 8.1.3 we defined the the weighted mean of y1, . . . , yn to be

ȳw =

∑n
i=1wiyi
∑n

i=1wi

where w1, . . . , wn are positive numbers and wi becomes the weight attached to the
ith value. In kernel regression, each value f(x) is estimated as a weighted mean of
the observations yi, with the weights increasing as xi gets closer to x. The weights
are defined by

wi = K(
x− xi

h
) (15.9)
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for a suitable function K(u), which is called a kernel. The constant h is usually
called3 the bandwidth. The most commonly-used kernel is the N(0, 1) pdf, in which
case h effectively plays the role of a standard deviation, i.e., we have wi ∝ Kh(x−xi)
where Kh(u) is the N(0, h2) pdf. That is, K(x−xi

h
) is proportional to a normal pdf

centered at zero having standard deviation h. This puts very nearly zero weight on
yi values for which |x − xi| > 3h. Because many applications of smoothing arise in
signal processing, some of the terminology is taken from that domain. In particular,
when a normal kernel is used, it is often called a normal filter or Gaussian filter.

More generally, any pdf could be used as a kernel. The formula for the kernel-
regression fit is

f̂(x) =

∑n
i=1K(x−xi

h
)yi

∑n
i=1K(x−xi

h
)
. (15.10)

Example 8.2 (continued, see page 226): Previously we provided some re-
sults from a study of action potential width as a function of the preceding ISI, and
Figure 8.6 displayed a plot of some data from one neuron recorded from rat barrel
cortex in a slice preparation. A portion of the data are shown again here, in Fig-
ure 15.12. Only the data points for which ISI was less than 200 milliseconds are
displayed, and the analysis here only considered this truncated data set. Kernel re-
gression, with a normal kernel, produced the fitted relationship shown by the dashed
line in the figure. The bandwidth used was 30 milliseconds. 2

The choice of bandwidth h in kernel regression is important, and affects smooth-
ness: when h is small, the estimate tends to follow the data closely, but is very rough,
while when h is large the estimate becomes smooth but may ignore places where the
function seems to vary. Bandwidth selection involves a “bias versus variance” trade-
off: small h reduces bias (and increases variance) while large h reduces variance (but
increases bias). See Section 15.3.3.

Example 5.7 (continued from page 407) The MEG decoding study of Wang
et al. (2010), described on page 154, involved predicting actual or imagined wrist
movement from sensor signals. A preliminary step was to smooth each sensor signal,
recorded on each trial. One such signal is shown in Figure 15.13 together with a
smoothed version based on a normal kernel. The bandwidth was 25 milliseconds.
This value of the bandwidth was chosen because it is a round number and pro-

3The terminology comes from spectral analysis (see Section 18.3.3) where the width corresponds
to a band of frequencies.
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Figure 15.12: Data showing the relationship of spike width to preceding ISI length for
a neuron recorded in slice preparation. A kernel regression estimator is superimposed
on the plot (dashed line) together with a local linear fit (solid line).

vided what seemed to be a reasonable amount of smoothing when many plots were
examined by eye, taking into consideration the temporal accuracy required in the
subsequent analyses. 2

15.3.2 Local polynomial regression solves a weighted least

squares problem with weights defined by a kernel.

A second idea in local fitting of f(x) is to solve a weighted least-squares problem
defined at x by suitable weights wi = wi(x). In particular, local linear regression at
x minimizes

WSS(x) =

n∑

i=1

wi(yi − β0 − β1(x− xi))
2 (15.11)
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Figure 15.13: MEG signal from a single sensor on a single trial. (Reproduced with
permission from Wang et al., 2010.) This trial involved wrist movement, and time
t = 0 corresponded to onset of movement. The dashed line through the sensor tracing
is the smoothed version obtained from the normal kernel regression (a Gaussian
filter).

where the weights wi are defined in terms of a kernel, as in (15.9). A normal pdf
may be used as the kernel, but an alternative is

K(u) = (1− |u|3)3

for |u| < 1 and K(u) = 0 otherwise. The latter form of the kernel is used in
some statistical software. Extensive study of this methodology has shown that local
linear regression is effective in many situations. As with kernel regression, in local
polynomial regression4 there remains a choice of bandwidth. See Loader (1999) for
further discussion, references, and extensions. (Loader, C. (1999) Local Regression
and Likelihood, Springer.)

Example 8.2 (continued): In Figure 15.12 we displayed a plot of some action
potential width data together with a nonparametric regression fit based on a normal
kernel (or Gaussian filter). A local linear fit is also shown in Figure 15.12. In this
example the local linear fit is nearly identical with the kernel regression fit. 2

An important feature of local linear regression is that it may be extended to non-
normal families such as binomial and Poisson. The idea is very simple. In place of the

4A popular variation on this theme, called loess (for local regression modifies the weights so that
large residuals (outliers) exert less influence on the fit. The terminology comes from the English
meaning of loess, which is a silt-like sediment, and is derived from German word löss, which means
“loose.”
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locally weighted sum of squares in (15.11) we can, for any value of the explanatory
variable xi, maximize a locally weighted loglikelihood having the form

WLL(x) =
n∑

i=1

wiℓ(β0 − β1xi).

More specifically, in the case of binomial local linear fitting, with Yi ∼ B(ni, pi), we
have

WLL(x) =
n∑

i=1

wi(yi log pi + (n− yi) log(1− pi))

log
pi

1− pi
= β0 + β1xi.

Maximizing this loglikelihood for each successive xi produces the fit at xi.

15.3.3 Theoretical considerations lead to bandwidth recom-
mendations for linear smoothers.

Recall, from Section 8.1.1, that MSE = Bias2 + Variance. A minimal requirement
of an estimator, in large samples, is that its bias and variance vanish (as n → ∞).
Consider estimation of f(x) at the single point x. A linear smoother is, at x, a linear
combination of the data response values yi, so that the estimator may be written in
the form

f̂(x) =
n∑

i=1

wi(x)yi

where wi(x) emphasizes that the weights are determined for each x. We want

E(f̂(x))→ f(x) (15.12)

and
V (f̂(x))→ 0. (15.13)

Because E(Yi) = f(xi) we also have Ef̂(x) =
∑
wi(x)f(xi), so that the bias van-

ishes, as stated in (15.12), if the weights wi(x) become concentrated near x and the
function f(x) is smooth. For the weights to become concentrated it is sufficient that
∑

(i − x)2wi(x) → 0. Assuming V (Yi) = σ2 (or, at least, that the variances do not
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vary rapidly), the variance vanishes if
∑
wi(x)

2 → 0. These sorts of conditions on the
weights, to guarantee (15.12) and (15.13), need to be assumed by any large-sample
theoretical justification of a linear smoothing method. An explicit expression for the
MSE of kernel estimators was given by Gasser and Müller (1984; Estimating regres-
sion functions and their derivatives by the kernel method, Scandavian J. Statist., 11:
171-185). This allows a theoretical bias versus variance trade-off, i.e., a formula for
bandwidth selection as a function of n.

15.4 Density Estimation

Suppose we have a sample U1, . . . , Un from a distribution having pdf fU(u). If fU(u)
is specified by a parameter vector θ (so that fU (u) = fU(u|θ)) we may apply ML
to estimate θ and thereby determine fU(u). Sometimes, however, we do not wish to
assume a particular parametric form, yet we still want to obtain an estimate of the
pdf. This presents the problem of nonparametric density estimation.

15.4.1 Kernels may be used to estimate a pdf.

One of the most popular ways to estimate a density is to apply a kernel, in the
form we give below. It is possible to view the problem of density estimation as a
special case of the problem of nonparametric regression, and in particular to derive a
kernel density estimate from (15.10). We provide some discussion of this in the next
subsection. Here we consider a somewhat simpler motivation for the procedure.

Recall that, for small h,

fU(u) ≈ P (u− h < U < u+ h)

2h
.

Then a direct estimate of fU(u) is

f̂U(u) ≈ no. obsn’s falling in (u-h, u+h)

2nh
. (15.14)

This estimate can be written in terms of the kernel K(z) = 1
2

for |z| < 1 and 0
otherwise: we have

f̂U(u) =
1

nh

n∑

i=1

K(
u− ui

h
). (15.15)
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This direct (or “näive”) estimate is also essentially a histogram with bins centered
at the observations: if we normalize an ordinary histogram to give it the form of a
pdf we get

f̂U,hist(u) =
no. obsn’s in same bin as u

2nh
.

Both the histogram and the estimate in (15.14) suffer from being rectangular, and
thus unable to produce a smooth curve as an estimate of the pdf. If we instead replace
the kernel K(z) = 1

2
for |z| < 1 with a smooth kernel, such as the normal pdf, we will

get a smooth density estimate. In this general form the result of applying (15.15)
produces what is known as a kernel density estimate. Kernel density estimation
may be considered a way of getting a smooth density to replace the histogram. The
normal (Gaussian) kernel is often used, though other choices are generally available
in density estimation software.

As in kernel regression, the bandwidth parameter h is important. As we discussed
in Chapter 2, choice of bin width is similarly important when using a histogram. For
small h the estimate will tend to follow the data, but will be wiggly, while for large
h the estimate will be smooth, but may not respond quickly to bunching of points
that should indicate an increase in probability density. A variety of methods have
been proposed for automatic selection of h, but many analysts choose h based on
examination of the data, and experience with similar data (often picking a round
number for h, which indicates the arbitrariness in the choice).

Example 8.2 (continued): We now examine only the ISI component of the
data considered earlier, including all ISIs under 1000 milliseconds. A Gaussian kernel
density estimate is shown in Figure 15.14 superimposed on an ISI histogram. 2

15.4.2 Other nonparametric regression methods may be used

to estimate a pdf.

Many alternatives to kernel density estimation have been studied, and some of these
can provide better estimates in certain situations. The virtue of kernel density es-
timation is that it is fast, easy, and often effective. When some imprecision in the
estimate is tolerable, kernel density estimation is often a method of choice.

It is possible to view density estimation as a problem in binary nonparametric
regression: we consider a very fine grid of values of u and define a variable that
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Figure 15.14: A Gaussian kernel density estimator superimposed on an ISI histogram
for the ISI data of Figure 15.12. Here the histogram bin width was chosen using the
“oversmoothed” rule from Scott (1992, Multivariate Density Estimation, p. 55),
which produced 10 bins of width 100 milliseconds; the bandwidth of the Gaussian
kernel was set at 100 milliseconds.

is 1 whenever a grid interval contains an observation, and 0 otherwise; estimating
the expectation of these binary random variables amounts to estimating the pdf of
U . Thus, with any method of nonparametric regression for binary data, after the
regression estimate is normalized so that it integrates to 1 it may be considered a
density estimate.

Details: Let us suppose we wish to obtain f̂U(u) at some grid of u val-
ues, as we would in order to plot f̂U(u), and let us write the grid as
x1, x2, . . . , xm, so that the pairs we would plot would be (xj , f̂U(xj)), for
j = 1, . . . , m. We are using the notation xj to distinguish the grid points
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from the random variable observations ui. For the purpose of plotting
this pdf we would, typically—as in plotting any function—choose m to
be a fairly large value (such as 200), so that the plotted graph would not
appear jagged. For convenience, let us take ∆x = xj − xj−1, assuming
the grid points to be equally spaced. Then taking a large m is equivalent
to making ∆x small. Let us assume that the grid is chosen to be suffi-
ciently fine that there is at most 1 observation ui in any given interval
(xj−1, xj). (We may take x0 = x1 −∆x.) Viewing this procedure proba-
bilistically, we can set up our grid prior to observing U1, . . . , Un and take
it to be sufficiently fine that the probability of obtaining more than one
observation in any given interval is negligible. The probability that an
observation Ui will fall in interval (xj−1, xj) is approximately fU(xj)∆x.
(We could improve the approximation somewhat by instead taking it to
be fU(

xj+xj−1

2
)∆x, but will ignore this distinction here, as we are assum-

ing ∆x is small, so that fU(xj) ≈ fU(
xj+xj−1

2
).) Now let Yj = 1 if the

interval (xj−1, xj) contains an observation Ui (for some i) and 0 otherwise.
Then Yj, for j = 1, . . . , m, forms a sequence of binomial random variables
with

E(Yj) ≈ nfU (xj)∆x. (15.16)

Because Yj varies with j, it varies also with xj and we may think of
this expectation as a conditional expectation E(Yj|xj); and because non-
parametric regression methods estimate such conditional expectations,
we may apply a kernel method to the estimation of the left-hand side of
(15.16) in order to obtain an estimate of fU(u), which appears on the
right-hand side. Specifically, writing x = xj and applying (15.10), we
have

nf̂U(x)∆x =

∑n
i=1K(x−xi

h
)yi

∑n
i=1K(x−xi

h
)

=
∆x
∑n

i=1K(x−xi

h
)yi

∑n
i=1K(x−xi

h
)∆x

. (15.17)

For large m, the sum appearing in the denominator is approximately
equal to an integral and, because K(z) (where z is used to stand for the
generic argument of the kernel) is itself a pdf, it is easy to show that the
integral is nh. In the numerator, we note that yj = 0 except when there
is an observation ui in (xj−1− xj), in which case xj ≈ ui. Plugging these
into (15.17), canceling ∆x, and replacing x with u then gives (15.15). 2
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Chapter 16

Bayesian Methods

We have already described several applications of Bayes’ Theorem to problems in
statistical inference. Shortly after introducing Bayes’ Theorem in Chapter 3 we
used it in Example 3.2 to evaluate the posterior probability of dementia following
a screening test. In Section 4.3.4 we showed that Bayes classifiers are optimal, in
the sense of producing the smallest possible error rate, and we described how they
could be used to recover which of four possible saccade directions had been used to
stimulate firing-rate responses among a set of 55 neurons. In Section 7.3.9 we said
that Bayes’ Theorem could be used to quantify uncertainty in parameter estimation
using the posterior distribution, whose pdf has the form

fθ|x(θ|x) =
L(θ)π(θ)

∫
L(θ)π(θ)dθ

where L(θ) ∝ fX|θ(x|θ) is the likelihood function and π(θ) = fθ(θ) is the prior pdf.
We illustrated the approach, on page 204, by applying it to Example 1.4 (concerning
blindsight in patient P.S.), and we also discussed the highly intuitive interpretation
of credible intervals, which are confidence intervals produced by Bayes’ Theorem.
In Section 8.3.3 we noted that large-sample confidence intervals produced by ML
estimation are the same as large-sample credible intervals obtained with Bayes’ The-
orem. Taken together, these results were intended to show that Bayesian formulation
of statistical problems can be helpful conceptually, and Bayesian methods can be use-
ful for scientific inference. In this chapter we extend the discussion by introducing a
few additional Bayesian techniques.

499
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16.1 Posterior Distributions

16.1.1 Conjugate priors are convenient.

Let us return to the Binomial setting discussed in Sections 7.3.9 and 8.3.3. There
we used a uniform prior π(θ) = 1 and obtained the posterior pdf

f(θ|x) =
θx(1− θ)n−x

∫
θx(1− θ)n−xdθ

which matched the beta pdf form

f(w) =
Γ(α + β)

Γ(α)Γ(β)
wα−1(1− w)β−1,

giving the posterior distribution θ|X = x ∼ Beta(x + 1, n− x + 1). A similar form
is obtained when we instead use a beta prior: if θ ∼ Beta(απ, βπ) then the posterior
pdf becomes

f(θ|x) =
θx(1− θ)n−xθαπ(1− θ)βπ

∫
θx(1− θ)n−xθαπ(1− θ)βπdθ

(16.1)

and this may be recognized as a Beta(αpost, βpost) pdf where

αpost = x+ 1 + απ

βpost = n− x+ 1 + βπ.

Thus, when a beta prior is used in conjunction with the binomial likelihood, the
posterior is also a beta distribution. This is advantageous computationally because
algorithms and software are readily available for evaluating beta pdfs and probabil-
ities. In such situations, where a a prior distribution leads to a posterior within the
same parametric family of distributions, the prior is called conjugate.

Here is another example. Let X1, X2, . . . , Xn be i.i.d. N(θ, σ2) random variables,
write X = (X1, . . . , Xn), take X̄ to be the usual sample mean of the Xi variables
so that X̄ ∼ N(θ, σ2/n), and assume σ is known. If we let the prior distribution be
normal with θ ∼ N(µπ, τ

2) then the posterior distribution is also normal: we have
θ|X = x ∼ N(µpost, σ

2
post) where

µpost =
σ2

n
σ2

n
+ τ 2

µ+
τ 2

σ2

n
+ τ 2

x̄ (16.2)

σ2
post =

(
n

σ2
+

1

τ 2

)−1

.
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More generally, exponential families have conjugate priors. For instance, for
Poisson likelihood functions gamma distributions become conjugate priors.

16.1.2 The posterior mean is often a weighted combination

of the MLE and the prior mean.

In the case of the normal likelihood and conjugate prior, above, the posterior mean is
a weighted combination of the MLE and the prior mean, with the weights determined
by the relative precision of data and prior. As the precision in the data increases
relative to the prior, i.e., as nτ 2/σ2 increases, more weight is placed on x̄ and the
posterior mean becomes nearly the same as x̄. When the data are imprecise relative
to the prior (so nτ 2/σ2 gets small), more weight is placed on the prior mean, so that
the posterior mean is “pulled” away from x̄ and toward the prior mean.

Similar statements may be made in the binomial case. Let us reparameterize the
Beta(α, β) distribution by defining

µ =
α

α + β
ν = α + β.

The beta distribution may then be written Beta(µν, (1− µ)ν). We may then write
the beta prior θ ∼ Beta(απ, βπ) instead as θ ∼ Beta(µπνπ, (1−µπ)νπ). The posterior
becomes θ|X = x ∼ Beta(µpostνpost, (1− µpost)νpost) and we have

µpost =
νπ

n + νπ
µπ +

n

n + νπ

x

n
. (16.3)

Here, the data precision is not exactly the reciprocal of the variance but is instead
represented by n and the prior precision is represented by µπ. With these definitions
of precision it is again true that as the precision in the data increases relative to the
prior more weight is placed on the observed proportion x

n
and the posterior mean

becomes nearly the same as x
n
, while when the data precision gets relatively smaller

the posterior mean is pulled away from x
n

toward the prior mean.

The binomial posterior mean may be interpreted as equivalent to the MLE that
would be obtained from the original data x together with some pseudo-data repre-
sented by the prior. For example, the posterior mean based on a uniform prior (so
that α = β = 1) is equal to the MLE based on x+1 successes and n−x+1 failures.
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That is, we imagine first supplementing the actual data with 1 success and 1 failure,
and then finding the observed proportion of successes; this is the posterior mean. A
similar statement remains true whenever α and β are integers. The non-integer case
is sometimes interpreted by analogy. For example, if we use the conjugate prior with
α = β = 1

2
the posterior mean is equal to the MLE we would get by “adding half a

success and half a failure” to the data before finding the proportion of successes.

The normal case may be interpreted similarly. Let us suppose, first, that τ =
σ. Then the posterior mean is the same as the sample mean from the original n
observations supplemented by 1 observation having the value µπ. Then, if τ 2 = σ2/k,
the posterior mean is the same as the sample mean from the original n observations
supplemented by k observations having mean µπ. When the ratio σ2/τ 2 is not an
integer the interpretation is by analogy: the prior again injects some additional
information, beyond the data, represented as if based on other data having sample
mean µπ and variance of that mean equal to τ 2.

16.1.3 There is no compelling choice of prior distribution.

Numerous methods have been proposed and discussed in an attempt to define “non-
informative” prior distributions. While particular choices seem reasonable, there is a
degree of arbitrariness in all and no consensus has emerged. See Kass and Wasserman
(1996) for an extensive review.

In the case of a binomial B(n, θ) distribution, it is quite common to take the prior
for θ to be uniform on (0, 1), so that the prior pdf is π(θ) = 1. This seems to capture
the notion that the prior is “non-informative” about the parameter value. Working
by analogy, in the case of estimating a normal mean, where the data distribution
follows N(θ, σ2), the prior on θ is often taken to be uniform on (−∞,∞) with
π(θ) = 1. This, however, is not a probability density because its integral (over its
domain (−∞,∞)) is not 1 but rather is infinite. Nonetheless, the posterior turns
out to be a well-defined probability distribution, so inferences may be made. Such
formal priors that are not actually probability distributions are called improper.
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16.1.4 Powerful methods exist for computing posterior dis-
tributions.

16.2 Latent Variables

latent variables and graphical models

16.2.1 Hierarchical models produce estimates of related quan-

tities that are pulled toward each other.

The term hierarchical model refers to a model in which not only is the family of data
densities {p(x | θ) : θ ∈ Θ} indexed by a parameter θ, but θ itself is assumed to be
distributed according to some parametric family of densities {p(θ | λ) : λ ∈ Λ}. This
process can continue, with λ distributed according to a family of densities, and so
on, but in practice models with unknown parameters for a distribution of λ are rare.
Thus, we will concentrate on two-stage hierarchical models, in which X, θ , and λ
are vectors with θ and λ usually unknown.

The most common applications of hierarchical models are those in which there
is an obvious source of variability among values of the parameter θ, as when θ
could vary from subject-to-subject, or neuron-to-neuron, etc. For generality, we will
refer to individual subjects or individual neurons, etc., as units. In other words, we
will say that we are interested in the variation of some quantity across units. In
neuroimaging, for example, we might have task-related effects at particular voxels
whose magnitude varies across subjects, and these could be assumed to follow some
probability distribution. In analyzing neural responses, the way a particular measure
of neural activity varies across neurons may be of interest, and might be assumed
to follow a given probability distribution. Example 12.3 on page 376 provides an
example. As described there, Behseta et al. considered spike counts from 54 neurons
during performanace of a serial-order eye-movement task, and the authors computed
a rank order selectivity index

Irank =
(f3 − f1)

(f3 + f1)

where f1 and f3 were the mean firing rates measured at the times of the first and
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third saccades respectively, the mean being taken across trials. As part of the anal-
ysis, the rank selectivity indices across neurons were considered to follow a normal
distribution.

To treat these situations we introduce a random vector Xi to represent measure-
ments made on unit i. For instance, Xi could be the rank order selectivity index
for neuron i. We then assume the observations Xi (and the parameters θi) are con-
ditionally independent across units, with variation being described by a two-stage
hierarchical model:

Stage one: Conditionally on (θ1, . . . , θk) and λ, the vectors Xi are inde-
pendent with densities p(xi | θi, λ), i = 1, . . . , k, belonging to a family
{p(x | θ, λ) : θ ∈ Θ, λ ∈ Λ};
Stage two: Conditionally on λ, the vectors θi are i.i.d. with density
belonging to a family {p(θ | λ) : λ ∈ Λ}.

In general, θ and λ are multidimensional. In the case of the rank order selectivity
index, Xi is a random variable representing Irank for neuron i and Behseta et al.
assumed a model of the form

Xi ∼ N(θi, σ
2
i )

θi ∼ N(µ, τ 2).

Here, θi is the theoretical mean of the the rank order selectivity index for neuron i
and σ2

i is its variance. The value of θi becomes a quantity to be estimated, but is here
considered to follow a distribution across the population of neurons, with population
mean µ and variance τ 2. Actually, Behseta et al. also considered a second index,
but we are ignoring that for the time being.

It would be possible to estimate θi as xi, but the model suggests something
different: it assumes that the values of θi are related to each other (according to
the second stage of the model) and the posterior therefore uses data from the other
neurons in estimating θi. This would be especially valuable if σ2

i happened to be
large, possibly due to a very small number of trials for that neuron.

Let us assume Xi ∼ N(θi, σ
2
i ), independently and θi ∼ N(µ, τ 2) i.i.d. for

i = 1, . . . , k with the σi’s and τ known but µ unknown, and let µ have the improper
uniform prior. (In most practical cases, including that in Behseta et al., τ is unknown
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and must be estimated, but we are ignoring that complication here.) Calculations
show that this results in normal posteriors for θi, i = 1, . . . , k given x = (x1, . . . , xk)
with

E(θi | x) =
σ2

i

σ2
i + τ 2

xα +
τ 2

σ2
i + τ 2

xi

V (θi | x) =

(
1

σ2
i

+
1

τ 2

)−1

+

(
∑

i

1

σ2
i + τ 2

)−1(
σ2

i

σ2
i + τ 2

)2

where xα = (
∑

i αixi)/(
∑

i αi) and αi = (σ2
i + τ 2)−1.

The expression for the posterior mean is beautifully simple. In the case of rank
order selectivity index, each value of σi could be estimated directly from the data and
was therefore taken to be known. But these could vary across neurons. Some neurons
could have highly variable Xi, and thus poorly-determined values of θi, while other
neurons could have less variable Xi and better-determined values of θi. To estimate
the θi’s it would make sense to use xi if σi were small. But if we assume it is
appropriate to take θi ∼ N(µ, τ 2), then what happens with one neuron provides at
least some information about what is happening with another. The posterior mean
incorporates this information in a simple way: when σi is very small, the posterior
mean is roughly equal to that neuron’s measured value xi, whereas as σi gets larger,
the value xα plays a role according to the combination wixα + (1− wi)xi where wi

= σ2
i (σ

2
i + τ 2)−1. A common way to describe this is that the estimate xi is shrunk

toward xα with the amount of shrinkage determined by wi.

A NON-NEURAL EXAMPLE. In a microbiology experiment, 13 strains of
E. coli were tested for association of two traits. The raw data for each strain were
two pairs of sample sizes and corresponding proportions (ni1, p̂i1) and (ni2, p̂i2). From
preliminary analysis, it appeared that pi1 was greater than pi2 in most strains. In
two strains, however, p̂i1 was less than p̂i2 and the issue was whether this was due to
sampling fluctuation or a genuinely different phenomenon for either or both of the
two strains in question. We assume here that the data are distributed as binomial
proportions, we transform to the logit scale according toXi = log[p̂i1(1−p̂i2)/(p̂i2(1−
p̂i1))], and we take σ2

i to be known and equal to the large-sample variance formula
(based on binomial sampling) σ2

i = (ni1p̂i1)
−1 +(ni1(1− p̂i1))

−1 +(ni2p̂i2)
−1 +(ni2(1−

p̂i2))
−1.

The transformed data are shown below. Although τ 2 is not known in this case, it
is assumed known in the formula for E(θi | x). We used τ 2 = .39 to obtain the tabled
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values. (The reason for this choice is that it is the MLE of τ 2.) The weighted mean
is xα = 1.30. Note that the “shrinkage” behavior is as described in the previous
paragraph. 2

Strain xi σi E(θi | y)
1 1.36 .28 1.35
2 2.26 1.04 1.56
3 2.23 .75 1.68
4 1.32 .36 1.31
5 1.21 .38 1.24
6 1.27 .49 1.28
7 1.43 .57 1.37
8 1.85 .54 1.62
9 1.34 .56 1.30

10 3.44 .73 2.20
11 -0.42 .69 .53
12 -0.10 .31 .17
13 1.25 .39 1.27

When parameters such as σi and τ are unknown, the Bayesian approach is to put
priors on them and then to proceed as before with the calculation of the relevant
marginal posteriors, such as that of θi given y. This requires possibly intractable
integrations over these other parameters. Thus, a major part of practical Bayesian
analysis of these problems (and others, too) involves evaluation of integrals. Some-
times the integrals can be evaluated analytically but often they must be evaluated
by some numerical approximation or, most commonly, by Monte Carlo simulation.

An alternative is to estimate unknown parameters, such as τ by ML or some
variant of it. This is often called empirical Bayes. Once we have an estimate τ̂ , it
may be inserted in place of τ in the expression of the posterior mean. The resulting
quantity

θ̃i = ŵixα + (1− ŵi)xi

where

ŵi = σ2
i /(σ

2
i + τ̂ 2)

is usually called an empirical Bayes estimator. Similarly, σi could be estimated, if it
were unknown, and then the estimate could again replace σi in the formula.
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Details: Derivation of basic result

Suppose Xi ∼ N(θi, σ
2
i ), independently, i = 1, . . . , k, θi ∼ N(µ, τ 2), i.i.d.,

i = 1, . . . , k, σi and τ are known, and we put an improper uniform prior
on µ. Then

p(θ | x) ∝
∫

L(θ)p(θ | µ, τ 2)dµ

= L(θ)

∫

p(θ | µ, τ 2)dµ

∝ exp{−(1/2)Σσ−2
i (xi − θi)

2}
∫

exp{−(1/2)τ−2Σ(θi − µ)2}dµ.

Writing

Σ(θi − µ)2 = k(µ2 − 2µθ + θ
2
) + Σθ2

i − kθ
2

where θ = k−1
∑
θi, we get

∫

exp{−(1/2)τ−2Σ(θi − µ)2}dµ ∝ exp{−(1/2)τ−2Σ(θi − θ)2}

so that

p(θ | x) ∝ exp{−(1/2)[Σσ−2
i (xi − θi)

2 + τ−2Σ(θi − θ)2]}.

Expanding the sums of squares and collecting terms we find

∑

σ−2
i (xi − θi)

2 + τ−2
∑

(θi − θ)2

=
∑

(σ−2
i + τ−2)θ2

i − 2
∑

(σ−2
i xi + τ−2θ)θi + τ−2kθ

2
+
∑

σ−2
i y2

i

=
∑

(σ−2
i + τ 2 + k−1τ−2)θ2

i − k−1τ−2
∑∑

θiθj − 2
∑

σ−2
i xiθi + constant

which is quadratic in θ. In general, for a matrix V and vector z we have

θTV −1θ − 2zT θ = (θ −m)TV −1(θ −m)− zTm

where m = V z. Writing vij = (V −1)ij and defining V −1 and z according
to

vij = −k−1τ−2 + (σ−2
i + τ−2)δij
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zi = σ−2
i xi

where δij is 1 if i = j and 0 otherwise, we thus get

p(θ | x) ∝ exp[−(1/2)(θ −m)TV −1(θ −m)]

where m = V z and V and z are defined by the components above. Thus,
the posterior distribution of θ is multivariate normal with expectation
vector m and covariance matrix V . All that remains is to write down the
explicit formulae for m and V .

For this we use the following matrix identity: writing cij = (C−1)ij ,
if

cij = −k−1b+ (ai + b)δij

then

cij =

(
∑ aib

ai + b

)−1(
b

ai + b

)(
b

aj + b

)

+ (ai + b)−1δij.

(This may be verified by direct calculation.) The matrix V becomes
specified by

vij = (
∑

(σ2
i + τ 2)−1)−1

(
σ2

i

σ2
i + τ 2

)(
σ2

j

σ2
j + τ 2

)

+

(
σ2

i τ
2

σ2
i + τ 2

)

δij

and the vector m then becomes

mi =
∑

vijσ
−2
j xj

= wixα + (1− wi)xi

where

wi = σ2
i /(σ

2
i + τ 2)

αi = (σ2
i + τ 2)−1

xα = (
∑

αixi)/(
∑

αi).

2
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16.2.2 Penalized regression may be viewed as Bayesian esti-
mation.

16.2.3 State-space models allow parameters to evolve dy-

namically.

also hidden markov models, but not new subsection
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Chapter 17

Multivariate Analysis

17.1 Introduction

17.2 Multivariate Analysis of Variance

17.3 Dimensionality Reduction

17.4 Classification

17.5 Clustering

17.6 Discrete Multivariate Analysis
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Chapter 18

Time Series

18.1 Introduction

In the analysis of neural data, time is important. We experience life as evolving,
and neurophysiological investigations focus increasingly on dynamic features of brain
activity. If we wish to understand the signals produced by nervous system processes
we must use an analytical framework that is built for time-varying observations.

From a mathematical point of view, time is a number with an arbitrarily-chosen
origin, the value t = 0 typically representing an experimental or behavioral marker
such as the onset of a visual cue. We may work backward in time by taking t to be
negative. Although measurements are always made with some resolution of temporal
accuracy, often determined by a sampling rate (such as 20 KHz, giving an accuracy
of ∆t = .05 milliseconds), mathematically we allow t to be any real number, such
as t = π/2 seconds. When measurements depend on time we may think of them as
functions of time, y = f(t), and when we acknowledge that the measurements are
noisy we might write

Y = f(t) + ε

where ε is a random variable representing noise and Y is written as a capital let-
ter to emphasize that it, too, is a random variable. Given n observation pairs
(t1, y1), . . . , (tn, yn) we might write

Yi = f(ti) + εi, (18.1)

513
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and this returns us to the usual nonparametric regression model of Chapter 15,
in which the variables ε1, . . . , εn are assumed independent. While at first glance
(18.1) may seem natural, this kind of formulation does not yet go far enough in
dealing with measurements that vary across time because it does not take account
of the sequential nature of the argument t. In (18.1) the values i = 1, 2, . . . , n are
generally no longer arbitrary labels but rather important and meaningful indications
of temporal ordering with t1 < t2 < · · · < tn. If time matters, then even the noise
variables ε1, . . . , εn may be related to one another, and thus no longer independent.
In this case, specialized methods can produce powerful results. The term time series
refers both to data collected across time and to the large body of theory and methods
for analyzing such data.

Let us switch over to the general notation for random variables and write a
theoretical sequence of measurements as X1, X2, . . ., and a generic random variable
in the sequence as Xt. Another way to say the Xt variables are dependent is that
knowing X1, X2, . . . , Xt−1 should allow us to predict, at least up to some uncertainty,
Xt. Predictability plays an important role in time series analysis.

Example 2.2 (continued from page 36) On page 37 we displayed several EEG
spectrograms taken under different stages of anesthesia. We noted earlier that both
the roughly 10 Hz alpha rhythm and the 1-4 Hz delta rhythm are visible in the time
series plot. In this scenario we can say a lot about the variation among the EEG
values based on their sequence along time: in the time bin at time t the EEG voltage
is likely to be close to that at time t− 1 and from the voltage in multiple time bins
preceding time t we could produce a good prediction of the value at time t. 2

The spectrograms in Example 2.2 display the rhythmic, wave-like features of
the EEG signals contrasting them across phases of anaesthesia. They do so by
decomposing the signal into components of various frequencies, using one of the chief
techniques of time series analysis. The decompositions are possible in this context
because the EEGs may be described with relatively simple and standard time series
models, but this is not true of all time series. The EEG series are, in a sense, very
special because their variation occurs on a time scale that is substantially smaller
than the observation interval. By contrast, if we go back to Figure 1.6 of Example 1.6
we see another time series where the variation is on a relatively longer time scale.
The EPSC signal drops suddenly, and only once, shortly after the beginning of the
series, then recovers slowly throughout the remainder of the series. In other words,
the variation in the EPSC takes place on a time scale roughly equal to the length of
the observation interval. Another way to put this is that the EEG at time xt may be
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predicted reasonably well using only the preceding EEG values xt−1, xt−2, . . . , xt−h,
going back h time bins, where h is some fairly small integer, but a prediction of the
EPSC at xt based on earlier observations would require nearly the entire previous
series and still might not be very good. The most common time series methods,
those we describe here, assume predictability on relatively short time scales.

So far we have said that the EEG at time xt may be predicted using the pre-
ceding EEG values xt−1, xt−2, . . . , xt−h, but we did not specify which value of t we
were referring to. Part of the point is that it doesn’t much matter. In other words,
it is possible to predict almost any xt using the preceding h observations. (We say
“almost” any xt because we have to exclude the first few xt observations, with t ≤ h,
where there do not exist h preceding observations from which to predict.) Further-
more, the formula we concoct to combine xt−1, xt−2, . . . , xt−h in order to predict xt

may be chosen independently of t. This is a very strong kind of predictability, one
that is stable across time, or time-invariant. The notion of time invariance is at the
heart of time series analysis.

We now begin to formalize these ideas. Let Xt be the measurement of a series
at time t, with t = 1, . . . , n. Let µt = E(Xt) and Σij = Cov(Xi, Xj). As soon as we
contemplate estimation of this mean vector and covariance matrix we are faced with a
serious difficulty. For simplicity consider time t and the problem of estimating µt and
σ2

t = Σtt. If we have many replications of the measurements at time t (as is usually
the case, for example, with evoked potentials) we can collect all the observations
across replications at time t and compute their sample mean and sample variance.
However, if we have only one time series, and therefore one observation at t, we do
not have a sample from which to compute the sample mean and variance. The only
way to apply any kind of averaging is by using observations at other values of time.
Thus, we can can only get meaningful estimates of mean and covariance by making
assumptions about the way Xt varies across time. Let us introduce a theoretical
times series, or discrete-time stochastic process {Xt; t ∈ Z}, Z being the set of all
integers. We are now in a position to define the kinds of time invariance we will need.
We say that the series Xt is strictly stationary if it is time-invariant in the sense that
the distribution of each set of variables {Xt, Xt+1, . . . , Xt+h} is the same as that of
the variables {Xs, Xs+1, . . . , Xs+h} for all t, s, h. Because the time index takes all
possible integer values it is an abstraction (no experiment runs indefinitely far into
the past and future) but it is an extremely useful one. A standard notation in the
time series context is γ(s, t) = Σst. The function γ(s, t) is called the autocovariance
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function and the autocorrelation function (ACF) is defined by

ρ(s, t) =
γ(s, t)

√

γ(s, s)γ(t, t)
.

The prefix “auto,” which signifies here that we are considering dependence of the
time series on itself, is a hint that one might instead consider dependence across
multiple time series, where we would instead have “cross-covariance” and “cross-
correlation” functions (which we discuss in Section 18.5). A time series is said to be
weakly stationary or covariance stationary if (i) µt is constant for all t and (ii) γ(s, t)
depends on s and t only through the magnitude of their difference |s−t|. This weaker
sense of stationarity is all that is needed for many theoretical arguments. Under
either form of stationarity we follow the convention of writing the autocovariance
function in terms of a single argument, h = t − s, in the form γ(h) = γ(t − h, t).
Note that γ(0) = V (Xt). It is not hard to show that γ(0) ≥ |γ(h)| for all h, and
γ(h) = γ(−h). In the stationary case the autocorrelation function becomes

ρ(h) =
γ(h)

γ(0)
. (18.2)

Illustration: The 3-point moving average process

Xt =
1

3
(Ut + Ut−1 + Ut−2)

where the Ut variables are independent, with E(Ut) = 0 and V (Ui) = σ2
U , is a

stationary process with autocovariance and autcorrelation

γ(0) =
σ2

U

3

γ(±1) =
2σ2

U

9

ρ(±1) =
2

3

γ(±2) =
σ2

U

9

ρ(±2) =
1

3
γ(±h) = ρ(h) = 0, for |h| ≥ 3

2
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Having defined what it means for a process to be stationary, and also having
defined the autocorrelation function, let us return to the distinction we were trying
to draw between the EEG and EPSC time series. The EEG series may be modeled
as stationary, and furthermore its variation is consistent with what is called short-
range dependence. A theoretical time series exhibits short-range dependence when
its correlation function ρ(h) vanishes quickly as h becomes infinite. For the most
common time series models the correlation function vanishes exponentially fast (i.e.,
there is a positive number a for which ρ(h)ea|h| → 0 as h → ±∞). On the other
hand, it is questionable whether one would want to model the EPSC time series as
stationary and, if so, it would be necessary to use a model that assumes long-range
dependence, where the correlation function dies out slowly as h becomes infinite.
Time series analysis is concerned with variation across time while being cognizant
of the role of stationarity. Much time series theory explicitly assumes stationarity.
There is also considerable interest in non-stationary series, but the theoretical devel-
opments involve particular kinds of non-stationarity or modifications of methods that
apply to stationary series. In contrast, nonparametric regression does not consider
time-invariance arguments at all. In (18.1) the usual nonparametric assumption is
E(εt) = 0, and we have µt = E(Yt) = f(t). In other words, instead of a constant
mean required by stationarity, the nonparametric problem focuses on the evolution
of the mean as a function of time. In fact, many investigations involve a mix of
these two possibilities: there is a stimulus that produces a time-varying mean com-
ponent of the response, but there is also a wave-like time-invariant component of
the response. From a practical point of view, it is very important to consider these
components separately.

Example 15.2 (continued) For illustrative purposes we analyze here a small
record of an LFP, which was recorded for 30 seconds and sampled at 1 KHz as part
of the experiment described briefly on page 477. We confine our attention to the first
second and the last second (each consisting of 1000 observations), and will consider
whether the signal appears consistent across these two time periods in the sense of
containing the same delta-wave content. Figure 18.1 displays these two time series,
together with smoothed versions of the average LFP in these two periods. When
we focus on a single second of observation time, the slow-wave activity shows up
as slowly-varying mean signals, or trends, represented by the smoothed versions of
the two LFP traces in the figure. Even though the slowly-varying trends could be
considered roughly oscillatory on a longer time scale, at this time scale they can not
be represented as oscillatory and are, instead, sources of long-range dependence or
non-stationarity akin to that in Figure 1.6. In order to capture the higher-frequency,
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Figure 18.1: LFP and smoothed versions representing slowly-varying trends. TOP:
First second of average LFP. BOTTOM: Last (thirtieth) second of average LFP.
Smoothing was performed using regression splines with a small number of knots, as
described on page 477.

stationary activity in these plots (with short-range dependence) we must first remove
the slow trends. We analyze these data further in subsequent sections. 2

In motivating stationarity we brought up the problem of estimating the mean and
covariance functions, pointing out that in the absence of replications some assump-
tions must be made. Under stationarity the value of the constant mean µt = µ may
be estimated by the sample mean and an obvious estimator of the autocovariance
function is the sample autocovariance function

γ̂(h) =
1

n

n−h∑

t=1

(xt+h − x)(xt − x) (18.3)

for h = 0, 1, . . . , n− 1 and then γ̂(−h) = γ̂(h). We then have the sample autocorre-
lation function (sample ACF),

ρ̂(h) =
γ̂(h)

γ̂(0)
(18.4)

which is an estimator of the autocorrelation function (18.2).
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In this chapter we provide an overview of key concepts in time series analysis.
Section 18.2 describes the two major approaches to time series analysis. Section 18.3
gives some details on methods used to decompose time series into frequencies, as in
Example 2.2. There are several important subtleties, and we discuss these as well.
Section 18.4 discusses assessing uncertainty about frequency components, and Sec-
tion 18.5 reviews the way these methods are adapted to assess dependence between
pairs of simultaneous time series.

18.2 Time Domain and Frequency Domain

In discussing Example 2.2, on page 514, we alluded to the decomposition of the
signal into frequency-based components. In general, time series analysis relies on two
complementary classes of methods. As the name indicates, time domain methods
view the signal as a function of time and use statistical models that describe temporal
dependence. Frequency domain methods decompose the signal into frequency-based
components, and describe the relative contribution of these in making up the signal.
In this section we provide a brief introduction to these two approaches, starting with
frequency-based analysis.

Example 18.1 The circadian rhythm in core temperature rm Human physi-
ology, like that of other organisms, has adapted to the cycle of changing environmental
conditions, and resulting levels of activity, across each day and night. The result is
a clear day/night pattern in hormone levels in the blood, and other indicators of the
body’s attempt to maintain homeostasis. In a study of methodology used to char-
acterize circadian rhythms, Greenhouse, Kass, and Tsay (1987) (Greenhouse, J.B.,
Kass, R.E., and Tsay, R.S. (1987) Fitting nonlinear models with ARMA errors to
biological rhythm data, Statistics in Medicine, 6: 167–183.) analyzed core temper-
atures of a human subject measured every 20 minutes across several days. Figure
18.2 displays the data. There is an obvious daily cycle in the temperatures. Figure
18.2 also shows a cosine curve, with a 24 hour period, that has been fitted to the data
using ordinary least-squares regression. 2

The cosine curve in Figure 18.2 was obtained by applying linear regression. We
discussed fitting a cosine curve previously, in Example 12.6, in the context of di-
rectional tuning. Here, we begin with a cosine function cos(2πω1t), where ω1 is the
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Figure 18.2: Core temperature on a human subject, recordings taken every 20 min-
utes; x-axis in units of 20 minutes; y-axis in units of degrees Celsius (data shown
with a solid line). Overlaid on the data is the least-squares fit of a cosine (shown
with a dashed line), having a period of 24 hours.

frequency (in cycles per unit time), then introduce an amplitude Ramp, an offset
average value µavg, and a phase φ to put it in the functional form

f(t) = µavg +Ramp cos(2π(ω1t− φ)). (18.5)

Details: The function Ramp cos(2πω1t) varies between a minimum of
−Ramp and a maximum of Ramp, and its average on [0, 1] is 0. Adding
the constant µavg makes the cosine oscillate around µavg with minimum
µavg − Ramp and maximum µavg + Ramp. It is also perhaps worth men-
tioning that the regression in Example 12.6 was set up slightly differently
because the explanatory variable of interest was not time but rather the
angle θ = 2π(ωt− φ). 2

Based on (18.5) the statistical model for observations y1, . . . , yn at time points
t1, . . . , tn is then

Yi = µavg +Ramp cos(2π(ω1ti − φ)) + εi

where, for the core temperature data, ω1 = 1/72 cycles per 20 minutes is the fre-
quency corresponding to a 24 hour period. To simplify fitting, this model may be
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converted to a linear form, i.e., a form that is linear in the unknown parameters.
Using

cos(u− v) = cos u cos v + sin u sin v (18.6)

with u = 2πω1ti and v = 2πφ we have

Ramp cos(2π(ω1ti − φ)) = A cos(2πω1ti) +B sin(2πω1) (18.7)

where A = Ramp cos(2πφ) and B = Ramp sin(2πφ). We may therefore rewrite the
statistical model as

Yi = µavg + A cos(2πω1ti) +B sin(2πω1) + εi, (18.8)

which has the form of a linear regression model, and may be fitted using ordinary
linear regression. Specifically, we do the following:

1. Assume the data (t1, . . . , tn) and (y1, . . . , yn) are in respective variables time

and temp.

2. Define

cosine = cos(2πtime/72)

sine = sin(2πtime/72)

3. Regress temp on cosine and sine

For future reference we note that the squared amplitude of the cosine function in
(18.7) is

R2
amp = A2 +B2 (18.9)

and the phase is

φ =
1

2π
arctan(

B

A
). (18.10)

In the core temperature data of Example 18.1 there is a clear, dominant period-
icity, which is easily described by a cosine function using linear regression. We may
do a bit better if we allow the fitted curve to flatten out a little, compared to the
cosine function. This is accomplished by introducing a second frequency, ω2 = 2ω1

to produce the model

Yi = µavg + A1 cos(2πω1ti) +B1 sin(2πω1) (18.11)

+ A2 cos(2πω2ti) +B2 sin(2πω2) + εi. (18.12)
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Figure 18.3: Plot of core temperature, as in Figure 18.2, together with fit of (18.8),
shown in dotted line, using the fundamental frequency ω1 = 1/72 (one oscillation
every 72 data points, i.e., every 24 hours), and fit of (18.12), shown in dashed line.
The latter improves the fit somewhat in the peaks and troughs.

Example 18.1 (continued from page 519)) Least-squares regression using model
(18.12) yields a highly significant effect for the second cosine–sine pair (p < 10−6)
and Figure 18.3 displays a modest improvement in fit. 2

Model (18.8) was modified in (18.12) by introducing the addition cosine–sine pair
corresponding to the frequency ω2. In principle this process could be continued by
introducing frequencies of the form ωk = kω1 for k = 3, 4, . . .. Here, ω1 is called
the fundamental frequency, the additional frequencies ωk are harmonic frequencies,
and the resulting regression model is often called harmonic regression. For the core
temperature data it turns out that k = 2 is a satisfactory choice (see Greenhouse,
Kass, and Tsay, 1987) but, in general, one might use linear regression to fit many
harmonics and ask how much variation in the data is explained by each cosine–sine
pair. For this purpose one might use contributions to R2, which is the germ of the
idea behind one of the main topics in time series, spectral analysis. Spectral analysis
can be a very effective way to describe wave-like behavior, as seen in the EEG signals
of Example 2.2.
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18.2.1 Fourier analysis is one of the great achievements of
mathematical science.

Spectral analysis, otherwise known as Fourier analysis1, decomposes an oscillatory
signal into primitive trigonometric components. Because many physical phenomena
may be described by applying this technique (and it is at the heart of quantum
mechanics), the physicist Richard Feynman called2 the ability to create such decom-
positions “probably the most far-reaching principle in mathematical physics.” From
a practical point of view, our world has been changed dramatically by applications
of Fourier analysis, especially in electrical engineering.

The argument may be broken into several steps.

1. The signal may be represented by a smoothly varying function f(t), for values of
t (usually thought of as time) in a suitable interval [a, b], which, for convenience,
we may take3 to be [0, 1].

2. If we pick n values of t spaced evenly across the interval, say, t1, t2, . . . , tn, then
f(t) may be determined to a close approximation by its values at these points,
i.e., by f(t1), f(t2), . . . , f(tn), for sufficiently large n. That is, if f(t) varies
smoothly then, for practical purposes, interpolation will suffice to reproduce it
from its values f(t1), f(t2), . . . , f(tn).

3. The cosine and sine functions cos(2πt) and sin(2πt) are periodic, complet-
ing a single cycle on [0, 1], and thus having frequency 1 (per unit time).
This is the fundamental frequency and the corresponding harmonic frequen-
cies are 2, 3, 4, . . .. The cosine and sine functions at harmonic frequencies
may be considered primitive functions—building blocks of other functions—
on [0, 1]. When we evaluate a sufficiently large number of primitive functions
at t1, t2, . . . , tn, and take linear combinations of them, we are able to reproduce
f(t) at the values t1, t2, . . . , tn, which, according to step 2, suffices for recon-
structing f(t) throughout [0, 1]. That is, we can decompose f(t) into harmonic

1The term “spectral analysis” sometimes connotes statistical analysis, rather than purely math-
ematical analysis, but for now we are ignoring any noise considerations.

2Feynman, R.P., Leighton, R.B., and Sands, M., The Feynman Lectures on Physics Addison-
Wesley, 1963, Volume I, p. 49-1.

3The argument we sketch here makes the most sense for functions that are periodic on [0, 1],
meaning that they satisfy f(0) = f(1). In Section 18.3.6 we discuss what happens when this
condition fails to hold.
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trigonometric components. This has the potential to provide the appealing
interpretation that f(t) is “made up” of particular harmonic components in
particular amounts, according to the linear combinations.

4. In order to have this interpretation make sense, the “particular amount” of
each component given by the decomposition in step 3 must not depend on the
number of components being considered, for that would make the interpretation
self-contradictory. In non-orthogonal decompositions the amount, or weight,
given to a particular component does depend on the other components being
considered, but for orthogonal decompositions it does not. (See the discussion
in Chapter 12, page 399.) Harmonic trigonometric functions are orthogonal,
so the interpretation is internally consistent.

These steps all involved major conceptual breakthroughs for mathematics.4 Taken
together they suggest that a signal represented by a smoothly varying function f(t)
may be decomposed into cosine and sine harmonic components. This is what Fourier
analysis accomplishes.

To be a little more specific suppose, for simplicity, that f(t) is a function on the
interval [0, 1] and let us consider time points tj = j

n
for j = 1, 2, . . . , n where, again

for simplicity, we assume n is odd so that (n− 1)/2 is an integer. If we evalute f(t)
at the time points tj we get an n-dimensional vector

y = (f(t1), f(t2), . . . , f(tn))T . (18.13)

4The first requires the notion of function, which emerged roughly in the 1700s, especially in
the work of Euler (the notation f(x) apparently being introduced in 1735). The second may be
considered intuitively obvious, but a detailed rigorous understanding of the situation did not come
until the 1800s, particularly in the work of Cauchy (represented by a publication in 1821) and
Weierstrass (in 1872). The notion of harmonics was one of the greatest discoveries of antiquity,
and is associated with Pythagoras. The third and fourth steps emerged in work by D’Alembert
in the mid-1700s, and by Fourier in 1807. Along the way, representations using complex numbers
were used by Euler (his famous formula, given below, appeared in 1748) but they were considered
quite mysterious until their geometric interpretation was given by Wessel, Argand, and Gauss,
the latter in an influential 1832 exposition. A complete understanding of basic Fourier analysis
was achieved by the early 1900s with the development of the Lebesgue integral. Recommended
general discussions may be found in Courant and Robbins (1996), Lanczos (1966), and Hawkins
(1975). (Courant, R. and Robbins, H. (1996), What is Mathematics?, Second edition revised by Ian
Stewart, Oxford. Lanczos, C. (1966), Discourse on Fourier Series, Edinburgh-London: Oliver and
Boyd. Hawkins (1975) Lebesgue’s Theory of Integration: Its Origins and Development, American
Mathematical Society–Chelsea Publishing.)
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Now define the primitive harmonic trigonometric functions fk(t) = cos(2πkt) and
gk(t) = sin(2πkt), for k = 1, 2, . . . , (n − 1)/2. By evaluating these primitive func-
tions at t1, t2, . . . , tn we form vectors fk = (fk(t1), fk(t2), . . . , fk(tn))T and gk =
(gk(t1), gk(t2), . . . , gk(tn))T and, it turns out, the collection of vectors 1vec, f1, . . . , f(n−1)/2, g1, . . . , g(n−1)/2

are orthogonal, where 1vec = (1, 1, . . . , 1)T . (It is not too hard to show this.) They
therefore form an orthogonal basis for Rn (see the Appendix for a definition of basis),
which means that any vector y, such as in (18.13), may be written in the form

y = µavg1vec + A1f1 + · · ·+ A(n−1)/2f(n−1)/2

+ B1g1 + · · ·+B(n−1)/2g(n−1)/2. (18.14)

If we define

pn(t) = µavg + A1f1(t) + · · ·+ A(n−1)/2f(n−1)/2(t)

+ B1g1(t) + · · ·+B(n−1)/2g(n−1)/2(t) (18.15)

then we have
f(t) = pn(t) (18.16)

for t = tj for j = 1, . . . , n and, by interpolation we get the approximation

f(t) ≈ pn(t), (18.17)

for all t ∈ [0, 1], which may be considered a decomposition of f(t) into trigonomet-
ric components based on the n data values f(t1), f(t2), . . . , f(tn). The constants
µavg, A1, . . . , Ak, B1, . . . , Bk are called the Fourier coefficients of f(t). By analogy
with the approximate representation of functions by polynomials, the expression
pn(t) in (18.15) is often called a trigonometric polynomial.

An easy way to compute the coefficients in (18.15) is to recognize (18.14) as a
noiseless regression equation, and to apply least squares. Regression also provides
a nice way to conceptualize the Fourier decomposition. Because the trigonomet-
ric vectors are orthogonal, the coefficient found by regressing y on all the variables
f1, . . . , f(n−1)/2, g1, . . . , g(n−1)/2 is the same as the coefficient of fk (or gk) in the regres-
sion of y on fk (or gk) alone. Thus, with reference to (18.7), we may say that Akfk

and Bkgk together determine the component of f(t) having frequency k and, from
(18.9), we may also say that A2

k + B2
k is the squared amplitude of this component.

Furthermore, in this orthogonal case, we may decompose R2 from the regression of y
on f1, . . . , f(n−1)/2, g1, . . . , g(n−1)/2, together with the intercept, as a sum of n terms,
each term corresponding to R2 from the regression of y on one of the terms on the
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right-hand side of (18.14). This will give us a well-defined meaning of the propor-
tion of variation in f(t) corresponding to frequency k. Specifically, we consider the
regression decomposition of the total sum of squares ||y||2. Here we are leaving the
vector 1vec, corresponding to the intercept, as a regression variable and thus take
||y||2 to be the total sum of squares rather than the usual ||y − ȳ||2 = ||y||2 − ȳ2.
Also, in this regression R2 = 1 because y is n-dimensional and there are n variables
1vec, f1, . . . , f(n−1)/2, g1, . . . , g(n−1)/2. Now, using the orthogonality of the component
vectors, Equation (18.14) gives

||y||2 = ||µavg1vec||2 + ||A1f1||2 + · · ·+ ||A(n−1)/2f(n−1)/2||2

+ ||B1g1||2 + · · ·+ ||B(n−1)/2g(n−1)/2||2

and dividing by the total sum of squares ||y||2 we have

R2 =
ȳ2

||y||2 +

(n−1)/2
∑

k=1

R2
k, (18.18)

where

R2
k =
||Akfk||2 + ||Bkgk||2

||y||2 , (18.19)

which is the proportion of variation in f(t) at frequency k. In other words, this
trigonometric representation, using sines and cosines at harmonic frequencies, has
the wonderful property that it decomposes the variability of the function f(t) into
frequency-based components, the magnitude of which add to the total variation in
f(t). The decomposition (18.18) into components (18.19) is the starting point for
spectral analysis.

18.2.2 The periodogram is both a scaled representation of

contributions to R2 from harmonic regression and a
scaled power function associated with the discrete

Fourier transform of a data set.

We now apply to data x1, x2, . . . , xn the spectral analysis decomposition discussed in
Section 18.2.1. We write y = (x1, x2, . . . , xn) and use (18.14). We may get a rough
idea of the relative contributions to the variability in the data due to the harmonic
frequency components simply by plotting R2

k, defined in Equation (18.19), against
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the frequency k. A scaled plot of R2
k against frequency is known as the periodogram,

with the precise definition appearing in Equation 18.25. The periodogram, together
with some important modifications of it, is enormously useful in practice.
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Figure 18.4: Periodogram of core body temperature data. There is a peak at the
frequency representing, very nearly, daily oscillation and this peak is much higher
than the remainder of the periodogram.

Example 18.1 (continued from 522) The periodogram for the core tempera-
ture data (introduced on page 519) is shown in Figure 18.4. Note the dominant
contribution to R2 corresponding to the roughly daily cycle. 2

The coefficients Ak and Bk in (18.14) and (18.19) turn out to be

µavg =
1

n

n∑

j=1

xj

Ak =
2

n

n∑

j=1

xj cos(2kπj/n) (18.20)

Bk =
2

n

n∑

j=1

xj sin(2kπj/n) (18.21)

for k = 1, . . . , (n− 1)/2. Because the cosine and sine terms always occur in pairs, it
is often simpler to represent expressions (18.20) and (18.21) instead in exponential
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form via Euler’s formula,

eiθ = cos θ + i sin θ, (18.22)

which is also Equation (A.30) in the Appendix. This formula is extremely helpful
in Fourier analysis. On the one hand, it provides a kind of “book-keeping” of cosine
and sine terms within an imaginary exponential while, on the other hand, it sim-
plifies many manipulations because multiplication becomes addition of exponents.
Applying Euler’s formula (18.22), we have

n∑

j=1

xj cos(2kπj/n) + i

n∑

j=1

xj sin(2kπj/n) =

n∑

j=1

xje
2kπij/n

and then (18.20) and (18.21) may be replaced with

Ak + iBk =
2

n

n∑

j=1

xje
2πikj/n

for k = 1, . . . , (n− 1)/2. By convention the equivalent form

Ak − iBk =
2

n

n∑

j=1

xje
−2πikj/n (18.23)

for k = 1, . . . , (n − 1)/2, is used instead. Aside from the multiplier, the right-hand
side of (18.23) is the discrete Fourier transform. Specficially, for a data sequence
x1, . . . , xn, we let

ωj = j/n

denote frequency, for j = 0, . . . , n − 1. Then the discrete Fourier transform (DFT)
is given by

d(ωj) =
1√
n

n∑

t=1

xte
−2πiωjt (18.24)

and the periodogram is

I(ωj) = |d(ωj)|2. (18.25)

From (18.23) we have d(ωj) =
√

n
2

(Aj − iBj), and because ||Aj + iBj ||2 = A2
j + B2

j ,
we get

|d(ωj)|2 =
n

4
(A2

j +B2
j ).
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According to the definition in Equation (18.19), A2
j +B2

j is proportional to R2
j (mean-

ing that the constant multiple does not depend on j) and so we arrive at

I(ωj) ∝ R2
j ,

which justifies the interpretation of the periodogram we gave on page 527. Algorithms
for computing the DFT are based on the fast Fourier transform, which had a huge
impact on signal processing following a 1965 publication of the method by James
Cooley and John Tukey. The DFT also has an interpretation using the terminology
of signal processing. If we return to the interpretation of x1, . . . , xn as function
values f(t1), . . . , f(tn) as in Equation (18.17), then ||y||2 = ||(f(t1), . . . , f(tn))||2 is
(approximately, by (18.17)), the power of the function f(t) on [0, 1] and I(ωj) is
(approximately5) proportional to the power of f(t) at frequency ωj.

Unfortunately, in spectral analysis, the various notational conventions that get
invoked are not consistent across authors. In particular, we have introduced the
Fourier frequencies ωj = j/n for j = 0, 1, . . . , n−1. Because we divided the harmonic
integers by n, the Fourier frequencies are restricted to the interval [0, 1]. In some
texts j = 1, . . . , n is used. Furthermore, the multiplier of the complex exponential
sum we used in (18.24) to define the DFT is also not universal. For some purposes
one must pay attention to the definitions being used by a particular book or piece
of software.

With some additional mathematics, these concepts carry over to infinite-dimensional
vector spaces with inner products. The infinite-dimensional representation is analo-
gous: periodic functions (actually, square-integrable periodic functions) form a vec-
tor space for which the harmonic trigonometric functions provide an orthogonal ba-
sis. The resulting infinite-dimensional harmonic trigonometric expansion is called a
Fourier expansion, and the coefficients are the Fourier coefficients. In mathematics,
Fourier analysis concerns infinite-dimensional function spaces, but in statistics and
engineering these terms are also applied, as here, to the finite-dimensional setting
involving data.

The DFT and its inverse are finite versions of the usual Fourier transform and
its inverse, which is used extensively in mathematical analysis and signal processing,
including in theoretical studies of stationary time series. We discuss stationary time
series in Section 18.3.1. We also discuss, in the remainder of Section 18.3, several

5The approximation becomes exact when f(t) is periodic, f(t)2 has a finite integral, and the
expansion involves all of the infinitely many harmonics.
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practical issues that arise when using and interpreting the periodogram. We have
already mentioned one of these in our discussion of Example 15.2.
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Figure 18.5: Log periodogram for the first second of average LFP data in Exam-
ple 15.2.

Example 15.2 (continued from page 477) rm Figure 18.5 displays the log
periodogram for the first second of average LFP, which was plotted previously in the
top portion of Figure 18.1. In Section 18.3.6 we explain why the log transform is used.
The point, for now, is that the periodogram does not have a peak corresponding to
delta range or other frequencies. This is quite common in series that have slowly
varying trends. In contrast, after we remove the trends seen in Figure 18.1 from the
two series (by subtraction, so that the residuals are analyzed instead) the peaks of
interest become visible, as seen in Figure 18.6. 2

The contrast between Figure 18.5 and Figure 18.6 illustrates the importance of
checking time series for slowly-varying trends, and removing them from the data
before performing spectral analysis. This is often called detrending the series.
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Figure 18.6: Periodograms and smoothed periodograms from LFP detrended series.
TOP: First second of average LFP. BOTTOM: Last second of average LFP.

18.2.3 Autoregressive models may be fitted by lagged re-

gression.

As we have indicated, time series are special among kinds of data because of their
serial dependence, e.g., the value of Xt is likely to depend on the value of Xt−1.
The simplest form of dependence is linear dependence, as in the autoregressive model
given by

Xt = φXt−1 + ǫt.

This says that Xt has a regression on Xt−1, and otherwise is determined by noise.
For consistency with later notation let us write the noise variables as6 Wt:

Xt = φXt−1 +Wt. (18.26)

The natural generalization,

Xt =

p
∑

i=1

φiXt−i +Wt, (18.27)

6W is often used to represent time series noise out of deference to Norbert Wiener, a major
figure in the development of time series theory.
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is called an autoregressive model of order p, written AR(p). The Wt variables are
usually assumed to be i.i.d. N(0, σ2). Model (18.26) then becomes the standard
AR(1) model. The parameter φ in (18.26) is usually assumed to satisfy |φ| < 1,
and analogous, but more complicated constraints are assumed for the parameters in
(18.27).

Some Details: It may be shown that the case of (18.26) with φ = 1,
known as a random walk model, is non-stationary. This makes it un-
suitable for most auto-regressive modeling methodology. φ = −1 is also
non-stationary. The case |φ| > 1 is somewhat more subtle, and it turns
out to be non-causal in the sense that Xt depends on Wt+i for i > 0. The
condition |φ| < 1 restricts the AR(1) so that it is neither non-stationary
nor non-causal. Additional explanation is provided in time series texts
such as Shumway and Stoffer (2006). (Shumway, R.H. and Stoffer, D.S.
(2006) Time Series Analysis and Its Applications, with R Examples, Sec-
ond Edition, Springer.) 2

Because the AR(p) model (18.27) has the form of an ordinary linear regression
model, we may apply it to data x = (x1, . . . , xn) using ordinary least squares regres-
sion after first defining suitable lagged variables. In the simplest case, with p = 1,
we begin by defining a pair of variables y and xB1, each of length n− 1:

y =








y1

y2
...

yn−1








=








x2

x3
...
xn








xB1 =








xB1,1

xB1,2
...

xB1,n−1








=








x1

x2
...

xn−1








We use the subscript B1 for “back 1” because xB1,t = yt−1 (xB1 “lags” behind y
and is often called the lag-1 version of y). We then fit the AR(1) model (18.26)
by performing least-squares regression of y on xB1, without using an intercept. The
resulting regression coefficient becomes the estimate φ̂ of the AR(1) parameter φ.

More generally, to fit an AR(p) model using ordinary least squares we begin by
defining yn−p = xn, yn−p−1 = xn−1, . . . , y1 = xn−p+1 and then also defining xB1 to be
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the lag-1 version of y, xB2 to be the analogous lag-2 version of y, etc., until we reach
xBp. We then regress y on the variables xB1, xB2, . . . , xBp.

It is often unclear what order p should be used in the AR(p) model. Sometimes
the model selection criteria AIC or BIC are used (see Section 11.1.6). One simple
idea is to pick a relatively large value of p, perform the regression, and examine the
coefficients from first to last to see when they become non-significant. A similar idea
is to use the sample autocorrelation function (ACF), which was defined in (18.4),
and the partial autocorrelation function (PACF). Under fairly general conditions, if
X1, . . . , Xn are i.i.d. with finite variance, and the sample ACF is computed for the
random variables Xt, then

√
nρ̂(h)

D→ N(0, 1).

Based on this result, the sample ACF is usually plotted together with horizontal
lines drawn at ±2/

√
n. If the series were i.i.d., then roughly 95% of the sample

autocorrelation coefficients would fall between theses lines. The ACF coefficients
outside these lines are considered significant, with p < .05, approximately, for large
n. This is illustrated for Example 18.1 below.

A difficulty with the sample ACF plot, however, is that it is based on the indi-
vidual correlations of each lagged variable with the original data. That is, its results
come from many single-variable regressions, of y on xBk for various values of k. A
significant regression of y on xB2, for example, could be based on the correlation
between xB1 and xB2 and may reflect a relationship between y and xB1. An alterna-
tive is to perform the multivariate regression of y on both xB1 and xB2 and examine
whether the coefficient of xB2 is significant, which assesses the explanatory power
of xB2 after including xB1 in the model. The sample PACF at lag h is the sam-
ple partial correlation, defined by (5.14), between the time series and itself at lag-h
given the lag-1 through lag-h− 1 series. The lag-h partial autocorrelation coefficient
measures the lag-h correlation after adjusting for the effects of lags 1 through h− 1,
adjusting as in multiple linear regression. It may be computed as the normalized
lag-h regression coefficient found from an AR(h) model, normalized by dividing the
series by the sample variance γ̂(0).

A Detail: Suppose Xt is a mean-zero stationary Gaussian series. Then
the theoretical PACF is given by φ11 = Cor(Xt, Xt+1) and for h ≥ 2,

φhh = Cor(Xt, Xt+h|Xt+1, Xt+2, . . . , Xt+h−1).
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More generally, for any mean-zero stationary series letXh−1
t =

∑h−1
j=1 βjXt−j

where the coefficients β1, . . . , βh−1 minimize E((Xt−
∑h−1

j=1 αjXt−j)
2) over

the αjs. Then, for h ≥ 2,

φhh = Cor(Xt −Xh−1
t , Xt+h −Xh−1

t+h ).

2

Once again, using large-sample theory, horizontal lines may be drawn on the
sample PACF to indicate where the coefficients stop being significant. The sample
PACF is often used to choose the order of the autoregressive model.
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Figure 18.7: Autoregressive model of order p = 22 for core body temperature residuals.
TOP: Coefficients φ̂i as a function of lag i. MIDDLE: The sample autocorrelation
function. BOTTOM: The sample partial autocorrelation function.

Example 18.1 (continued from page 527) Let us consider an AR(p) model for
the core temperature residuals following the cosine regression reported on page 519,
and then detrending (using BARS, see Section 15.2.6). We take p = 22. The fitted
coefficients are plotted in Figure 18.7. Here is an abbreviated table of coefficients:
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Figure 18.8: Core temperature data together with fit. TOP: plot of temperature data.
BOTTOM: Plot of temperature data together with fit based on the sum of an AR(2)
fit to residuals and the fitted 24-hour cycle.

Variable Coefficent Std. Err. t-ratio p-value
xB1 .906 .057 15.9 < 10−15

xB2 -.205 .077 -2.7 .008
xB3 -.147 .078 -1.9 .06
xB4 .005 .078 .1 .95
xB5 -.154 .078 -1.9 .05
xB6 .115 .078 .9 .35
. . .
xB21 -.031 .076 -.4 .69
xB22 .011 .057 -.2 .84

Only the first two lagged variables have large t statistics, so it appears that
only the first two lagged variables are likely to be helpful in predicting the response
variable. Also shown in Figure 18.7 is the sample ACF, together with horizontal
lines are drawn at ±2/

√
n. The PACF in Figure 18.7 has nonzero lag-1 and lag-

2 coefficients, but the remaining coefficients are not distinctly different from zero
relative to statistical uncertainty. Using an AR(2) fit to the residuals added to
the fitted 24-hour cycle produces the overall fit to the temperature data shown in
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Figure 18.8. 2

In general, autoregressive models may be fit by maximum likelihood. We now
connect ML estimation with lagged least-squares regression (page 533), by writing
down the likelihood function for the AR(1) model, assuming Xt is Gaussian with
mean zero and |φ| < 1. We have X1 ∼ N(0, σ2

1) where σ2
1 = σ2

W/(1 − φ2). We also
have Xt|Xt−1 = xt−1 ∼ N(φxt−1, σ

2
W ) for t = 2, . . . , n. The joint pdf is

fX1,...,Xn(x1, . . . , xn) = fX1(x1)fX2|X1
(x2|X1 = x1) · · ·fXn|Xn−1

(xn|Xn−1 = xn−1)

=
1

σ1
fZ(

x1

σ1
)

n∏

t=2

1

σW
fZ(

xt − φxt−1

σW
)

where fZ(z) is the N(0, 1) pdf. The factors in the product above may be written

1

σW
fZ(

xt − φxt−1

σW
) =

1√
2πσW

exp(−(xt − φxt−1)
2

2σ2
W

)

=
1√

2πσW

exp(−(yt−1 − φxB1,t−1)
2

2σ2
W

).

This final form of each factor is the same as would appear in the likelihood for the
regression of y on xB1, with no intercept. Thus, if we ignore x1, maximizing the
likelihood L(φ, σW ) amounts to solving the ordinary least-squares problem in the
regression of y on xB1. This maximization is called conditional maximum likelihood
because we act as if the distribution of X1 is given, i.e., it involves no unknown
parameters. Because σ1 is a function of φ and σW , when we include the factor due
to X1, which is fZ(x1/σ1)/σ1, the maximization problem changes and it is no longer
solvable by least squares. Thus, the MLE must be found by an iterative method, but
it is likely to be very close to the conditional MLE. Similar considerations hold also
for AR(p) models: the likelihood is nonlinear in the autoregressive parameters, but
if we condition on the first p values then ML estimation reduces to ordinary least
squares lagged regression. Most statistical software for fitting autoregressive models
applies ML estimation. For large samples, the fitted coefficients are essentially the
same as those obtained using lagged regression.

The fit to the core temperature data in the bottom panel of Figure 18.8 combines
the fitted 24-hour cycle and the AR(2) fit to the residuals. This is an example of
regression with time series errors. As mentioned on page 393, a general approach to
regression with time series errors may be based on weighted least squares. Specif-
ically, the model (12.62) may be used with the variance matrix R defined by the
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AR(p) process and a fit, together with confidence intervals and significance tests,
may be obtained7 from the following steps:

1. Fit the regression variables X to the response variable Y using ordinary least
squares;

2. Fit an AR(p) model to the residuals from step 1;

3. Re-fit the regression variablesX to the response variable Y using weighted least
squares, based on the estimated R matrix found from the fitted auto-regressive
model in step 2.

In practice, steps 1-3 may be adequate but, in addition, steps 2 and 3 could be
iterated, or ML estimation could be applied once the AR(p) model is determined in
Step 2 (e.g., Greenhouse, Kass, and Tsay, 1987). Statistical software for regression
with time series errors is usually based on ML estimation.

18.3 The Periodogram for Stationary Processes

18.3.1 The periodogram may be considered an estimate of
the spectral density function.

The DFT is relatively easy to use without thinking about its continuous analogue.
However, to understand the way the DFT behaves, and to derive statistical assess-
ments of uncertainty, we must consider the analogous object defined for a theoretical
stationary time series {Xt; t ∈ Z}.

Assume σ2
t = V (Xt) < ∞ and let µt = E(Xt). Recall that the autocovariance

function is given by
γ(h) = E((Xt − µt)(Xt+h − µt+h)).

Under the summability condition
∞∑

h=−∞
|γ(h)| <∞ (18.28)

7The fit in Figure 18.8 avoided step 3, and would not change very much if step 3 were included,
but the statistical inferences involving confidence intervals and significance tests do require step 3.
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general results give the existence of a spectral density function f(ω) for which

γ(h) =

∫ 1
2

− 1
2

e2πiωhf(ω)dω (18.29)

and

f(ω) =

∞∑

h=−∞
γ(h)e−2πiωh. (18.30)

From (18.30) it follows immediately that the spectral density is positive, f(ω) =
f(−ω), f(ω) is periodic with period 1, and

γ(0) =

∫ 1
2

− 1
2

f(ω)dω. (18.31)

Equation (18.31) says that the total variability V (Xt) is the integral of the spectral
density function. This is a continuous analogue of the discrete decomposition (18.18).

Note that (18.28) rules out pure sinusoids. Signals that have purely periodic
(composite sinusoidal) components have “mixed” spectra consisting of “line spectra”
representing the pure sinusoids and spectral densities representing everything else.

Returning to the periodogram, defined in Equation (18.25), some manipulations
(which we omit) show that it may be written in the form

I(ωj) =

n−1∑

h=−(n−1)

γ̂(h)e−2πiωjh (18.32)

where γ̂(h) is the sample autocovariance function defined in (18.3). Comparing
(18.32) with (18.30), we see that the periodogram may be considered an estimator of
the spectral density. In addition, using γ̂(−h) = γ̂(h), Equation (18.32) shows that
the periodogram is proportional to the DFT of the sample covariance function.

Further manipulations show that the periodogram may also be written as

I(ωj) =
1

n

n−1∑

h=−(n−1)

n−|h|
∑

t=1

(xt+|h| − µ)(xt − µ)e−2πiωjh
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for j 6= 0 and if we replace xt and xt+|h| with their theoretical counterparts Xt and
Xt+|h|, and then take the expectation, we get

E(I(ωj)) =
n−1∑

h=−(n−1)

(
n− |h|
n

)

γ(h)e−2πiωjh.

Let us consider what happens8 when ωj → ω as n→∞. Assuming the summability
condition (18.28) holds we get

E(I(ωjn))→
∞∑

h=−∞
γ(h)e−2πiωh,

that is,

E(I(ωjn))→ f(ω). (18.33)

This result forms a connection between the data-based periodogram and the the-
oretical spectral density: when the periodogram is considered an estimator of the
spectral density, for large samples it is approximately unbiased. However, as we will
see in Section 18.3.3, the periodogram only becomes a reasonable estimator after
smoothing is applied.

18.3.2 For large samples, the periodogram ordinates com-

puted from a stationary time series are approximately
independent of one another and chi-squared distributed.

In Section 18.3.1 we showed that the periodogram may be considered an estimator
of the spectral density function, but we ended with the remark that it only becomes
reasonable after smoothing. We develop this important observation in Section 18.3.3.
Here we first review some basic results on the large-sample distribution of the DFT
and periodogram. These allow us to get confidence intervals for quantities based on
the periodogram, including smoothed periodograms.

The starting point is to imbed the data x1, . . . , xt in a hypothetical infinite se-
quence of random variables Xt, where t is taken to run through all integers, including

8To get a sequence of Fourier frequencies ωj that converge to ω, define ωjn
= jn/n with jn a

sequence of integers for which jn/n→ ω.
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negative integers. The assumptions needed for the distributional results are (1) the
time series {Xt} is stationary; (2) for sufficiently large h, the variables {Xt, t < t0}
are nearly independent of the variables {Xt, t > t0+h} (for any, and therefore—under
stationarity—every, t0); and (3) the spectral density f(ω) exists. These conditions
allow application of the Central Limit Theorem (CLT) to the sum that defines the
DFT. We are being deliberately vague in the statement of (2). For technical discus-
sion see Lahiri (2003). (Lahiri, S.N. (2003), A necessary and sufficient condition for
asymptotic independence of discrete Fourier transforms under short- and long-range
dependence. Ann. Statist., 31: 613-641.)

To get asymptotic variances and covariances, and the asymptotic distribution of
the periodogram, let us replace xt by Xt in (18.20) and (18.21) and consider the
large-sample distribution of the coefficients

Ak =
2

n

n∑

j=1

Xj cos(2kπj/n)

Bk =
2

n

n∑

j=1

Xj sin(2kπj/n).

To simplify a little, let us write

dc(ωk) =
1√
n

n∑

j=1

Xj cos(2kπj/n)

ds(ωk) =
1√
n

n∑

j=1

Xj sin(2kπj/n).

We assume that the expectation ofXt is zero (if not, we can subtract E(Xt) from each
variable). By the CLT, dc(ωj) and ds(ωj) are approximately normally distributed. In
addition, we have E(dc(ωk)) = E(ds(ωk)) = 0 and, it turns out, for the large-sample
variances we have

V (dc(ωk)) ≈
1

2
f(ωk) (18.34)

V (ds(ωk)) ≈
1

2
f(ωk) (18.35)

while the covariances are approximately zero: for j 6= k,

Cov(dc(ωj), dc(ωk)) ≈ 0 (18.36)

Cov(ds(ωj), ds(ωk)) ≈ 0 (18.37)
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and for all j, k,
Cov(dc(ωk), ds(ωk)) ≈ 0. (18.38)

The asymptotic independence in (18.36)–(18.38) greatly simplifies statistical infer-
ence based on the DFT.

The periodogram is related to dc(ωk) and ds(ωk) by

I(ωk) = dc(ωk)
2 + ds(ωk)

2.

From the CLT together with (18.34) and (18.35), both
√

2/f(ωk)dc(ωk) and
√

2/f(ωk)ds(ωk)
are approximately normal with mean zero and variance 1. By (18.38) these two ran-
dom variables are approximately independent. Recalling that if Z1 ∼ N(0, 1) and
Z2 ∼ N(0, 1), independently, then Z2

1 + Z2
2 ∼ χ2

2 we therefore have

2I(ωk)

f(ωk)
is approximately χ2

2 (18.39)

which we may also write as

I(ωk) is approximately
f(ωk)

2
χ2

2.

Furthermore, from (18.36)–(18.38), we have that I(ωj) and I(ωk) are approximately
independent for j 6= k.

The limiting distribution in (18.39) is a beautifully convenient result, making it
relatively easy to get confidence intervals for quantities derived from the periodogram.
We describe the methods in Section 18.4.1.

18.3.3 Consistent estimators of the spectral density function
result from smoothing the periodogram.

As we discussed in Chapter 8, in large samples the distribution of an estimator T
should become concentrated near the quantity θ it is estimating. While (18.39) gives
a nice way to assess uncertainty about the periodogram, it also shows that the large-
sample distribution of the periodogram does not become concentrated around the
spectral density: its variance does not decrease with the sample size. In statistical
parlance, the periodogram is not a consistent estimator. However, under conditions
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analogous to those used for consistency of linear smoothers in nonparametric regres-
sion, as discussed in Section 15.3.3, smoothed versions of the periodogram will be
consistent. This is strong theoretical motivation for smoothing the periodogram.

In the statistical and neuroscientific literatures there are five main approaches to
smoothing the periodogram. The first is to apply a smoother, such as a Gaussian
kernel smoother to the sequence of values I(ωk). Kernel smoothers were discussed
in Section 15.3.1 in the context of nonparametric regression and Section 15.4.1 in
the context of density estimation. Because kernel smoothers compute linear com-
binations of the data they are linear smoothers or linear filters. We make some
further comments about linear filters in Section 18.3.4. When applied to time series
Gaussian kernel smoothers are usually called Gaussian filters.

The second method of smoothing a periodogram is to split the time domain into
a set of intervals, estimate the spectral density within each interval, and average
the resulting estimates. With this method it may be shown that it is advantageous
to allow the intervals to have some overlap (Welch, 1967). The estimator based on
such averaging is sometimes known by the acronym WOSA for weighted overlapping
segment averaging or Welch’s method. (Welch, P.D. (1967) The use of fast Fourier
transform for the estimation of power spectra: A method based on tie averaging over
short, modified periodograms. IEEE Trans. Audio and Electroacoustics, 15: 70–73.)

The third approach applies a simple generalized linear model based on the asymp-
totic distribution of the periodogram in (18.39). Recall that the χ2

2/2 distribution is
the same as the standard exponential distribution Exp(1). We may then write

I(ωk)
·∼ f(ωk)Exp(1) (18.40)

or
I(ωk)

·∼ Exp(λk) (18.41)

where

λk =
1

f(ωk)
.

This says that the periodogram ordinates form, approximately, a generalized linear
model and therefore may be smoothed using the technology in Section 15.2.3, adapted
for exponential regression. The likelihood function based on (18.41) is called the
Whittle likelihood.

The fourth class of methods for smoothing the periodogram again uses the asymp-
totic distribution in the form of (18.40) but instead deals with the log ordinates.
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Letting Yk = log I(ωk), (18.40) may be written

Yk ≈ log f(ωk) + ǫk (18.42)

where the ǫk variables are independently distributed as logX where X ∼ Exp(1).
This provides a standard nonparametric regression model, and the log of an expo-
nential random variable is reasonably close to being normal. However, E(ǫk) 6= 0,
so there is some bias introduced into the estimation process. Nonetheless, in many
cases the bias is small relative to the variation in the log periodogram.

The fifth way to smooth a periodogram is to assume the data follow an autore-
gressive model, and then use the resulting form of the spectral density. Specifically,
calculations show that the AR(p) model (18.27) has spectral density

fX(ω) =
σ2

W

|1− φ1e−2πiω − φ2e−4πiω − · · · − φpe−2pπiω|2 .

In addition, a more concise class of models, known as autoregressive moving average
or ARMA models, is often used, and these too have closed-form expressions for their
spectral densities.

Example 18.1 (continued from page 527) We obtained smooth versions of the
periodogram for the core temperature data after first removing the trend. (Recall our
discussion of Example 15.2 on page 530; to fit the trend we used the nonparametric
regression method BARS, as described brief in Chapter 15). The AR(3) spectral
density estimate is shown in Figure 18.9. Note that it is very smooth. (An AR(2)
based estimate gives similar results.) The Whittle smoothed periodogram is shown
for comparison, and agrees reasonably well. There appears to be a peak near ωj = .1.
To interpret this, we need units. The temperature was sampled every 20 minutes,
and there were 352 observations. If ωj = .1, then the frequency is .1 per time unit
(or 35.2 per 352 time units). To get frequency per day we multiply by 72 and get
roughly 7. There appears to be a roughly oscillatory component with a period of
about 3.5 hours. 2

We elaborate briefly on linear smoothing in Section 18.3.4 but otherwise omit
details on smoothing periodograms.9 Smoothing is typically handled in spectral
analysis software. Regardless of the method used, the most important point is that
some smoothing is essential.

9A reference advocating methods three and four, above, is Fan and Kreutzberger (1998). (Fan,
J. and Kreutzberger, E. (1998) Automatic local smoothing for spectral density estimation, Scandi-

navian Journal of Statistics , 25: 359-369.)
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Figure 18.9: Spectral density estimates for the BARS-detrended residuals from the
core body temperature data, after removing the fitted 24-hour cycle. The tapered
periodogram is in black; the Whittle smoothed version is in red; and the estimate
from the AR(3) model is in blue.

18.3.4 Linear filters can be fast and effective.

We indicated in Section 18.3.3 that kernel smoothers are linear filters. In this section
we say what we mean by a linear filter, and indicate why linear filters are widely
applied.

Suppose we have time series data x1, . . . , xn. A linear filter is a set of num-
bers (coefficients) {ar, ar+1, . . . , as} and its application to the series xt results in the
filtered series

yt =

s∑

h=r

ahxt−h (18.43)

where, typically, s− r is much less than n. For example, the result of applying the
five-point filter with coefficients (1, 2, 3, 2, 1)/9 would be

yt =
1

9
(xt−2 + 2xt−1 + 3xt + 2xt+1 + xt+2) (18.44)

for t = 3, . . . , n − 2. A Gaussian filter would be similar but would instead use a
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normal (Gaussian) pdf to define the coefficients.

It may be shown that the DFT of {yt} is related to the DFT of {xt} according
to

dy(ω) = nda(ω)dx(ω) (18.45)

where da(ω) is the Fourier transform of {ar, ar+1, . . . , as, 0, 0, . . . , 0}, with the zeroes
being added to fill up the rest of the n data values. (This is called “padding”
the sequence.) The quantity nda(ω) is called the transfer function and its squared
magnitude is the power transfer function. Expression (18.45) makes it possible to
analyze easily the effects of linear filters. This, coupled with their simplicity and the
high speed with which they may be computed makes them a very common method
of choice for smoothing a time series and the resulting periodogram.
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Figure 18.10: TOP: Core temperature data after removing dominant 24-hour effect,
i.e., the residuals after simple harmonic regression. MIDDLE: The power transfer
function of the five-point linear filter with coefficients (1, 2, 3, 2, 1)/9, showing a strong
diminution of the higher frequency components. BOTTOM: Core temperature data
after applying the five-point linear filter with coefficients (1, 2, 3, 2, 1)/9.

Example 18.1 (continued) We applied the 5-point linear filter described above to
the residuals from the core temperature data following simple harmonic regression,
yielding a series of the form (18.44). The top panel of Figure 18.10 shows the residual
series and the middle panel shows the power transfer function. The power transfer
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function decreases to nearly zero as the frequency increases so that high-frequency
components have been essentially eliminated from the filtered series. The resulting
series is shown in the bottom panel of Figure 18.10. The filtered series is smoother
than the original series. This 5-point linear filter is predominantly a high frequency
filter but, as the middle panel of Figure 18.10 shows, its effects are not restricted to
the highest frequencies: there is a gradual squelching of middle-range frequencies as
well. 2

We have just found that the 5-point linear filter used in (18.44), and applied
above to the data from Example 18.1, acts mostly as a high-frequency filter but also
displays some gradual mid-range filtering. This might be considered undesirable and
one might consider trying to use an ideal high-frequency (or low pass) filter that has
a power transfer function of the form

H(ω) =

{
1 for 0 ≤ |ω| ≤ ωc

0 for ωc < |ω| ≤ 1
2

which would remove all components with frequencies ω > ωc and leave all other
components of the series unchanged. One might then, in principle, try to find a filter
that corresponds to this power transfer function. This approach turns out to intro-
duce certain technical problems associated with Fourier transforms of discontinuous
functions. In practice, time series software typically provides some option for low-
pass filtering based on a linear filter, or a combination of linear filters, which aims to
approximate the effect of the ideal power transfer function. Similarly, most software
provides options for high-pass filtering, which approximates an ideal filter that would
remove frequencies ω < ωc for some ωc, and band-pass filtering, which approximates
an ideal filter that would remove frequencies outside some interval (ωa, ωb); the range
(ωa, ωb) then becomes the frequency band that is retained by the band-pass filter.
We illustrated a form of high-pass filtering when we detrended the LFP series in
Example 15.2, with our discussion surrounding Figure 18.6 (see page 530), and then
again filtered the data in Example 18.1 before fitting the auto-regressive model on
page 534. In the latter case, the detrending method was nonlinear. The advantage
of linear filters in practice is the speed with which results may be computed.

All of these remarks about linear filters have theoretical counterparts.

Some details: Suppose {Xt; t ∈ Z} is a stationary process with spectral
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density fX(ω) and the series {ah; h ∈ Z} satisfies

∞∑

h=−∞
|ah| <∞.

If we let

A(ω) =

∞∑

h=−∞
ahe

−2πiωh,

then the filtered process {Yt; t ∈ Z} defined by

Yt =
∞∑

h=−∞
ahXt−h

is stationary with spectral density

fY (ω) = |A(ω)|2fX(ω).

Here, the series of coefficients {ah; h ∈ Z} is known as the impulse re-
sponse function. 2

18.3.5 Frequency information is limited by the sampling rate.

While the Fourier frequencies ωk = k/n are defined for k = 1, . . . , n, the resulting
cosine functions are constrained by the important restriction

cos(2π
k

n
t) = cos(2π

n− k
n

t) (18.46)

for every integer t.

Details: In (18.6) put u = 2πt and v = 2π k
n
t to get

cos(2π
n− k
n

t) = cos(2πt) cos(2π
k

n
t) + sin(2πt) sin(2π

k

n
t)

and when t is an integer sin(2πt) = 0 while cos(2πt) = 1. 2

Thus, any cosine with a frequency 1
2
< ωk < 1 will have precisely the same values

at all integers t as the cosine with frequency 1 − ωk. This is known as aliasing:
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it is not possible to distinguish a cosine function having frequency ω∗ > 1
2

from
another cosine with a frequency in (0, 1

2
). By sampling xt = cos(2πωt) at points

t = 1, . . . , n, the fastest visible oscillations occur at the frequency ω = 1
2
, for which

xt = cos(πt) = (−1)t. (When multiplied by n to get back to the original units of
time, this fastest visible frequency of oscillation is called the Nyquist frequency.) The
situation is illustrated in Figure 18.11. Corresponding to (18.46) we also have

sin(2π
k

n
t) = − sin(2π(

n− k
n

)t).
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Figure 18.11: A plot illustrating aliasing of two frequencies for n = 10. Two cosine
functions are plotted: cos(2πω1t) (blue) and cos(2πω2t) (red) for ω1 = 2/10 and
ω2 = 8/10. At all the values t = 1, . . . , 10 these cosine functions agree, so that
the frequencies ω1 and ω2 are aliased. Note that the time interval between peak and
trough corresponding to the second frequency is less than the sampling interval of 1
(equivalently, ω2 > 1/2) so that, in a sense, the second cosine is oscillating too fast to
be determined at this sampling rate; on the other hand, simple harmonic regression
fits for any data sampled at t = 1, . . . , 10 will be the same using ω2 as using ω1.

These aliasing relations have analogues in the DFT. They imply that10 the second
half of the components of the DFT, those for which ωk >

1
2
, are redundant with the

first. Plots of the periodogram therefore correspond to frequencies only up to ωk = 1
2
.

10This assumes the data are real numbers. It is occasionally useful, instead, to examine data that
consist of complex numbers.
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18.3.6 Tapering reduces the leakage of power from non-Fourier
to Fourier frequencies.

The intuitive description of Fourier analysis in Section 18.2.1 left out an important
fact. If we consider the fundamental cosine and sine functions cos(2πt) and sin(2πt),
these are functions not only on [0, 1] but on the whole real line. They and all of the re-
sulting cosine and sine functions at harmonic frequencies, i.e., the functions cos(2πkt)
and sin(2πkt) for k = 1, 2, . . ., will be periodic on the interval [0, 1], meaning that
their values at x ∈ [k, k + 1] would be the same as their values x− 1 ∈ [k − 1, k]. In
particular, all of these functions satisfy

f(0) = f(1). (18.47)

The rough arguments we gave in Section 18.2.1 make the most sense for functions
that satisfy (18.47). When this constraint does not hold, it turns out that the Fourier
approximation (18.17) suffers from a failure to adequately represent f(t), which is
known as the Gibbs phenomenon. The corresponding effect when applying the DFT
to data is known as leakage.

To describe the problem of leakage, let us consider the periodogram of the cosine
function xt = cos(2πωt), for t = 1, . . . , n, which is given (for each Fourier frequency
ωj) by

I(ωj) = n|Dn(ω − ωj)|2 (18.48)

where

Dn(φ) =
sin(πnφ)

n sin(πφ)

is known as the Dirichlet kernel. If ω is a Fourier frequency, then I(ωj) has a single
spike at ωj = ω and is zero at all other Fourier frequencies ωj. In other words, in
this case the periodogram correctly finds the sole cosine component.

Details: Note that as φ→ 0, Dn(φ)→ 1
n

(by L’Hopital’s rule), so Dn(φ)
at φ = 0 is defined to be Dn(0) = 1

n
. Thus, when ωj = ω we have

I(ωj) = 1
n
. If ω is a Fourier frequency then ω − ωj has the form k

n
for

some integer k and Dn(ω − ωj) = 0 for all j except when ωj = ω.

On the other hand, when ω is not a Fourier frequency the Dirichlet kernel creates
“side lobes,” as shown in Figure 18.12, where Dn(ω − ωj) will be nonzero even for
frequencies ωj that are not immediately non-adjacent to ω. As a consequence, the
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Figure 18.12: TOP: The Dirichlet kernel D100(j/100), here plotted for values of j
ranging from -6 to 6. A continuous curve was generated by taking non-integer values
of j. BOTTOM: The periodogram I(j/100) = 100|D100(j/100)|2, after scaling by
dividing by 100.

power at frequency ω will “leak” to other frequencies in the periodogram, so that the
periodogram indicates misleadingly those other frequencies are present in the data.

The problem of leakage is very dramatic when the dynamic range of the data
is large. Dynamic range refers to the ratio of the largest to smallest positive peri-
odogram values (usually measured on the log10, or decibel, scale).

Illustration: As an illustration, consider

xt = 20 cos(2πω1t) + cos(2πω2t) (18.49)

where n = 100, ω1 = .05 and ω2 = .15. Its periodogram is shown in the top panel of
Figure 18.13. To see the second frequency it is necessary to use a log scale to plot the
periodogram, as shown in the bottom panel of Figure 18.13. Log periodogram plots
are used as defaults in many contexts. Now consider the leakage-prone variant where
we take ω1 = 1/22 rather than 1/20. Its periodogram is shown in Figure 18.14. In
this case leakage obscures the second peak almost entirely, and if the periodogram
were noisy (as it is with real data) it would be extremely difficult to see the second
peak at all. 2
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Figure 18.13: TOP: Periodogram of xt = 20 cos(2πω1t)+cos(2πω2t), where n = 100,
ω1 = .05 and ω2 = .15. BOTTOM: Log periodogram of xt. In the log scale the second
peak becomes visible.

Leakage is also a problem when there are trends, which cause large low-frequency
coefficients in the periodogram.

Example 15.2 (continued from page 530) We previously showed the log pe-
riodogram for the LFP data in Figure 18.5. The very low frequency trends cause
leakage, which obscures the higher frequencies of interest. 2

The standard solution to the problem of leakage is to force the data to satisfy
(18.47) by applying tapering. Tapering decreases bias due to leakage in spectral
density estimation by damping down the ends of the series toward zero, forcing
the series to have period equal to its length (and thus satisfying (18.47)). This is
accomplished in standard spectral analysis software. Because the beginning and end
of the tapered series have values close to zero, however, this reduces the effective
sample size of the series and therefore loses some information. It has been shown
that the use of the mean of multiple tapers can recover this information.11 Multitaper

11See Mitra and Peseran (1999), Percival and Waldon (1993), and Thomson (1982). (Percival,
D.B. and Walden, A.T. (1993) Spectral Analysis for Physical Applications: Multitaper and Conven-

tional Univariate Techniques, Cambridge University Press; Thomson, D.J. (1982) Spectrum estima-
tion and harmonic analysis, Proceedings of the IEEE, 70: 1055–96; Riedel, K.S. and Sidorenko, A.
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Figure 18.14: TOP: Periodogram of xt = 20 cos(2πω1t)+cos(2πω2t), where n = 100,
ω1 = 1/22 and ω2 = .15. BOTTOM: Log periodogram of xt. Due to leakage, the
second peak is obscured.

estimation is used as a default in some software.

18.3.7 Time-frequency analysis describes the evolution of

rhythms across time.

Up until this point, Section 18.3 has presented powerful methods for spectral analysis
of time series under the assumption of stationarity. We have emphasized that time
series should not be considered stationary when there are slowly varying trends, as
displayed in Figure 1.6 of Example 1.6 and Figure 18.1 of Example 15.2. In many
cases, however, a different kind of non-stationarity is present and, in fact, may be of
great interest: the frequency content of a signal may change across time.

Example 2.2 (continued from page 514) The spectrograms in Figure 2.2 on
page 37 displayed nicely some changes in the frequency content of EEGs across the

(1995) Minimum bias multiple taper spectral estimation, IEEE Transactions on Signal Processing,
43: 188–195. Mitra, P. and Peseran, B. (1999) Analysis of dynamic brain imaging data, Biophys.

Journal, 76: 691–708.)
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course of the experiment. Specifically, the alpha rythm appeared during an epoch in
which the subject’s eyes closed, and during induction of anesthesia. 2

Spectrograms, such as that in Example 2.2, may be created by segmenting the
observation time interval [0, T ] into a set of subintervals [0, T1], [T1, T2], . . . , [Tk, T ],
and then computing spectral density estimates within each interval. The estimated
spectrum is then plotted on the y-axis for every time interval, with time labeled
along the x-axis. The intervals must be chosen to be long enough so that there are
substantial series from which to estimate the spectrum, yet short enough that the
series may be considered stationary within each interval. Some spectrogram software
takes as a default 512 observations per interval (with corrections to this to allow for
T not being divisible by 512). Some smoothing of the spectral density estimates
across time is often incorporated. One way to smooth across time, which is available
as an option in most spectrogram software, is to choose the analysis intervals to be
overlapping.

18.4 Propagation of Uncertainty for Functions of

the Periodogram

18.4.1 Confidence intervals and significance tests may be

carried out by propagating the uncertainty from the
periodogram.

The large-sample result described by (18.40) together with the approximate inde-
pendence of I(ωj) and I(ωk), for j 6= k, provide uncertainty about the estimate of
the spectral density and also make it easy to propagate this uncertainty. Impor-
tantly, this result holds in the same form for periodograms computed with suitable
tapers. (See the brief discussion in Percival and Walden (1993, p.223), which cites
Brillinger, 1981, p. 127.) (Brillinger (1981), Time Series: Data Analysis and Theory
(Expanded Edition), Holden Day.)

Now suppose we have computed some feature of the periodogram and we want
a 95% confidence interval associated with that feature. For example, we may have
smoothed the periodogram and may want bands to represent our uncertainty. Let
m = (n−1)/2 if n is odd; n/2 if n is even. For a range of ω values, write the smoothed
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version at frequency ω in the form gω(I(ω1), . . . , I(ωm)). That is, the operation that
produced the smooth value at frequency ω is being written as a function gω of the
periodogram values. We would say that gω(I(ω1), . . . , I(ωm)) is an estimator of f(ω).
To apply propagation of error we do the following.

1. For j = 1 to J :

For i = 1, . . . , m:

generate observations Yi from an Exp(1) distribution;

define U
(j)
i = f̂(ωi)Yi, where f̂(ωi) is an estimate of f(ωi) (based on

a smoothed periodogram).

Compute W (j) = gω(U
(j)
1 , U

(j)
2 , . . . , U

(j)
m ).

2a. Set W = 1
J

∑
W (j) and then SE2 = 1

J−1

∑
(W (j)−W )2 is the squared standard

error of gω(I(ω1), . . . , I(ωm)).

2b. Let W.025 and W.975 be .025 and .975 quantiles in the sample W (1), . . . ,W (J).
Then (W.025,W.975) is an approximate 95% confidence interval (for f(ω)) asso-
ciated with gω(I(ω1), . . . , I(ωm)).

In practice, we would compute a whole set of W (j) values for different gω functions,
corresponding to different values of ω. This would give us approximate pointwise12

confidence bands on the smoothed periodogram.

In step 1 of the algorithm above an estimate f̂(ωi) (based on the smoothed pe-
riodogram) is used in place of f(ωi), because the latter is unknown and so can’t be
computed. This is usually called a bootstrap, analogously to the bootstrap proce-
dures in Chapter 9.

Example 15.2 (continued from page 530) Returning to the pair of 1 second
average LFP recordings, we noted previously, in Figures 18.1 and 18.5, the need
to detrend the time series before looking for periodicities under the assumption of
stationarity. Figure 18.6 displayed the smoothed periodograms of the detrended

12By pointwise we mean that at any given frequency ω the bands would provide a approximate
95% confidence interval. An alternative is to compute approximate simultaneous confidence bands,
meaning bands that provide approximate 95% confidence simultaneously for all ω. This may be
accomplished with a suitable adaptation of the algorithm.
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Figure 18.15: Smoothed periodogram and approximate, pointwise 95% confidence
bands, from the beginning-period LFP detrended series.
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Figure 18.16: Smoothed periodograms from beginning and end periods, overlaid.

series. Pointwise 95% confidence bands together with the smoothed periogram for
first period, obtained by propagation of uncertainty, are shown in Figure 18.15.
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We next consider whether the first and last periods have the same spectral density
(an indication of stationarity). Figure 18.16 shows the two smoothed periodogram
overlaid. A significance test may be based on the integrated squared difference
between the two smooth curves. Specifically, if f̂1(ω) and f̂2(ω) are the two spectral
density estimates, then we use

tobs =
∑

k

(f̂1(ωk)− f̂2(ωk))
2

as the test statistic. To compute a p-value under H0 = f1(ω) = f2(ω) for all ω, we
take as a “pooled” estimate

f̂(ωk) =
1

2
(f̂1(ωk) + f̂2(ωk))

for k = 1, . . . , m. We then generate a pseudo-sample of pairs of periodograms us-
ing f̂(ω) as the spectral density, and for each generated pair of periograms, apply
smoothing and compute t. We then see what fraction of the generated t values is
greater than tobs. This is our approximate p-value. In this case, we obtained p = .53,
indicating no evidence that the spectra from the two recording intervals are different.
2

18.4.2 Uncertainty about functions of time series may be
obtained from time series pseudo-data.

The method above propagates the uncertainty from the asymptotic distribution of
the periodogram to anything computed from it. If, however, an analytical technique
by-passes the periodogram a different method must be used to propagate uncertainty.
A more general idea is to use the approximate normal distributions on the coefficients,
in order to propagate the uncertainty from the DFT itself. In other words, one may
begin with the uncertainty in the DFT obtained from the data, and then apply an
inverse DFT to generate time series that behave the same as the orginal series in
the sense of having (approximately) the same spectrum. The resulting time series
pseudo-data are sometimes called surrogate data.

An efficient method of carrying out such simulations (based on “circulant embed-
ding”) is described in Percival, D.B. and Constantine, W.L. (2006) Exact simulation
of Gaussian time series from nonparametric spectal estimates with application to
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bootstrapping, Statistics and Computing, 16: 25–35. Code by these authors is avail-
able in the CRAN library of R packages, within the package fractal. See below.
As described in the Percival and Constantine paper, the method is closely related
to surrogate time series, e.g., Schreiber, T. and Schmitz, A. (2000) Surrogate time
series, Physica D, 142: 346–382. Additional “bootstrap” resampling methods for
spectral analysis, with an emphasis on theoretical results, are discussed in Chapter 9
of Lahiri, S.N. (2003) Resampling Methods for Dependent Data, Springer. We omit
detailed discussion of this topic and note only that the pseudo data generated by
this approach are normal (Gaussian), and so do not reflect any sources of uncertainty
arising from substantial non-normal variation in the data.

18.5 Bivariate Time Series

Suppose x1, x2, . . . , xn and y1, y2, . . . , yn are sequences of observations made across
time, and the problem is to describe their sequential relationship. For example,
an increase in yt may tend to occur following some increase or decrease in a linear
combination of some of the preceding xt values. This is the sort of possibility that
bivariate time series analysis aims to describe.

Example 18.2 Beta oscillations during a sensorimotor task. Brovelli et al.
(2004) recorded local field potentials from multiple sites simultaneously while a sub-
ject (a rhesus monkey) performed a Go/No-Go visuomotor task. Results were re-
ported for two monkeys. The task required the subject hold down a lever during an
interval having a randomly determined length while a stimulus appeared. On Go
trials, a reward was given if the monkey released the lever within 500 milliseconds.
The purpose of the study was to look for coordinated rhythmic activity across the
recording sites during a task that required focused attention. Of particular interest
was the range of frequencies identified as beta oscillations, which the authors took
to be 14-30 Hz. The specific question was whether local field potentials in sensory
and motor regions exhibit co-ordinated patterns within the beta range of frequen-
cies. [Brovelli, A., Ding, M., Ledberg, A., Chen, Y., Nakamura, R., and Bressler, S.
(2004), Beta oscillations in a large-scale sensorimotor cortical network: Directional
influences revealed by Granger causality. Proc. Nat. Acad. Sci., 101: 9849–9854.]
2
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The theoretical framework of such efforts begins, again, with stationarity. A
joint process {(Xt, Yt), t ∈ Z} is said to be strictly stationary if the joint distribution
of {(Xt, Yt), . . . , (Xt+h, Yt+h)} is the same as that of {(Xs, Ys), . . . , (Xs+h, Ys+h)} for
all integers s, t, h. The process is weakly stationary if each of Xt and Yt is weakly
stationary with means and covariance functions µX , γX(h) and µY , γY (h), and, in
addition, the cross-covariance function

γXY (s, t) = E((Xs − µX)(Yt − µY ))

depends on s and t only through their difference h = t− s, in which case we write it
in the form

γXY (h) = E((Xt−h − µX)(Yt − µY )).

Note that γXY (h) = γY X(−h). The cross-correlation function of {(Xt, Yt)} is

ρXY (h) =
γXY (h)

σXσY

where σX =
√

γX(0) and similarly for Yt. The cross-correlation ρXY (h) is the or-
dinary correlation between the random variable Xt−h and Yt. Just as the ordinary
correlation ρ may be interpreted as a measure of linear association between two ran-
dom variables, the cross-correlation ρ(h) may be interpreted as a measure of linear
association between two stationary processes at lag h. The cross-covariance and
cross-correlation functions are estimated by their sample counterparts:

γ̂XY (h) =
1

n

n−h∑

t=1

(xt − x̄)(yt+h − ȳ)

with γ̂XY (−h) = γ̂Y X(h), and

ρ̂(h) =
γ̂XY (h)

σ̂X σ̂Y

.

The univariate Equations (18.28)–(18.30) have immediate extensions to the bi-
variate case: if ∞∑

h=−∞
|γXY (h)| <∞

then there is a cross-spectral density function fXY (ω) for which

γXY (h) =

∫ 1
2

− 1
2

e2πiωhfXY (ω)dω (18.50)
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and

fXY (ω) =

∞∑

h=−∞
γXY (h)e−2πiωh.

The cross-spectral density is, in general, complex valued. Because γY X(h) = γXY (−h)
we have

fY X(ω) = fXY (ω). (18.51)

In Section 18.3.1 we said that a smoothed periodogram could be considered an es-
timator of the theoretical spectral density, and we based that interpretation on a
finite-sample expression (18.32), which gave the periodogram as a scaled DFT of the
sample covariance function. Similarly, an estimate f̂XY (ω) of fXY (ω) may be ob-
tained by smoothing a scaled DFT of the sample cross-covariance function γ̂XY (h).
In Section 18.5.1 we discuss the important concept of coherence, which is defined in
terms of the cross-spectral density.

18.5.1 The coherence ρXY (ω) between two series X and Y
may be considered the correlation of their ω-frequency

components.

There is a very nice way to decompose into frequencies the linear dependence between
a pair of stationary time series. This frequency-based measure of linear dependence
forms an analogy with ordinary correlation which, as we noted in Section 4.2.1,
may be interpreted as a measure of linear association. To substantiate this inter-
pretation for the ordinary correlation ρ between two random variables Y and X we
provided on page 98 a theorem concerning the linear prediction of Y from α + βX,
giving the formula for α and β that minimized the mean squared error of predic-
tion, E ((Y − α− βX)2) and showing that when these optimal values of α and β are
pluggeed in, the minimum mean squared error became

E
(
(Y − α− βX)2

)
= σ2

Y (1− ρ2), (18.52)

which was Equation (4.11).

In Equation (18.52) we considered the linear prediction of Y based on X, meaning
the prediction of Y based on a linear function of X. The analogous problem for
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{(Xt, Yt), t ∈ Z} is to assume

Yt =
∞∑

h=−∞
βhXt−h +Wt, (18.53)

where Wt is a stationary process independent of {Xt}, with E(Wt) = 0 and V (Wt) =
σ2

W , and to minimize the mean squared error

MSE = E

(

Yt −
∞∑

h=−∞
βhXt−h

)2

. (18.54)

Some manipulations show that the solution satisfies

minMSE =

∫ 1
2

− 1
2

fY (ω)(1− ρXY (ω)2)dω (18.55)

where

ρXY (ω)2 =
|fXY (ω)|2
fX(ω)fY (ω)

. (18.56)

is the squared coherence. Thus, in analogy with (18.52), fY (ω)(1− ρXY (ω)2) is the
ω-component of the minimum-MSE fit of (18.53). In (18.55) we have MSE ≥ 0
and fY (ω) ≥ 0, which together imply that 0 ≤ ρXY (ω)2 ≤ 1 for all ω, and when

Yt =
∞∑

h=−∞
βhXt−h

we have ρXY (ω)2 = 1 for all ω. These facts, together with (18.55), give the in-
terpretation that the squared coherence is a frequency-based analogue to squared
correlation between two theoretical time series.

Additional details: The interpretation of coherence in terms of correlation
may be pushed further. In defining the cross-spectral spectral density we
mentioned that it is complex valued. Let θ(fXY (ω)) be the phase of
fXY (ω), which we may write in terms of the real and imaginary parts of
fXY (ω),

θ(fXY (ω)) = arctan
Im(fXY (ω))

Re(fXY (ω))
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so that
fXY (ω) = |fXY | exp (iθ(fXY (ω))) .

The function θ(fXY (ω)) is often called the phase coherence. The coherence
is then the complex-valued function defined by

ρXY (ω) =
fXY (ω)

√

fX(ω)fY (ω)
.

This complex-valued coherence contains phase information, which is nec-
essary when considering the tendency of two signal components at fre-
quency ω to vary together. In the extreme case, two cosine functions with
frequency ω have correlation 1 when they are in phase and correlation 0
when they are out of phase by a phase difference of π/2. Now suppose
we band-pass filter (see Section 18.3.4) the stationary time series {Xt}
and {Yt} within a small window (ω − h, ω + h) to get the filtered series
{X∗

t (ω, h)} and {Y ∗
t (ω, h)}. Then, for small h, the magnitude |ρXY (ω)|

is approximately equal to the correlation of {X∗
t (ω, h)} and {Y ∗

t (ω, h)},
maximized over phase shifts of one series relative to the other. This pro-
vides a strong sense in which the squared coherence may be considered
the squared correlation at a given frequency. Making these statements
precise requires techniques that are beyond the scope of our presentation
here. See Brockwell and Davis (1991) and Ombao and Van Bellgram
(2008). (Brockwell, P.J. and Davis, R.A. (1991) Time Series: Theory
and Methods, 2nd Ed., Springer. Ombao, H. and Van Bellgram, S. (2008)
Evolutionary coherence of nonstationary signals. IEEE Transactions Sig-
nal Proc.) 2

From a pair of observed time series the squared coherence may be estimated by

ρ̂2
XY (ω) =

|f̂XY (ω)|2
f̂X(ω)f̂Y (ω)

(18.57)

where, again, f̂XY (ω) is a smoothed version of the DFT of γ̂XY (h). However, the
smoothing in this estimation process is crucial. The raw cross-periodogram IXY (ω)
satisfies the relationship

|IXY (ω)|2 = IX(ω)IY (ω)

so that plugging the raw periodograms into (18.57) will always yield the value 1.
Thus, again, it is imperative to smooth periodograms before interpreting them.
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Example 18.2 (continued from page 557) Brovelli et al. collected approx-
imately 900 successful Go trials, using data from 90 milliseconds prior to stimulus
onset to 500 milliseconds after onset. They subtracted out the trial-averaged signals
to produce approximately stationary multiple time series. To look for the presence
of beta oscillations in sensorimotor cortex they recorded from 6 sites in one animal
and 4 in another. The sites are shown in Figure 18.17. The sites shown in part A of
the figure appear to be in (1) the arm area of primary motor cortex (M1), (2) the
arm area of sensory cortex (S1), (3) anterior intraparietal cortex (AIP, object and
hand shape representation), (4) lateral intraparietal cortex (used in guiding saccades
and identifying visual locations), (5) ventral premotor cortex, (6) dorsal premotor
cortex. In part B of the figure the sites appear to be in (1) the wrist area of M1 or
ventral premotor cortex, (2) the wrist area of S1, (3) AIP, (4) medial intraparietal
cortex (related to goals or targets of intended reach).

The authors computed squared coherence as in (18.56) for ω in the beta range,
then found the maximum squared coherence across all values of ω, and performed a
permutation significance test (see Section 11.2.1) to see whether that maximum was
sufficiently large to form clear evidence of underlying coherence in LFP across brain
regions. Their results are depicted on the left side of Figure 18.17. The authors
found that primary motor cortex (M1, site 1 in both monkeys), primary sensory
cortex (S1, site 2), and anterior intraparietal cortex (AIP, site 3) were all engaged in
coherent oscillatory activity during the task. 2

18.5.2 Granger causality measures the linear predictability
of one time series by another.

The squared coherence provides a frequency-based measure of linear association be-
tween two time series. Just as the correlation Cor(X, Y ) is symmetrical in its argu-
ments X and Y , so too is the squared coherence. In contrast, regression is directional.
We now develop a simple directional assessment of linear predictability of one time
series from another.

The idea is very simple. In ordinary regression we assess the influence of a variable
(or set of variables) X2 on Y in the presence of another variable (or set of variables)
X1 by examining the reduction in variance when we compare the regression of Y on
(X1, X2) with the regression of Y on X1 alone. If the variance is reduced sufficiently
much, then we conclude that X2 helps explain (predict) Y . Here, we replace Y with
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Figure 18.17: Figure from Brovelli et al. showing coherence and Granger causality
among 6 recording sites in one monkey (part A) and 4 in another (part B). On the left
are lines representing statistically significant coherence between a pair of sites (p <
.005 based on a permutation test with a correction for multiple comparisons), with
thickness indicating the magnitude of coherence as shown on the scale graphic in the
middle of the figure. On the right are lines, some of which have arrows, representing
statistically significant Granger causality, with magnitudes again indicated by line
thickness as shown on the scale graphic in the middle of the figure. Recording sites
are shown above and below the scale graphic.

Yt, replace X1 with {Ys, s < t} and X2 with {Xs, s < t}. In other words, we examine
the additional contribution to predicting Yt made by the past observations of Xs

after accounting for the autocorrelation in {Yt}. The “causality” part comes when
the past of Xs helps predict Yt but the past of Ys does not help predict Xt.

Let us begin by defining what it means for {(Xt, Yt), t ∈ Z} to follow a joint
AR(p) process. Working by analogy with the definition (18.27), we write

(
Xt

Yt

)

=

p
∑

i=1

(
φXX

i φXY
i

φY X
i φY Y

i

)(
Xt−i

Yt−i

)

+

(

W
X|XY
t

W
Y |XY
t

)

(18.58)

where W
X|XY
t and W

Y |XY
t are independently N(0, σ2

X|XY ) and N(0, σ2
Y |XY ). The
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notational superscripts and subscripts X|XY and Y |XY are used to indicate vari-
ables or variances for the joint AR(p) model (18.58), in which both X1, . . . , Xt−p and
Y1, . . . , Yt−p appear on the right-hand side. This is in contrast to the usual univariate
AR(p) models for {Yt, t ∈ Z},

Yt =

p
∑

i=1

φY
i Yt−i +W Y

t , (18.59)

where W Y
t are independently N(0, σ2

Y ), and for {Xt, t ∈ Z},

Xt =

p
∑

i=1

φX
i Xt−i +WX

t , (18.60)

where WX
t are independently N(0, σ2

X). We may now say that {Xt, t ∈ Z} is pre-
dictive of {Yt, t ∈ Z} if σY |XY < σY . In this situation, {Xt, t ∈ Z} is also said to be
Granger causal of {Yt, t ∈ Z}. Similarly, we say {Yt, t ∈ Z} is predictive (Granger
causal) of {Xt, t ∈ Z} if σX|XY < σX . This kind of predictability is often quantified
by the Granger causality measure

FX→Y = 2 log
σY

σY |XY
.

Theoretical analysis of this approach was given by Geweke (1982) (Geweke (1982,J.
Amer. Statist. Assoc.), based on earlier work by Granger.13

In applications, to evaluate whether a time series xt, t = 1, . . . , n is predictive of
yt, t = 1, . . . , n, the basic procedure is to (1) fit a bivariate AR(p) model, then (2) test
the hypothesis H0 : φY X

i = 0 for all i, which is equivalent to testing H0 : FX→Y = 0.

Illustration As an illustration, we simulated a bivariate time series of length 1000
using the model

Xt = .5Xt−1 + Ut

Yt = .2Yt−1 + .5Xt−1 + Vt

13In addition, Geweke (1982) defined a spectral measure fX→Y (ω) representing the ω-component
of Granger causality in the sense that

FX→Y =

∫ 1
2

− 1
2

fX→Y (ω)dω.



18.5. BIVARIATE TIME SERIES 565

where Ut ∼ N(0, (.2)2) and Vt ∼ N(0, (.2)2), independently. We then fit a linear
regression model of the form

Yt = β0 + β1Yt−1 + β2Xt−1 + ǫt

and, similarly, fit another model of the same form but with the roles of X and Y
reversed. The results for the two regressions are shown in the following two tables.

Variable Coefficent Std. Err. t-ratio p-value
Intercept -.001 .006 -.211 .83
xt−1 .496 .012 42.7 < 10−15

yt−1 .192 .018 10.7 < 10−15

Variable Coefficent Std. Err. t-ratio p-value
Intercept .008 .016 .536 .59
xt−1 .508 .029 17.1 < 10−15

yt−1 -.055 .045 -1.3 .228

As expected, the first fit indicates that Xt−1 provides additional information beyond
Yt−1 in predicting Yt, while the second fit shows that Yt−1 does not provide additional
information beyond Xt−1 in predicting Xt. This is sometimes summarized by saying
Xt is causally related to Yt, but we must keep in mind that “causal” is used in a
predictive, time-directed sense. 2

This illustration sweeps under the rug the selection of auto-regressive order p in
part of the problem, in step (1) above. In applications this is non-trivial, and care
should be taken to make sure interpretations do not depend on choices of p that
involve substantial uncertainty.

Example 18.2 (continued from page 562) Results of Brovelli et al. based on
coherence analysis were discussed on page 562 and were displayed on the left-hand
side of Figure 18.17. Those authors went on to fit an AR(6) model to the data from
the first monkey and an AR(4) model to the data from the second monkey. They
did not say why they chose these particular AR orders, but presumably they applied
criteria such as AIC or BIC (11.1.6) and felt these models provided suitable fits.
They then applied Granger causality14 analysis, which allowed them to produce the

14They used the spectral decomposition mentioned in the footnote on page 564 to plot the fre-
quency representation of Granger causality, found its peak, and performed a permutation test
analogously to what they had done in analyzing coherence.
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additional directional interpretations shown on the right-hand side of Figure 18.17.
In particular, beta rhythms in primary sensory cortex (site 2 in both monkeys) were
predictive of the rhythms in other locations, while primary motor cortex (site 1)
tended to be predicted by both sensory and AIP signals and was itself only weakly
predictive of signals at other sites. 2



Chapter 19

Point Processes

c©2010 SPRINGER SCIENCE+BUSINESS MEDIA, LLC. All rights reserved. No
part of this work may be reproduced in any form without the written permission of
SPRINGER SCIENCE+BUSINESS MEDIA, LLC.

A major theme of this book is the use of probability to describe variation. In
Chapter 3 we considered events, which led to our description of variation using
probability distributions, and in Chapter 18 we examined sequences of temporally-
dependent observations, which were modeled as time series. Spike trains, however,
don’t quite fit into any of the molds we have constructed in the foregoing chapters.
They are sequences of varying event times, times at which action potentials (spikes)
occur—in repeated trials the spike times typically vary, as may be seen in Figure 1.1
of Example 1.1. To handle such sequences of event times we invoke a special class of
models called point processes. As we discuss in Section 19.3.4, the tools needed for
fitting point processes to spike train data are generalized linear models (Chapter 14)
and nonparametric regression (Chapter 15).

The name “point process” reflects the localization of the events as points in time
together with the notion that the probability distributions evolve across time accord-
ing to a stochastic process. Point processes can be more general, so that the points
can lie in a higher-dimensional physical or abstract space. In PET imaging, for exam-
ple, a radioisotope that has been incorporated into a metabolically active molecule is
introduced into the subject’s bloodstream and after these molecules become concen-
trated in specific tissues the radioisotopes decay, emitting positrons which may be

567
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detected. These emissions represent a four-dimensional spatiotemporal point process
because they are localized occurrences both spatially, throughout the tissue, and in
time. Here, however, we focus on point processes in time and their application to
modeling spike trains.

The simplest point processes are Poisson processes, which are memoryless in the
sense that the probability of an event occuring at a particular time does not depend
on the occurrence or timing of past events. In Section 19.2.1 we discuss homogeneous
Poisson processes, which can describe highly irregular sequences of event times that
have no discernable temporal structure. When an experimental stimulus or behavior
is introduced, however, time-varying characteristics of the process become important.
In Section 19.2.2 we discuss Poisson processes that are inhomogeneous across time.
In Section 19.3 we describe ways that more general processes can retain some of the
elegance of Poisson processes while gaining the ability to describe a rich variety of
phenomena.

Spike trains are fundamental to information processing in the brain, and point
processes form the statistical foundation for distinguishing signal from noise in spike
trains. We have already seen in Chapters 14 and 15 examples of spike train analysis
using Poisson regression with spike counts. For this purpose the Poisson regression
model may be conceptualized as involving counts observed over time bins of width
∆t based on a neural firing rate FR. In Poisson regression, each Poisson distribution
has mean equal to FR ·∆t and then FR is related to the stimulus (or the behavior)
by a formula we may write in short-hand as

logFR = stimulus effects, (19.1)

meaning that logFR is some function that is determined by the stimulus or behav-
ior. In Example 14.5, for instance, the right-hand side of (19.1) involved a quadratic
function that represented the effective distance of a rat from the preferred location
of a particular hippocampal place cell, and the result was a Poisson regression model
of the place cell’s activity. This sort of model may be considered a kind of simplified
prototype. When we let the time bins get sufficiently small the spike counts become
binary (0 or 1). In the limit, as we will explain, FR in (19.1) becomes the instanta-
neous firing rate and the Poisson regression model becomes a Poisson point process
model.

Poisson processes are important, and they are especially useful for analyzing the
trial-averaged firing rate. When, in Example 15.1, we displayed the smoothed PSTH
under two experimental conditions, we were comparing two trial-averaged firing-rate
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functions. We spell this out in Section 19.3.3. On the other hand, many phenomena
can only be studied within trials. For instance, oscillatory behavior, bursting, and
some kinds of influences of one neuron on another show substantial variation across
trials and may be difficult or impossible to detect from across-trial summaries like
the PSTH. Careful examination of spike trains within trials usually reveals non-
Poisson behavior: neurons tend not to be memoryless, but instead exhibit effects of
their past history of spiking (e.g., of recent burst activity). Non-Poisson models that
incorporate history effects are described in Section 19.3, and methods developed in
that section produce within-trial analyses of spike trains. In such cases Equation
(19.1) must be modified by including additional terms on the right-hand side to
reflect effects that occur differently on each trial. For instance, a firing-rate model
might have the form

logFR = stimulus effects + history effects + coupling effects. (19.2)

In Section 19.3.4 we indicate how spike train data may be analyzed by fitting models
suggested by conceptualizations like (19.2), again using the methods developed in
Chapters 14 and 15.

19.1 Point Process Representations

19.1.1 A point process may be specified in terms of event

times, inter-event intervals, or event counts.

If s1, s2, . . . , sn are times at which events occur within some time interval we may
take xi = si − si−1, i.e., xi is the elapsed time between si−1 and si, and define
x1 = s1. This gives the inter-event waiting times xi from the event times and we
could reverse the arithmetic to find the event times from a set of inter-event waiting
times x1, . . . , xn using sj =

∑j
i=1 xi. In discussing point processes, both of these

representations are useful. In the context of spike trains, s1, s2, . . . , sn are the spike
times, while x1, . . . , xn are the inter-spike intervals (ISIs). Nearly all of our discussion
of event-time sequences will involve modeling of spike train behavior.

To represent the variability among the event times we letX1, X2, . . . be a sequence
of positive random variables. Then the sequence of random variables S1, S2, . . . de-
fined by Sj =

∑j
i=1Xi is a point process on (0,∞). In fitting point processes to data
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Figure 19.1: Multiple specifications for point process data: the process may be specified
in terms of spike times, waiting times, counts, or discrete binary indicators.

we instead consider finite intervals of time over which the process is observed, and
these are usually taken to have the form (0, T ], but for many theoretical purposes it
is more convenient to assume the point process ranges across (0,∞).

Another useful way to describe a set of event times is in terms of the counts of
events observed over time intervals. The event count in a particular time interval may
be considered a random variable. For theoretical purposes it is helpful to introduce
a function N(t) that counts the total number of events that have occurred up to
and including time t. N(t) is called the counting process representation of the point
process. See Figure 19.1. If we let ∆N(t1,t2] denote the number of events observed in
the interval (t1, t2], then we have ∆N(t1,t2) = N(t2) − N(t1). The count ∆N(t1,t2] is
often called the increment of the point process between t1 and t2. In the case of a
neural spike train, Si would represent the time of the ith spike, Xi would represent
the ith inter-spike interval (ISI), and ∆N(t1,t2] would represent the spike count in the
interval (t1, t2]. For event times Si and inter-event waiting times Xi we are dealing
with mathematical objects that are already familiar, namely sequences of random
variables, with the index i being a positive integer. The counting process, N(t),
on the other hand, is a continuous-time stochastic process, which determines count
increments that are random variables.

Keeping track of the times at which the count increases is equivalent to keeping
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track of increments. Furthermore, for successive spike times si and si+1,if we set
t1 = si and consider t2 < si+1 then ∆N(t1,t2] = 0 but when t2 = si+1 then ∆N(t1,t2] =
1. Thus, keeping track of the times at which the count increases is equivalent to
keeping track of events themselves and, therefore, the counts provide a third way to
characterize a point process.

As an example of the way we may identify the event times with the counting
process, the set of times for which the counting process is less than some value j,
{t : N(t) < j}, is equivalent to the set of times for which the jth spike has not yet
occurred, {t : Sj > t}. Both of these representations express the set of all times that
precede the jth spike, but they do so differently. We can describe a point process
using spike times, interspike intervals, or counting processes and specifying any one
of these fully specifies the other two. It is often possible to simplify theoretical
calculations by taking advantage of these multiple equivalent representations.

19.1.2 A point process may be considered, approximately,

to be a binary time series.

At the beginning of the chapter we said that point process data are analyzed using
the framework of generalized linear models. This requires the discrete representation
given at the bottom of Figure 19.1. The event times, inter-event intervals, and
counting process all specify the point process in continuous time. Suppose we take
an observation interval (0, T ] and break it up into n small, evenly-spaced time bins.
Let ∆t = T/n, and ti = i · ∆t, for i = 1, ..., n. We can now consider the discrete
increments ∆Ni = N(ti) − N(ti−1), which count the number of events in a single
bin. If we make ∆t small enough, it becomes extremely unlikely for there to be
more than one event in a single bin. The set of increments {∆Ni; i = 1, ..., n} then
becomes a sequence of 0s and 1s, with the 1s indicating the bins in which the events
are observed (see Figure 19.1). In the case of spike trains, data are often recorded in
this form, with ∆t = 1 millisecond. To emphasize the point we define Yi = ∆Ni and
put pi = P (Yi = 1) so that Yi ∼ Bernoulli(pi). The Yis form a binary time series,
that is, a sequence of Bernoulli random variables that may be inhomogeneous (the
pi may be different) and/or dependent. Such a discrete-time process is yet another
way to represent a point process, at least approximately. It loses some information
about the precise timing of events within each bin, but for sufficiently small ∆t this
loss of information becomes irrelevant for practical purposes. Also, for small ∆t
we have small pi and the Bernoulli distributions may be approximated by Poisson
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distributions, according to the result in Section 5.2.2. In other words, for small ∆t
we may consider the point process to be essentially a sequence of Poisson random
variables. This will allow us to use Poisson regression methods (which are part of
generalized linear model methodology) in analyzing data modeled as point processes.
The rest of this chapter is largely devoted to filling in the details and fleshing out
the consequences, thereby supplying the substance behind the informal statements
(19.1) and (19.2).

19.1.3 Point processes can display a wide variety of history-
dependent behaviors.

In many stochastic systems, past behavior influences the future. The biophysical
properties of ion channels, for example, make it impossible for a neuron to fire again
immediately following a spike, creating a short interval known as the absolute re-
fractory period. In addition, after the absolute refractory period there is a relative
refractory period during which the neuron can fire again, but requires stronger input
in order to do so. These refractory effects are important cases of history dependence
in neural spike trains. To describe spike train variability accurately (at least for mod-
erate to high firing rates where the refractory period is important), the probability
of a spike occurring at a given time must depend on how recently the neuron has
fired in the past. A more complicated history-dependent neural behavior is bursting,
which is characterized by short sequences of spikes with small interspike intervals.
In addition, spike trains are sometimes oscillatory. For example, neurons in the CA1
region of rodent hippocampus tend to fire at particular phases of the EEG theta
rhythm. Thus, in a variety of settings, probability models for spike trains make
dependence on spiking history explicit.

Example 19.1 Retinal ganglion cell under constant conditions Neurons in
the retina typically respond to patterns of light displayed over small sections of the
visual field. When retinal neurons are grown in culture and held under constant
light and environmental conditions, however, they will still spontaneously fire ac-
tion potentials. In a fully functioning retina, this spontaneous activity is sometimes
described as background firing activity, which is modulated as a function of visual
stimuli. Figure 19.2 shows the spiking activity of one such neuron firing sponta-
neously over a period of 30 seconds. (Levine, M.W. (1991). The distribution of
intervals between neural impulses in the maintained discharges of retinal ganglion
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Figure 19.2: Spontaneous spiking activity of a goldfish retinal neuron in culture under
constant light and environmental conditions over 30 seconds. (A) Retinal ganglion
cell (taken from web, may be copyrighted) (B) Histogram of interspike intervals and
(C) spike train, from a retinal ganglion cell under constant conditions.
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cells. Biol. Cybern., 65: 459-467; Iyengar, S., and Liao, Q. (1997). Modeling neural
activity using the generalized inverse Gaussian distribution. Biol. Cyber., 77, 289-
295.) Even though this neuron is not responding to any explicit stimuli, we can still
see structure in its firing activity. Although most of the ISIs are shorter than 20 msec,
some are much longer: there is a small second mode in the histogram around 60-120
milliseconds. This suggests that the neuron may experience two distinct states, one
in which there are bursts of spikes (with short ISIs) and another, more quiescent
state (with longer ISIs). From Figure 19.2 we may also get an impression that there
may be bursts of activity, with multiple spikes arriving in quick succession of one
another. 2

Example 19.2 Spatiotemporal correlations in visual signalling To better
understand the role of correlation among retinal ganglion cells, Pillow et al. (2008,
Nature) examined 27 simultaneously-recorded neurons from an isolated monkey retina
during stimulation by binary white noise. The authors used a model having the form
of (19.2). They concluded, first, that spike times appear more precise when the spik-
ing behavior of coupled neighboring neurons is taken into account and, second, that
in predicting (decoding) the stimulus from the spike trains inclusion of the coupling
term improved prediction by 20% compared with a method that ignored coupling
and instead assumed independence among the neurons. 2

19.2 Poisson Processes

19.2.1 Poisson processes are point processes for which event

probabilities do not depend on occurrence or timing
of past events.

The discussion in Section 19.1.3 indicated the importance of history dependence in
spike trains. On the other hand, a great simplification is achieved by ignoring history
dependence and, instead, assuming the probability of spiking at a given time has no
relationship with previous spiking behavior. This assumption leads to the class of
Poisson processes, which are very appealing from a mathematical point of view:
although they rarely furnish realistic models for data from individual spike trains,
they are a pedagogical—and often practical—starting point for point processes in
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much the way that the normal distribution is for continuous random variables. As
we shall see below, it is not hard to modify Poisson process models to make them
more realistic.

Two kinds of Poisson processes must be distinguished. When event probabilities
are invariant in time Poisson processes are called homogeneous; otherwise they are
called inhomogeneous. We begin with the homogeneous case.

Definition: A homogeneous Poisson process with intensity λ is
a point process satisfying the following conditions:

1. For any interval, (t, t + ∆t], ∆N(t,t+∆t] ∼ P (µ) with µ =
λ∆t.

2. For any non-overlapping intervals, (t1, t2] and (t3, t4],
∆N(t1,t2] and ∆N(t3,t4] are independent.

For spike trains, the first condition states that for any time interval of length ∆t,
the spike count is a Poisson random variable with mean µ = λ ·∆t. In particular, the
mean, which is the expected number of spikes in the interval, increases in proportion
to the length of the interval. Furthermore, the distribution of the spike count depends
on the length of the interval, but not on its starting time: ∆N(t,t+h] has the same
distribution as ∆N(s,s+h] for all positive values of s, t, h. This homogeneous process
is time-invariant, and is said to have stationary increments. The second condition
states that the spike counts (the counting process increments) from non-overlapping
intervals are independent. In other words, the distribution of the number of spikes
in an interval does not depend on the spiking activity outside that interval. Another
way to state this definition is to say that a homogeneous Poisson process is a point
process with stationary, independent increments.

A detail: There is one technical point to check: we need to be sure that
the distributions of overlapping intervals, given in the definition above,
are consistent. For example, if we consider intervals (t1, t2) and (t2, t3)
we must be sure that the Poisson distributions for the counts in each of
these are consistent with the Poisson distribution for the count in the
interval (t1, t3). Specifically, in this case, we must know that the sum of
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two independent Poisson random variables with means µ = λ(t2−t1) and
µ = λ(t3 − t2) is a Poisson random variable with mean µ = λ(t3 − t1).
But this follows from the fact that if W1 ∼ P (µ1) and W2 ∼ P (µ2)
independently, and we let W = W1 +W2, then W ∼ P (µ1 +µ2). We omit
the details.

We now come to an important characterization of homogeneous Poisson processes.

Theorem: A point process is a homogeneous Poisson process with intensity λ if
and only if its inter-event waiting times are i.i.d. Exp(λ).

Proof: We derive the waiting-time distribution for a homogeneous Pois-
son process. Recalling that Xi is the length of the inter-event interval
between the (i − 1)st and ith event times, we have Xi > t precisely
when ∆N(Si−1,Si−1+t] = 0. From the definition of a homogeneous Pois-
son process, P

(
∆N(Si−1,Si−1+t] = 0

)
= e−λt. Therefore, the CDF of Xi is

FXi
(t) = P (Xi ≤ t) = 1− e−λt, which is the CDF of an Exp(λ) random

variable.

The converse of this theorem involves additional calculations and is omit-
ted. 2

Recall from Section 5.4.2 that the exponential distribution is memoryless. Ac-
cording to this theorem, for a homogeneous Poisson process, at any given moment
the time at which the next event will occur does not depend on past events. Thus,
the homogeneous Poisson process “has no memory” of past events.

Another way to think about homogeneous Poisson processes is that the event
times are scattered “as irregularly as possible.” One characterization of the “irreg-
ularity” notion is that, as noted on page 142, the exponential distribution Exp(λ)
maximizes the entropy among the entropy among all distributions on (0,∞) having
mean µ = 1/λ. Here is another.

Result: Suppose we observe N(T ) = n events from a homogeneous Poisson
process on an interval (0, T ]. Then the distribution of the event times is the same as
that of a sample of size n from a uniform distribution on (0, T ].

Proof: This appears as a corollary to the theorem on page 584, where it is also
stated more precisely. 2
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Figure 19.3: A sequence of MEPSC event times. The inter-event intervals are highly
irregular.

Example 19.3 Miniature excitatory post-synamptic currents Figure 19.3
displays event times of miniature excitatory postsynaptic currents (MEPSCs) recorded
from neurons in neonatal mice at multiple days of development. To record these
events the neurons are patched clamped at the cell body and treated so that they
cannot propagate action potentials. These MEPSCs are thought to represent random
activations of the dendritic arbors of the neuron at distinct spatial locations, so that
the two assumptions of a Poisson process are plausible. The sequence of events in
Figure 19.3 looks highly irregular, with no temporal structure. Figure 19.4 displays
a histogram of the intervals between MEPSC events. The distribution of waiting
times is captured well by an exponential fit, as shown both in left panel of Figure
19.4 and in the P-P plot, in the right panel, which compares1 the empirical CDF to
that of an exponential. 2
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Figure 19.4: Histogram and P-P plot of MEPSC inter-event intervals. LEFT: Over-
laid (in gray) on the histogram is an exponential pdf. RIGHT: P-P plot falls within
diagonal bands, indicating no lack of fit according to the Kolmogorov-Smirnov test
(discussed in Chapter 10).

1The small deviation of the curve from the diagonal in the lower left-hand corner of the P-P
plot is probably due to inaccuracy of measurement for very short inter-event intervals.
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Important intuition may be gained by considering a discrete time representation
of a sequence of event times, as discussed in Section 19.1.2. Suppose we have an
observation interval (0, T ] and we consider partitioning (0, T ] into successive time
bins of width ∆t. If we make ∆t sufficiently small we can force to nearly zero
the probability of getting more than 1 event in any time bin. We then ignore the
possibility of getting more than 1 event in any bin and, as in Section 19.1.2, we then
let Yi be the binary random variable that indicates whether an event has occurred
in the ith time bin with P (Yi = 1) = pi, for i = 1, . . . , n (so that there are n
time bins and T = n∆t). Each Yi is a Bernoulli(pi) random variable. If these
Bernoulli random variables are homogeneous (p1 = p2 = · · · = pn = p for some p)
and independent, so that they form Bernoulli trials, then we have

1. For the ith time bin (i∆t, (i+ 1)∆t], ∆N(i∆t,(i+1)∆t) ∼ Bernoulli(p).

2. For any two distinct time bins, (i∆t, (i+1)∆t] and (j∆t, (j+1)∆t], ∆N(i∆t,(i+1)∆t)

and ∆N(j∆t,(j+1)∆t) are independent.

Let us now put λ = p/∆t and use the Poisson approximation to the binomial dis-
tribution (see Section 5.2.2) as ∆t → 0. The two properties above then become
essentially (for sufficiently small ∆t) the same as the two properties in the definition
of a Poisson process, given on page 575. Therefore, leaving aside some mathematical
details (see (19.8)), we may say that the sequence of Bernoulli trials converges to a
Poisson process as ∆t→ 0. That is, a homogeneous Poisson process is essentially a
sequence of Bernoulli trials. We used this idea repeatedly in interpreting the Poisson
distribution in Section 5.2. Rewriting µ = p/∆t as p = λ∆t and replacing ∆t with
the infinitesimal dt we obtain the shorthand summary

P (event in (t, t+ dt]) = λdt. (19.3)

We extend the fundamental connection between Bernoulli random variables and
Poisson processes (and therefore also Poisson distributions) to the inhomogeneous
case in Section 19.2.2.
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19.2.2 Inhomogeneous Poisson processes have time-varying
intensities.

We made two assumptions in defining a simple Poisson process: that the increments
were (i) stationary, and (ii) independent for non-overlapping intervals. The first step
in modeling a larger class of point processes is to eliminate the stationarity assump-
tion. For spike trains, we would like to construct a class of models where the spike
count distributions vary across time. In terms of the Bernoulli-trial approximation,
we wish to allow the event probabilities pi to differ.

Definition: An inhomogeneous Poisson process with intensity
function λ(t) is a point process satisfying the following condi-
tions:

1. For any interval, (t, t + ∆t], ∆N(t,t+∆t] ∼ P (µ) with µ =
∫ t2

t1
λ(t)dt.

2. For any non-overlapping intervals, (t1, t2] and (t3, t4],
∆N(t1,t2] and ∆N(t3,t4] are independent.

This process is called an inhomogeneous Poisson process because it still has Pois-
son increments but each increment has its own mean, determined by the value of
the rate function over the interval in question. The inhomogeneous Poisson process
is no longer stationary, but its increments remain independent and, as a result, it
retains the memoryless property, according to which the probability of spiking at
any instant does not depend on occurrences or timing of past spikes. In shorthand
notation we modify (19.3) by writing

P (event in (t, t+ dt]) = λ(t)dt. (19.4)

At the beginning of the chapter we said that point process data are analyzed
using the framework of generalized linear models, and in Section 19.1.2 we identified
as a key step the representation of a point process as a binary time series, at least
approximately. To take this step we need to equate, at least approximately, the
point process likelihood function and the likelihood function for a suitable binary
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time series. In general, a likelihood function is proportional to the joint pdf of the
data. Suppose we have observed event times s1, . . . , sn. We assume these arise as
observed values of random variables S1, . . . , SN(T ), where N(T ) is the number of event
times in (0, T ] and is itself a random variable. We write the joint pdf of s1, . . . , sn as
fS1,...,SN(T )

(s1, ..., sn), where we acknowledge in our subscript notation2 that N(T ) is
also a random variable (taking the value N(T ) = n in data consisting of n events).
Now suppose this joint pdf depends on some parameter vector θ. The likelihood
function becomes

L(θ) = fS1,...,SN(T )
(s1, ..., sn|θ). (19.5)

In Example 14.5, for instance, we could consider the spike times to follow an inho-
mogeneous Poisson process and the parameter vector in (19.5) would consist of the
parameters characterizing the spatial place cell distribution, θ = (µx, µy, σx, σy, σxy).
To get a formula for the likelihood function, the mathematical result we need is the
formula for the joint pdf of the spike times. To be sure we can treat the problem,
equivalently, for practical purpose, as a binary time series we also need a statement
that the joint pdf of the spike times is approximately equal to the joint pdf for the
binary time series. We provide both of these results below. We then also present an
additional fact about inhomogeneous Poisson processes that aids intuition.

We begin with the joint pdf.

Theorem The event time sequence S1, S2, . . . , SN(T ) from a
Poisson process with intensity function λ(t) on an interval (0, T ]
has joint pdf

fS1,...,SN(T )
(s1, ..., sn) = exp

{

−
∫ T

0

λ(t)dt

} n∏

i=1

λ(si). (19.6)

Details: To derive (19.6) we need a lemma.

Lemma The pdf of the ith waiting-time distribution is

fSi
(si|Si−1 = si−1) = λ(si) exp

{

−
∫ si

si−1

λ(t)dt

}

. (19.7)

2A more explicit notation would be fS1,...,SN(T),N(T )(S1 = s1, ..., SN(T ) = sn, N(T ) = n), see
page 584, where we make explicity the randomness due to N(T ).
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Proof of the lemma: Note that {Si > si|Si−1 = si−1}, is equivalent to
there being no events occur in the interval (si−1, si]. Therefore, P (Si > si|Si−1 = si−1) =

P
(
∆N(si−1,si] = 0

)
= exp

{

−
∫ si

si−1
λ(t)dt

}

, and the ith waiting time CDF

is therefore P (Si ≤ si|Si−1 = si−1) = 1−exp
{

−
∫ si

si−1
λ(t)dt

}

. The deriva-

tive of the CDF

fSi
(si|Si−1 = si−1) =

d

dsi

(

1− exp

{

−
∫ si

si−1

λ(t)dt

})

gives the desired pdf. 2

Proof of the theorem: We have

fS1,...,SN(T )
(s1, ..., sn)

= fS1(s1)fS2(s2|S1 = s2) · · ·fSN(T )
(sn|Sn−1 = sn−1) · P (∆N(sn,T ] = 0).

The factors involving waiting-time densities are given by the lemma. The
last factor is

P (∆N(sn,T ] = 0) = exp

(

−
∫ T

sn

λ(t)dt

)

.

Combining these gives the result. 2

We now give a rigorous statement that the joint pdf of the spike times is approx-
imately equal to the joint pdf for the corresponding binary time series described in
Section 19.1.2. More specifically, we show that the joint pdf in Equation (19.6) is
the limit of relevant binary pdfs as ∆t→ 0.

Let us consider a set of points s1, . . . , sn in the interval (0, T ] that, while concep-
tually representing event times, are for the purposes of the analysis below, taken to
be fixed. They represent the observed data. We will call them “atoms” because they
are points where probability mass will be placed. Suppose (0, T ] is decomposed into
N subintervals of length ∆t, so that ∆t = T/N . For i = 1, . . . , N let xi = 1 if the
ith subinterval contains one of the atoms and 0 otherwise.

Theorem Let λ(t) be a continuous function on [0, T ], set λi = λ(ti) for subin-
terval midpoints ti, and let pi = (∆t)λi. Then as ∆t→ 0 we have

1

(∆t)n

n∏

i=1

pxi

i (1− pi)
1−xi → e−

R T
0 λ(t)dt

n∏

i=1

λ(si). (19.8)
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Details: To prove this result we need two lemmas. Let S = Sn be the set
of i indices for which xi = 1 and Sc the set of indices for which xi = 0.

Lemma 1 As ∆t→ 0 we have

∏

S

λ(ti)→
n∏

i=1

λ(si).

Proof: The lemma follows immediately from continuity of λ(t). 2

Lemma 2 As ∆t→ 0 we have

∑

Sc

log(1− (∆t)λi)→ −
∫ T

0

λ(t)dt.

Proof: This involves a Taylor series expansion of the log. The details are
omitted. 2

Proof of the theorem: Putting the two lemmas together we easily prove
the theorem. We have

1

(∆t)n

N∏

i=1

pxi

i (1− pi)
1−xi =

1

(∆t)n
(
∏

S

(∆t)λi)(
∏

Sc

1− (∆t)λi)

= (
∏

S

λi)e
P

Sc log(1−(∆t)λi)

→ e−
R T
0 λ(t)dt

n∏

i=1

λ(si).

2

To recap: taken together, the two theorems above show that the inhomogeneous
Poisson process spike time joint pdf is approximately equal to a binary time series
joint pdf, which allows us to use the binary random variables Yi (with pi = P (Yi = 1))
defined in Section 19.1.2 in place of the Poisson process. The memorylessness of the
Poisson process translates into independence among the Yis. However, the values of
pi may vary across time, corresponding to the inhomogeneity of the process. Im-
portantly, we may estimate λ(t) by likelihood methods, applying Poisson regression
with suitably small time bins (e.g., having width 1 millisecond).
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Example 1.1 (continued) In Chapter 1 we introduced the SEF neuron ex-
ample, the problem being to characterize the neural response under two different
experimental conditions. In Chapter 8 we returned to the example to describe the
benefit of smoothing the PSTH, and in Chapter 15 we showed how smoothing may
be accomplished using Poisson regression splines. The smoothing model was

Yi ∼ P (λi) (19.9)

log λi = f(ti) (19.10)

where ti was the time at the midpoint of the ith time bin (of the PSTH), Yi was the
corresponding spike count in that bin, and f(t) was to be a natural cubic spline with
two knots at specified locations.

An inhomogeneous Poisson process model may be constructed with the log in-
tensity function logλ(t) assumed to be a natural cubic spline with two knots at the
same locations. The Poisson process model is different than, but very similar to the
PSTH-based regression model. To get a Poisson process model we must take the
time bins to be smaller—small enough that on any trial there is at most one spike
in any bin. For instance, we may take the bins to have width 1 millisecond. Then,
we must define the resulting binary counts: for trial r let Yri be 1 if a spike occurs
in the ith bin and 0 otherwise. We then write the model

Yri ∼ P (λi) (19.11)

log λi = f(ti) (19.12)

where, again, f(t) is a natural cubic spline with two knots at the locations specified
previously. Comparing (19.11) and (19.12) with (19.9) and (19.10) we have a model
of almost the same form. Aside from the width of the time bins, the distinction is
that (19.11) and (19.12) is a within-trial model, in terms of Yri, while (19.9) and
(19.10) is a model that pools events across trials by using the PSTH spike counts Yi.
It turns out that the intensity that results from fitting (19.11) and (19.12) is nearly
identical to the fit of f(t) resulting from (19.9) and (19.10). The closeness of results
holds quite generally because the smoothing of the PSTH is not very sensitive to
the choice of bin widths as long as the firing rate varies slowly enough to be nearly
constant within bins. Smoothing the PSTH amounts to fitting a Poisson process
after jittering all the spike times within a bin so that they are equal to the midpoint
of that bin. 2

The final theorem of this section gives another interesting way to think about
inhomogeneous Poisson processes. Let us begin by considering the PSTH, as used
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in Examples 1.1 and 15.1. The PSTH is the peristimulus time histogram. But in
what sense is it a histogram? A histogram is a plot that displays counts, as does
the PSTH, but the counts are presumed to be repeated observations from a random
variable, and the histogram is supposed to be rough estimate of the random variable’s
pdf. What are the repeated observations that generate the PSTH? And what pdf is
it estimating? The data are the event times. But, as we have already taken pains
to point out, these event times are not i.i.d. observations from a fixed distribution:
they follow a point process, which is different. How are they transformed into i.i.d.
observations that are suitable for making a histogram and estimating a pdf? While
these questions are puzzling at first, the answer turns out to be simple. According to
the next theorem, given some number n of events in an interval (0, T ], the event times
will be scattered across (0, T ] as if they were i.i.d. observations from a distribution
having as its pdf the normalized intensity λ(t). In other words, the positions of
the event times are just like i.i.d. observations; therefore, the PSTH is just like a
histogram, and could be treated as if it were an estimator of the normalized intensity
function.

To state the result, let us first recall that the length of the sequence of event
times S1, S2, . . . , SN(T ) depends on the random quantity N(T ). Thus, to be more
thorough we might write the joint pdf above in the form

fS1,...,SN(T )
(s1, ..., sn) = fS1,...,SN(T ),N(T )(S1 = s1, ..., SN(T ) = sn, N(T ) = n).

That is, the pdf on the left-hand side is really a short-hand notation for the pdf on
the right-hand side. This observation is used in the proof of the following theorem.
We will write fN(n) for the pdf of N(T ) and note that, for a Poisson process with

intensity λ(t), N(T ) ∼ P (µ) with µ =
∫ T

0
λ(t)dt.

Theorem Let S1, S2, . . . , SN(T ) be an event sequence from a Poisson process with
intensity function λ(t) on an interval (0, T ]. Conditionally onN(T ) = n, the sequence
S1, S2, . . . , Sn, has the same joint distribution as an ordered set of i.i.d. observations
from a univariate distribution having pdf

g(t) =
λ(t)

∫ T

0
λ(u)du

.
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Proof: We write the conditional pdf as

fS1,...,SN(T )
(s1, ..., sn|N(T ) = n) =

fS1,...,SN(T )
(s1, ..., sn)

fN(n)

=
e−

R T

0
λ(t)dt

∏n
i=1 λ(si)

e−
R T

0
λ(t)dt (

R T

0
λ(t)dt)

n

n!

= n!
n∏

i=1

λ(si)
∫ T

0
λ(t)dt

= n!

n∏

i=1

g(si).

Noting that there are n! ways to order the observations s1, . . . , sn, this
completes the proof. 2

The theorem says that we may consider an inhomogeneous Poisson process with
intensity λ(t) to be equivalent to a two-stage process in which we (1) generate an

observation N = n from a Poisson distribution with mean µ =
∫ T

0
λ(t)dt; this tells

us how many events are in (0, T ]; we then (2) generate n i.i.d. observations from a

distribution having g(t) = λ(t)/
∫ T

0
λ(u)du as its pdf. We motivated the theorem by

suggesting that it shows how the PSTH acts like a histogram: the intensity function
λ(t) describes the event times that come from pooling together all the spike times

across all of the trials; the PSTH then estimates λ(t)/
∫ T

0
λ(u)du. Not only does

this explain the sense in which the PSTH is actually a histogram, it also motivates
application of a density estimator (e.g., a normal kernel density estimator or Gaussian
filter), as in Section 15.4, to smooth the PSTH.

When we specialize the theorem above to homogeneous Poisson processes we get,
as a corollary, the result stated as a theorem on page 576.

Corollary Let S1, S2, . . . , SN(T ) be an event sequence from a homogeneous Pois-
son process with intensity λ on an interval (0, T ]. Conditionally on N(T ) = n, the
sequence S1, S2, . . . , Sn, has the same joint distribution as an ordered set of i.i.d.
observations from a uniform distribution on [0, T ].

Proof: This is a special case of the theorem in which λ(t) = λ so that g(t) = 1/T,
i.e., g(t) is the pdf of the uniform distribution on (0, T ]. 2
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19.3 Non-Poisson Point Processes

19.3.1 Renewal processes have i.i.d. inter-event waiting times.

The homogeneous Poisson process developed in Section 19.2.1 assumed that the point
process increments were both stationary and independent of past event history. To
accommodate event probabilities that change across time, we generalized from ho-
mogeneous to inhomogeneous Poisson processes. This eliminated the assumption of
stationary increments but it preserved the independence assumption, which entailed
history independence. Systems that produce point process data, however, typically
have physical mechanisms that lead to history-dependent variation among the events,
which cannot be explained with Poisson models. Therefore, it is necessary to further
generalize by removing the independence assumption.

The simplest kind of history-dependent behavior occurs when the probability of
the ith event depends on the occurence time of the previous event si−1, but not on
any events prior to that. If the ith waiting time Xi is no longer memoryless, then
P (Xi > t + h|Xi > t) may not be equal to P (Xi > u + h|Xi > u) when u 6= t, but
Xi is independent of event times prior to Si−1, and is therefore independent of all
waiting times Xj for j < i. Thus, the waiting time random variables are all mutually
independent. In the time-homogeneous case, they also all have the same distribution.
A point process with i.i.d waiting times is called a renewal process. We already saw
that homogeneous Poisson processes have i.i.d. exponential waiting times. There-
fore, renewal processes may be considered generalizations of homogeneous Poisson
processes.

A renewal model is specified by the distribution of the inter-event waiting times.
Typically, this takes the form of a probability density function, fXi

(xi), where xi can
take values in [0,∞). In principle we can define a renewal process using any probabil-
ity distribution that takes on positive values, but there are some classes of probability
models that are more commonly used either because of their distributional proper-
ties, or because of some physical or physiological features of the underlying process.

For example, the gamma distribution, which generalizes the exponential, may be
use when one wants to describe interspike interval distributions using two parameters:
the gamma shape parameter gives it flexibility to capture a number of characteristics
that are often observed in point process data. If this shape parameter is equal to one,
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then the gamma distribution simplifies to an exponential, which as we have shown,
is the ISI distribution of a simple Poisson process. Therefore, renewal models based
on the gamma distribution generalize simple Poisson processes, and can be used to
address questions about whether data is actually Poisson. If the shape parameter
is less than one, then the density drops off faster than an exponential. This can
be useful in providing a rough description of spike trains from neurons fire in rapid
bursts. If the shape parameter is greater than one, then the gamma density function
takes on the value zero at xi = 0, rises to a maximum value at some positive value
of xi, and then falls back to zero. This can be useful in describing relatively regular
spike trains, such as those from a neuron having oscillatory input. Thus, this very
simple class of distributions with only two parameters is capable of capturing, at
least roughly, some interesting types of history dependent structure.

While the gamma distribution is simple and flexible, it doesn’t have any direct
connection with the physiology of neurons. For neural spiking data, a renewal model
with a stronger theoretical foundation is the inverse Gaussian. As described in
Section 5.4.6, the inverse Gaussian also has two parameters and is motivated by the
integrate-and-fire conception of neural spiking behavior. Thus, a renewal process
with inverse Gaussian ISIs would be a simple yet natural model for neural activity
in a steady state.

A general result that has implications for spike train analysis is the renewal
theorem, which3 examines the expected number of events in an interval (t, t + h] as
t→∞. For a Poisson process with intensity λ we have E(∆N(t,t+h]) = λh, and the
waiting time distribution is exponential with mean µ = 1/λ. In other words, the
expected number of events in (t, t+ h] is λh = h/µ, so that the expected number of
events is just the length of the interval divided by the average waiting time for an
event. For a renewal process the same statement is approximately true for large t.

Renewal Theorem Suppose a renewal process has waiting times with a contin-
uous pdf and a mean µ. Defining λ = 1/mu we have

lim
t→∞

E(∆N(t,t+h]) = λh.

Proof: Omitted. 2

Notice that if we take h sufficiently small in the renewal theorem, the count
∆N(t,t+h] will, with high probability, be either 0 or 1 and then its expectation is

3A more general version of this result is often called Blackwell’s Theorem.
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E(∆N(t,t+h]) = P (∆N(t,t+h] = 1). Thus, if we pick a large t and ask for the probability
of an event in the infinitesimal interval (t, t + dt] by ignoring the time of the most
recent event and instead letting the renewal process start at time 0 and run until we
get to time t, we find that (19.3) continues hold.

A related result arises when we consider what happens when we combine multiple
renewal processes by pooling together all their event times. This sort of pooling oc-
curs, for example, in a PSTH when multiple spike trains are collected across multiple
trials: in making the PSTH every spike time is used but the trial on which it occurred
is ignored. Such combination of point processes is called superposition. Specifically,
if we have counting processes N i(t), for i = 1, . . . , n then N(t) =

∑n
i=1N

i(t) is the
process resulting from superposition. First, we consider the Poisson case.

Theorem For i = 1, . . . , n, let N i(t) be the counting process representation of a
homogeneous Poisson process having intensity λi. Then the point process specified by
N(t) =

∑n
i=1N

i(t) is a homogeneous Poisson process having intensity λ =
∑n

i=1 λi.

Sketch of Proof: Because the sum of independent Poisson random variables is
Poisson, condition 1 of the definition of a homogenous Poisson process is satisfied
for the superposition process. Because condition 2 is satisfied for all n independent
processes, it is also satisfied for the superposition process. 2

Result The superposition of independent renewal processes having
waiting times with continuous pdfs and finite means is, approximately,
a Poisson process.

Proof: The mathematics involved in stating this result precisely are rather
intricate. We omit the proof, but offer the following heuristics to make
the result plausible.

Suppose that the n independent renewal processes have mean waiting
times µi = 1/λi, for i = 1, . . . , n. Let us consider intervals (t, t + h],
with h so small that, with large probability, across all n processes at
most 1 event occurs. Then the superposition increments ∆N(t,t+h] are
essentially binary variables. For the superposition to be Poisson, these
binary variables must be homogeneous and independent. By the renewal
theorem, for large t,

P (∆N i
(t,t+h] = 1) ≈ λih,



19.3. NON-POISSON POINT PROCESSES 589

where λi = 1/µi and

P (∆N i
(t,t+h] = 0) ≈ 1− λih.

When we pool all the processes together, the event ∆N(t,t+h] = 1 will
occur if at least one process has an event, and otherwise ∆N(t,t+h] = 0,
which has probability

P (∆N(t,t+h] = 0) ≈ (1− λ1h)(1− λ2h) · · · (1− λnh) ≈ e−λt ≈ 1− λh

and this, in turn, shows that

P (∆N(t,t+h] = 1) ≈ λh,

as for a Poisson process, so that homogeneity holds, approximately. As far
as independence is concerned, the key point is that the renewal processes
are independent of one another, so that the only dependence in the super-
position is due to events from the same process, which are very rare among
the large numbers of events in the superposition process. That is, if we as-
sume n is so large that, for all k, P (∆N(t,t+h] = 1) >> P (∆Nk

(t,t+h] = 1),

then when we consider two non-overlapping intervals (t1, t1 + h] and
(t2, t2 + h], relative to the superposition process, the probability that
the kth process has events in both intervals is negligible. This is another
way of saying that the identity of events in the superposition gets washed
out as the number of processes increases. 2

By combining this superposition result and the renewal theorem we obtain a
practical implication: the superposition of multiple renewal processes will be ap-
proximately a Poisson process, but we can expect the approximation to be better
for large t, after initial conditions die out. If, for example, we take multiple spike
trains, and if time t = 0 has a physiological meaning related to the conditions of the
experiment, then we may expect the initial conditions to affect the spike trains in
a reproducible way from trial to trial so that even after pooling we might see non-
Poisson behavior near the beginning of the trial; as such effects dissipate across time
we would expect the pooled spike trains to exhibit Poisson-process-like variation.
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19.3.2 The conditional intensity function specifies the joint
probability density of spike times for a general point

process.

In Section 19.2.2 we described the structure of an inhomogeneous Poisson process
in terms of an intensity function that characterized the instantaneous probability of
firing a spike at each instant in time, as in (19.3). In an analagous way, a general
point process may be characterized by its conditional intensity function. Poisson
processes are memoryless but, in general, if we want to find the probability of an
event in a time interval (t, t+∆t] we must consider the timing of the events preceding
time t. Let us denote the number of events prior to t by N(t−),

N(t−) = maxu<tN(u).

We call the sequence of event times prior to time t the history up to time t and
write it as Ht = (S1, S2, . . . , SN(t−)). For a set of observed data we would write
Ht = (s1, s2, . . . , sn) with the understanding that N(t−) = n. The conditional
intensity function is then given by

λ(t|Ht) = lim
∆t→0

P (∆N(t,t+∆t] = 1|Ht)

∆t
, (19.13)

where P (∆N(t,t+∆t] = 1|Ht) is the conditional probability of an event in (t, t + ∆t]
given the history Ht. Taking ∆t to be small we may rewrite Equation (19.13) in the
form

P (∆N(t,t+∆t] = 1|Ht) ≈ λ(t|Ht)∆t. (19.14)

Or, in shorthand,

P (event in (t, t+ dt]|Ht) = λ(t|Ht)dt, (19.15)

which generalizes (19.3). According to (19.15) the conditional intensity function
expresses the instantaneous probability of an event. It serves as the fundamental
building block for constructing the probability distributions needed for general point
processes.4 A mathematical assumption needed for theoretical constructions is that

4Because the history Ht = (S1, S2, . . . , SN(t−)) is itself a point process, it is stochastic and,
therefore, the conditional intensity is stochastic. The definition (19.15) includes two separable
steps: first, we define the conditional intensity

λ(t|s1, . . . , sn) = lim
∆t→0

P (∆N(t,t+∆t] = 1|N(t−) = n, S1 = s1, . . . , Sn = sn)

∆t
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the point process is orderly, which means that for a sufficiently small interval, the
probability of more than one event occurring is negligible. Mathematically, this is
stated as

lim
∆t→0

P (∆N(t,t+∆t] > 1|Ht)

∆t
= 0. (19.16)

This assumption is biophysically plausible for a point process model of a neuron be-
cause neurons have an absolute refractory period. In most situations the probability
of a neuron firing more than one spike is negligibly small for ∆t < 1 millisecond.

Once we specify the conditional intensity for a point process it is not hard to
write down the pdf for the sequence of event times in an observation interval (0, T ].
In fact, the argument is essentially the same as in the case of the inhomogeneous
Poisson process, with the conditional intensity λ(t|Ht) substituted for the intensity
λ(t). The key observation is that the conditional intensity behaves essentially like a
hazard function, the only distinction being the appearance of the stochastic history
Ht.

Theorem The event time sequence S1, S2, . . . , SN(T ) of an or-
derly point process on an interval (0, T ] has joint pdf

fS1,...,SN(T )
(s1, ..., sn) = exp

{

−
∫ T

0

λ(t|Ht)dt

} n∏

i=1

λ(si|Hsi
)

(19.17)
where λ(t|Ht) is the conditional intensity function of the process.

Equation (19.17) has the same form as (19.6), the only distinction being the
replacement of the Poisson intensity λ(t) in (19.6) with the conditional intensity
λ(t|Ht) in (19.17).

Details: To derive (19.17) we need a lemma, which is analogous to the
lemma used in deriving (19.6).

Lemma For an orderly point process with conditional intensity λ(t|Ht)
on [0, T ], the pdf of the ith waiting-time distribution, conditionally on

for every possible vector (s1, . . . , sn) making up the history Ht, and then we replace the specific
values N(t−) = n and (S1 = s1, . . . , Sn = sn) with their stochastic counterparts written as Ht =
(S1, S2, . . . , SN(t−)).
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S1 = s1, . . . , Si−1 = si−1, for t ∈ (si−1, T ] is

fSi|S1,...,Si−1
(si|S1 = s1, . . . , Si−1 = si−1) = λ(si|Ht) exp

{

−
∫ si

si−1

λ(t|Ht)dt

}

.

(19.18)

Proof of the lemma: Let Xi be the waiting time for the ith event, condi-
tionally on S1 = s1, . . . , Si−1 = si−1. For t > si−1 we have Xi ∈ (t, t+∆t)
if and only if ∆N(t,t+∆t) > 0. Furthermore, if the ith event has not yet
occurred at time t we have Ht = (s1, . . . , si−1). We then have

lim
∆t→0

P (Xi ∈ (t, t+ ∆t)|Xi > t, S1 = s1, . . . , Si−1 = si−1)

∆t

= lim
∆t→0

P (∆N(t,t+∆t) > 0|Ht))

∆t

and, because the point process is regular, the right-hand side is λ(t|Ht).
Just as we argued in the case of hazard functions, the numerator of the
left-hand side may be written

P (Xi ∈ (t, t+ ∆t)|Xi > t,Ht) =
F (t+ ∆t|Ht)− F (t|Ht)

1− F (t|Ht)

where F is the CDF of the waiting time distribution, conditionally on
Ht. Passing to the limit again gives

lim
∆t→0

P (Xi ∈ (t, t+ ∆t)|Xi > t,Ht)

∆t
=

f(t|Ht)

1− F (t|Ht) .

In other words, just as in the case of a hazard function, the conditional
intensity function satisfies

λ(t|Ht) =
f(t|Ht)

1− F (t|Ht) .

Proceeding as in the case of the hazard function we then get the condi-
tional pdf

f(t|Ht) = λ(t|Ht)e
−

R t
si−1

λ(u|Hu)du

as required. 2

Proof of the theorem: The argument follows from the lemma by the same
steps as the theorem for inhomogeneous Poisson processes. 2
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We may also approximate a general point process by a binary process. For small
∆t, the probability of an event in an interval (t, t+ ∆t]

P ( event in (t, t+ ∆t]|Ht) ≈ λ(t|Ht)∆t (19.19)

and the probability of no event is

P (no event in (t, t+ ∆t]|Ht) ≈ 1− λ(t|Ht)∆t. (19.20)

If we consider the discrete approximation, analogous to the Poisson process case,
we may define pi =

∫
λ(t|Ht)dt where the integral is over the ith time bin. We

again get Bernoulli random variables Yi with P (Yi = 1) = pi but now these Yi

random variables are dependent, e.g., we may have P (Yi = 1|Yi−1 = 1) 6= pi. This is
somewhat more complicated than the Poisson case, but it remains relatively easy to
formulate history-dependent models for these Bernoulli trials. We give examples in
Section 19.3.4.

19.3.3 The marginal intensity is the expectation of the con-
ditional intensity.

Equation (19.13) gave the definition of the conditional intensity function. We now
define the unconditional or marginal intensity function as

λ(t) = lim
∆t→0

P (∆N(t,t+∆t] = 1)

∆t
. (19.21)

According to the law of total probability (page 103), for a pair of random variables
Y and X and an event A we have P (X ∈ A) = EY (P (X ∈ A|Y )). Letting Ht play
the role of Y and ∆N(t,t+∆t] = 1 the role of X ∈ A, we get, similarly,

P (∆N(t,t+∆t] = 1) = EHt

(
P (∆N(t,t+∆t] = 1|Ht)

)

and

λ(t) = lim
∆t→0

EHt

(
P (∆N(t,t+∆t] = 1|Ht)

)

∆t
.

By interchanging5 the expectation and limiting operation we may then write

λ(t) = EHt(λ(t|Ht)).

5General theory justifying the interchange of limit and expectation applies here.
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This explains the name “marginal” intensity. It is marginal in much the same sense as
when we have a pair of random variables (X, Y ) and speak of the distribution of X as
a marginal distribution because it is derived by averaging over all possible values of Y .
Here, λ(t) results from averaging the conditional intensity over all possible histories
Ht. In the case of spike trains, the conditional intensity would apply to individual
trials, while the marginal intensity is the theoretical time-varying firing rate after
averaging across trials. Importantly, we may consider λ(t) to be the function being
estimated by the PSTH. This does not require us to assume the trials are in any sense
all the same. There could be some source of trial-to-trial variation, or even systematic
variation (such as a effects associated with learning across trials). Consideration of
λ(t) takes place whenever the average across trials seems meaningful and interesting.

As in Equation (19.14) we may also write

P (∆N(t,t+∆t] = 1) ≈ λ(t)∆t (19.22)

and we have the shorthand

P (event in (t, t+ dt]) = λ(t)dt, (19.23)

keeping in mind that we also take the left-hand side to mean

P (event in (t, t+ dt]) = EHtP (event in (t, t+ dt]|Ht).

Equation (19.23) must be compared with (19.15) and, of course, it has the same form
as (19.3). We may therefore think of the average across histories (for spike trains,
the average across trials) as defining a theoretical inhomogeneous Poisson process
intensity. This is the intensity that is estimated by the PSTH.

The distinction between conditional and marginal intensities is so important for
spike train analysis that we emphasize it, as follows.

If we consider spike trains to be point processses, within trials
the instantaneous firing rate is λ(t|Ht) and we have

P (spike in (t, t+ dt]|Ht) = λ(t|Ht)dt,

while the across-trial average firing rate is λ(t) and we have

P (spike in (t, t+ dt]) = λ(t)dt.
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19.3.4 Conditional intensity functions may be fitted using
Poisson regression.

In experimental settings, event-time data, such as spike trains, are collected to see
how they differ under varying experiments conditions. The conditions may be sum-
marized by a variable or vector x(t), often called a covariate (because it co-varies
with the stochastic response). The conditional intensity then becomes a function not
only of time and history, but also of the covariate, and a preferable notation then
becomes λ(t|x(t), Ht).

Example 19.1 (continued) Let us take time bins to have width ∆t = 1 ms
and write λk = λ(tk|Htk), where tk is the midpoint of the kth time bin. Defining

λk = exp{α0 +
120∑

j=1

αj∆Nk−j}, (19.24)

we get a model with 120 history-related covariates, each indicating whether or not
a spike was fired in a 1 millisecond interval at a different time lag. The parameter
α0 provides the log background firing rate in the absence of prior spiking activity
within the past 120 milliseconds. Using Poisson regression with ML estimation (as
in Chapter 14) we obtained α̂0 = 3.8 so that, if there were no spikes is the previous
120 milliseconds, the conditional intensity would become λk = exp(α̂0) = 45 spikes
per second, corresponding to an average ISI of 22 ms. The MLEs α̂i obtained from
the data are plotted in Figure 19.5, in the form exp{α̂i}. The values related to
0-2 ms after a spike are large negative numbers, so that exp{α̂i} is close to zero,
leading to a refractory period when the neuron is much less likely to fire immediately
after another spike. However, the estimates related to 4-13 ms after a spike are
substantially positive, leading to an increase in the firing probability. For example, if
the only spike in the 120 ms history occurred 6 ms in the past, then the background
conditional intensity of 45 spikes per seconds is multiplied by a factor of about
3.1, leading to a conditional intensity of 140 spikes per second. This phenomenon
accounts for the rapid bursts of spikes observed in the data. Many of the remaining
parameters are close to zero, and hence exp{α̂i} is close to one, indicating that the
corresponding history term has no effect on the spiking probability. Figure 19.6
displays the ISI histogram with exponential, gamma, and Inverse Gaussian renewal
model pdfs overlaid, and also the pdf for the model of Equation ((19.24). The
exponential and gamma models overestimate the number of very short ISIs (0-4 ms),
and all three renewal models underestimate the number of ISIs between 5-10 ms
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and overestimate the number of ISIs between 10-60 ms. In contrast, the conditional
intensity model in Equation (19.24) accurately predicts the number of ISIs across all
ISI lengths. 2

Figure 19.5: Parameter estimates for history-dependent retinal conditional intensity
model (bold line) together with confidence intervals (dotted line), which indicate un-
certainty in the estimates (based on maximum likelihood, as in Chapter 14). The
x-axis indicates the lag time in milliseconds.

A second way to introduce history dependence is to begin with the hazard func-
tion of a renewal process and then modify the conditional intensity so that it can
vary across time. This extends to renewal processes the method used for allowing
Poisson processes to become inhomogeneous. In a homogeneous Poisson process the
waiting times are not only i.i.d., they are also memoryless: the probability of an
event does not depend on when the last event occurred. To get an inhomogeneous
Poisson process, we retain the memorylessness but introduce a time-varying condi-
tional intensity. A simple idea is to take a renewal process and, similarly, introduce
a time-varying factor. For a renewal process, the probability of an event at time t
depends on the timing of the most recent previous event s∗(t), but not on any events
prior to s∗(t). If we allow the conditional intensity intensity to depend on both time
t and the time of the previous event s∗(t) we obtain a form

λ(t|Ht) = g(t, s∗(t)) (19.25)

where g(x, y) is a function to be specified. Models of this type are sometimes called
Markovian or Inhomogeneous Markov Interval (IMI) models.6 In an inhomogeneous

6The terminology is intended to signify that the history dependence is limited to the previous
spike time. A discrete-time stochastic process is a Markov process if the probability that the process
will be in a particular state at time t depends only on the state of the process at time t− 1.
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Figure 19.6: ISI histogram and model probability densities for exponential, gamma,
and inverse Gaussian renewal models compared to conditional intensity model of
Equation (19.24).

Poisson process the conditional intensity takes the form

λ(t|Ht) = g0(t)

where g0(t) becomes the intensity λ(t). In a renewal process the conditional intensity
takes the form

λ(t|Ht) = g1(t− s∗(t))
where g1(t − s∗(t)) becomes the hazard function for the waiting time distribution.
The IMI model generalizes both of these, creating an inhomogeneous version of a
renewal model.7 The simplest IMI model takes the conditional intensity to be of the
multiplicative form8

λ(t|Ht) = g0(t)g1(t− s∗(t)). (19.26)

7Because integrate-and-fire neurons reset to a baseline subthreshold voltage after firing, they
necessarily follow Equation (19.25). Further discussion of IMI models and their relationship to
integrate-and-fire neurons is given in Koyama and Kass (2008). (Koyama, S. and Kass, R.E.
(2008) Spike train probability models for stimulus-driven leaky integrate-and-fire neurons, Neural

Computation, 20: 1776–1795.)
8The functions g0(t) and g1(u) are defined only up to a multiplicative constant. That is, for

any nonzero number c if we multiply g0(t) by c and divide g1(u) by c we do not change the result.
Some arbitrary choice of scaling must therefore be introduced. In Figure 19.7 the constant was
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Figure 19.7: Plot of the function g1(t − s∗(t)) defined in (19.26) for the SEF data.
The function is scaled so that a value of 1 makes the conditional intensity equal to
the Poisson process intensity at time t = 50 milliseconds after the appearance of the
visual cue.

A point process having conditional intensity of the form (19.25) or (19.26) may be
fitted using binary Poisson regression, as in Example 1.1 on page 583, except now
with the additional terms representing the function g1(u) (where u = t − s∗(t)). A
simple method is to fit the functions g0(t) and g1(u) using Poisson regression splines.

Example 1.1 (continued) Kass and Ventura (2001) fitted a model of the form
(19.26) to data from an SEF neuron recorded for the study of Olson et al. (2000).
To do this they wrote

log λ(t|Ht) = log g0(t) + log g1(t− s∗(t))

which is an instance of (19.2) without coupling terms. Kass and Ventura took both
log g0(t) and log g1(u) to be splines with a small number of knots and applied Poisson
regression using standard software (R). They showed that the model fitted the
data better than an inhomogeneous Poisson model (using the graphical method in
Section 19.3.5), and that inclusion of cross-product terms did not improve the fit
(the likelihood ratio test for the additional terms was not significant).

A plot of the resulting non-Poisson refractory function g1(u) is shown in Figure
19.7. For a Poisson process this function would be constant and equal to 1. The plot

chosen so that g0(t) was equal to the Poisson process intensity at time t = 50 milliseconds after the
appearance of the visual cue.
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Figure 19.8: Refractory effects in sciatic nerve of a frog. The y-axis is the reciprocal
of the voltage threshold required to induce a second spike following a previous spike.
The value 100 on the y-axis indicates the required reciprocal voltage when there was
a long gap between the two successive action potentials. From Adrian and Lucas
(1912).

shows neural firing to be inhibited, compared with Poisson, for about 10 milliseconds
and then it becomes more likely to fire, with the increase declining gradually until it
returns to a baseline value. 2

The non-monotonic behavior of the recovery function g1(t− s∗(t)) in the forego-
ing analysis of Example 1.1 may seem somewhat suprising, but anecdotal evidence
suggests it may be common. Interestingly, Adrian and Lucas (1912, Adrian E.D.
and Lucas, K. (1912) On the summation of propagated disturbances in nerve and
muscle, J. Physiology, 44: 68–124.) found a qualitatively similar result by a very
different method. They stimulated a frog’s sciatic nerve through a second electrode
and examined the time course of “excitability,” which they defined as the reciprocal
of the voltage threshold required to induce an action potential. Figure 19.8 plots
this excitability as a function of time since the previous stimulus. There is again
a relative refractory period of approximately 10 ms followed by an overshoot and a
gradual return to the baseline value.

Example 19.4 Plasticity of hippocampal place fields Neural receptive fields
are frequently plastic: a neural response to a stimulus can change over time as a result
of experience. Frank et al. (2002) used a multiplicative IMI model to characterize
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spatial receptive fields of neurons from both the CA1 region of the hippocampus
and the deep layers of the entorhinal cortex (EC) in awake, behaving rats. In their
model, each neuronal spike train was described in terms of a conditional intensity
function of the form (19.26), where the temporal factor g0(t) became

g0(t) = gS(t, x(t))

where x(t) is the animal’s two-dimensional spatial location at time t. In other words,
gS(t, x(t)) is a temporally-dependent spatial receptive field or place field. By allow-
ing the place fields to depend on time the authors could describe their evolution
during the experiment. They found consistent patterns of plasticity in both CA1
hippocampal neurons and deep entorhinal cortex (EC) neurons, which were distinct:
the spatial intensity functions of CA1 neurons showed a consistent increase over time,
whereas those of deep EC neurons tended to decrease. They also found that the ISI-
modulating factor g1(t− s∗(t)) of CA1 neurons increased only in the “theta” region
(75-150 ms), whereas those of deep EC neurons decreased in the region between 20
and 75 ms. In addition, the minority of deep EC neurons whose spatial intensity
functions increased in area over time fired in a more spatially specific manner than
non-increasing deep EC neurons. This led them to suggest that this subset of deep
EC neurons may receive more direct input from CA1 and may be part of a neural
circuit that transmits information about the animal’s location to the neocortex. 2

It is easy to supplement (19.26) with terms that consider not only the spike
s∗(t) immediately preceding time t, but also the spike s2∗(t) preceding s∗(t), s3∗(t)
preceding s2∗(t), etc. One way to do this is to write

λ(t|Ht) = g0(t)g1(t− s∗(t))g2(t− s2∗(t))g3(t− s3∗(t)) (19.27)

or, equivalently,

log λ(t|Ht) = log g0(t) + log g1(t− s∗(t))
+ log g2(t− s2∗(t)) + log g3(t− s3∗(t))

and then use additional spline-based terms to represent log g2(t−s2∗(t)) and log g3(t−
s3∗(t)) in a Poisson regression.

Example 1.1 (continued) In their study of the model (19.26) for SEF neurons,
described on page 598, Kass and Ventura also used a model that included several
spikes preceding time t, as in (19.27), but found the extra terms did not improve the
fit (the likelihood ratio test was insignificant). 2
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Another way model (19.26) may be extended is to include terms corresponding
to coupling between neurons, as indicated by (19.2). To illustrate, we may consider
the effect of neuron B on a given neuron A by letting u∗(t) be the time of the neuron
B spike that precedes time t and, similarly, letting u2∗(t) and be the time of the
spike preceding u∗(t) and u3∗(t) the time of the spike preceding u2∗(t). Then we
may append to (19.27) a series of factors that represent the coupling effects. In
logarithmic form, considering 3 spikes back in time, this becomes

log λ(t|Ht) = log g0(t) + log g1(t− s∗(t))
+ log g2(t− s2∗(t)) + log g3(t− s3∗(t))

+ log h1(t− u∗(t)) + log h2(t− u2∗(t))

+ log h3(t− u3∗(t)). (19.28)

Once again (19.28) takes the form of (19.2), and some version of Poisson regression
may be applied.

Example 19.2 (continued) In introducing this example on page 574 we said
that the authors used a model having the form of (19.2). Let us be somewhat more
specific. In terms of (19.28), Pillow et al. took the receptive-field stimulus effects
(g0(t), here spatio-temporal as in Example 19.4) to be linear, i.e., a linear combination
of 5 × 5 stimulus pixel intensities across 30 time bins. For the history effects and
the coupling effects they did not use splines but rather used an alternative set of
primitive functions such that logλ(t|Ht) remained linear, as it does with regression
splines in (19.28). They then applied Poisson regression. However, because their
model involved a large number of free parameters they had to use a modified fitting
criterion (a form of penalized fitting similar to that used with smoothing splines)
which is beyond the scope our presentation here. 2

19.3.5 Graphical checks for departures from a point process

model may be obtained by time rescaling.

As described in Chapter 3, Q-Q and P-P plots may be used to check the fit of a
probability distribution to data. These plots indicate the discrepancy between the
empirical cdf F̂ (x) and the theoretical cdf F (x), the idea being that when F̂ (x) is
based on i.i.d. random variables we have F̂ (x) → F (x) for all x (if the distribution
is continuous) as the sample size grows indefinitely large. In the case of point pro-
cesses we may examine the inter-event waiting times X1, . . . , Xn. For a homogeneous
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Poisson process these are i.i.d. Exp(λ). Thus, to assess the fit of a homogeneous
Poisson process to a sequence of event times we may simply compute the inter-event
waiting times and examine a Q-Q or P-P plot under the assumption that the true
waiting-time distribution is exponential. For an inhomogeneous Poisson process, or a
more general point process, the waiting times are no longer i.i.d. Thus, this method
can not be applied in the same form. However, a miraculous mathematical trick may
be used to create a homogeneous Poisson process from any point process.

Time Rescaling Theorem. Suppose we have a point process with conditional
intensity function λ(t|Ht) and with occurrence times 0 < S1 < S2, ..., < SN(T ) ≤ T .

Let Z1 =
∫ S1

0
λ(t|Ht)dt, and

Zi =

∫ Si

Si−1

λ(t|Ht)dt

for j = 2, ..., N(T ). Then Z1, . . . , ZN(T ) are i.i.d. Exp(1) random variables.

Proof: Omitted. 2

This result is called the time rescaling theorem because we can think of the
transformation as stretching and shrinking the time axis based on the value of the
conditional intensity function. If λ(t|Ht) is constant and equal to one everywhere,
then this is a simple Poisson process with independent, exponential ISIs, and time
does not need to be rescaled. When λ(t|Ht) is less than one, the transformed event
times zi accumulate slowly and represent a shrinking of time, so that distant event
times are brought closer together. Likewise, when λ(t|Ht) is greater than one, the
event times zi accumulate more rapidly and represent a stretching of time, so that
neighboring event times are drawn further apart.

With time rescaling in hand, we may now apply Q-Q or P-P plots to detect
departures from a point process model: using the conditional intensity function we
transform the time axis and judge the extent to which the resulting waiting times
deviate from those predicted by an Exp(1) distribution.

Example 19.1 (continued) Using the conditional intensity of Equation (19.24)
we may apply time rescaling. Figure 19.9 displays a histogram of the original ISIs
for this data. The smallest bin (0-2 ms) is empty due to the refractory period
of the neuron. We can also observe two distinct peaks at around 10 and 100 msec
respectively. It is clear that this pattern of ISIs is not described well by an exponential
distribution, and therefore the original process cannot be accurately modeled as a
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Figure 19.9: Histograms of (A) ISIs and (B) time-rescaled ISIs for the retinal gan-
glion cell spike train. Dashed line in panel B is the Exp(1) pdf.

Figure 19.10: P-P plot for the distribution of rescaled intervals shown in Figure 19.9.

simple Poisson process. However the histogram in panel B of the figure, which shows
the result of transforming the observed ISIs according to the conditional intensity
model. Figure 19.10 displays a P-P plot for the intervals in panel B of Figure 19.9.
Together, these figures show that the model in Equation (19.24) does a good job of
describing the variability in the retinal neuron spike train. 2

Example 19.5 Spike trains from a locust olfactory bulb. Substantial insight
about sensory coding has been gained by studying olfaction among insects. An insect
may come across thousands of alternative odors in its environment, among millions
of potential possibilities, but only particular odors are important for the animal’s
behavior. A challenge has been to describe the mechanisms by which salient odors
are learned. A series of experiments carried out by Dr. Mark Stopfer and colleagues
(e.g., Stopfer et al. (2003) (Stopfer, M., Jayaraman, V., and Laurent, G. (2003)
Intensity versus identity coding, Neuron, 39: 991–1004.)) has examined the way
neural responses to odors may evolve over repeated exposure. To capture subtle
changes it is desirable to have good point process models for olfactory spike trains.
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Figure 19.11: P-P plots of inhomogeneous Poisson and multiplicative IMI models for
spike train data from a locust olfactory bulb. For a perfect fit the curve would fall on
the diagonal line y = x. The data-based (empirical) probabilities deviate substantially
from the Poisson model but much less so from the IMI model. When the curve ranges
outside the diagonal bands above and below the y = x line, some lack of fit is indicated
according to the Kolmogorov-Smirnov test (discussed in Chapter 10).

Figure 19.11 displays P-P plots for the fit of an inhomogeneous Poisson model and
a multiplicative IMI model to a set of spike trains from a locust olfactory bulb.
The spike trains clearly deviate from the Poisson model; the fit of the multiplicative
IMI model to the data is much better. The P-P plots are based on the method of
Section 19.3.5. 2

19.3.6 There are efficient methods for generating point pro-

cess pseudo-data.

It is easy to devise a computer algorithm to generate observations from a homo-
geneous Poisson processes, or some other renewal process: we simply generate a
random sample from the appropriate waiting-time distribution; the ith event time
will then be the sum of the first i waiting times. In particular, to generate a homo-
geneous Poisson process with rate λ, we can draw a random sample from an Exp(λ)
distribution and take the ith event time to be si =

∑i
j=1 xj .
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Generating event times from a general point process is more complicated. One
simple approach, based on the Bernoulli approximation, involves partitioning the
total time interval into small bins of size ∆t: in the kth interval, centered at tk,
we generate an event with probability pk = λ(tk|Htk)∆t, where Htk is the history of
previously generated events. This works well for small simulation intervals. However,
as the total time interval becomes large and as ∆t becomes small, the number of
Bernoulli samples that needs to be generated becomes very large, and most of those
samples will be zero, since λ(t|Ht)∆t is small. In such cases the method becomes
very inefficient and thus may take excessive computing time. Alternative approaches
generate a relatively small number of i.i.d. observations, and then manipulate them
so that the resulting distributions match those of the desired point process.

Thinning To apply this algorithm, the conditional intensity function λ(t|Ht)
must be bound by some constant, λmax. The algorithm follows a two-stage process.
In the first stage, a set of candidate event times is generated as a simple Poisson
process with a rate λmax. Because λmax ≥ λ(t|Ht), these candidate event times occur
more frequently than they would for the point process we want to simulate. In the
second stage they are “thinned” by removing some of them according to a stochastic
scheme. We omit the details. In practice, thinning is typically only used when
simulating inhomogenous Poisson processes with bounded intensity functions.

Time rescaling Another approach to simulating general point processes is
based on the time-rescaling theorem. According to the statement of the theorem in
Section 19.3.5, the transformed Zi random variables follow an Exp(1) distribution,
with the transformation being based on the integral of the conditional intensity
function. This suggests generating a sequence of Exp(1) random variables and then
back-transforming to get the desired point process. That idea turns out to work
rather well in practice. Here is the algorithm for generating a process on the interval
(0, T ] with conditional intensity λ(t|Ht):

1. Initialize s0 = 0 and i = 1.

2. Sample zi from an Exp(1) distribution.

3. Find si as the solution to

zi =

∫ si

si

λ(t|Ht)dt.

4. If si > T stop.
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5. Set i = i+ 1 and go to 2.
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A.1 Introduction

The data we discuss in this book consist of numbers we conceptualize, abstractly, as
values of variables in the sense of elementary algebra: a variable x can take on many
possible numerical values. We talk about relationships between measured variables,
such as x and y, in terms functions, writing expressions like y = f(x). Strings of
numbers form vectors, while arrays of numbers form matrices, and matrix algebra
extends many concepts and manipulations involving one or two variables to those
involving many variables. The purpose of this appendix is to review the essential
properties of numbers, vectors, matrices, and functions that are used repeatedly in
the analysis of neural data. Our goal is not to teach the concepts, but rather to offer
convenient reminders.

607
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A.2 Numbers and Vectors

Rational numbers have the form m
n

where m and n are integers. Real numbers include

not only rational numbers but also algebraic numbers like
√

2 and transcendental
numbers like π. Real numbers are those that correspond to points on the number
line. They are used to represent measurements. When we say that a variable x
(representing a measurement) may take on a range of values in an interval (a, b)
we mean that x may be any real number such that a < x < b. However, every
measurement is limited to a certain accuracy, and thus to a pre-specifiable finite
number of possible values. Thus, data that are somehow recorded by a physical
device and are represented in the output of software are rational numbers and it
is, therefore, not literally true that a measurement can take on any real value in
(a, b); for example, most of the values in (a, b) are irrational. Instead, the use of
intervals of real numbers to represent measurements is an abstraction, but it is the
starting point in applying modern mathematics to the real world. When we speak
of a number we mean a real number unless we specifically say otherwise. Complex
numbers are discussed in Section A.10.

Throughout the book we identify multiple unspecified values of a particular vari-
able by using subscripts. Thus, x1, x2, x3 might represent 3 values of x. We then also
use the summation notation,

3∑

i=1

xi = x1 + x2 + x3

and, more generally,
n∑

i=1

xi = x1 + x2 + · · ·+ xn.

Similarly, we use the product notation

3∏

i=1

xi = x1x2x3 = x1 × x2 × x3

and, more generally,
n∏

i=1

xi = x1x2 · · ·xn.
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We also use subscripts in a different way. Multidimensional analysis is based on
vectors. A 2-dimenionsal vector is an ordered pair (x, y) and a 3-dimensional vector
is an ordered t triple (x, y, z). More generally, n-tuples have the form (x1, x2, . . . , xn).
We say that (x1, x2, . . . , xn) is an n-dimensional vector having ith component xi, for
i = 1, . . . , n. The set of all such n-dimensional vectors is labelled Rn (which we read
as “r n”), for reasons we discuss in Section A.9. Vectors and vector manipulations
are a convenient way to consider, together, all the components. When we consider
matrix manipulations we need to distinguish column vectors

x =








x1

x2
...
xn








from row vectors (x1, . . . , xn), but for other purposes we may ignore this distinc-
tion. The dot product of two n-dimensional vectors x = (x1, x2, . . . , xn) and y =
(y1, y2, . . . , yn) is

x · y =
n∑

i=1

xiyi. (A.1)

A.3 Functions and Linear Approximation

A function is a mapping from one set to another such that each element of the first
set is taken to a particular element of the second set. We will be interested mainly
in functions of real numbers or vectors that map into real numbers. If x is a real
number or vector, we often write y = f(x) to indicate that the function f maps x to
y.

Suppose f is a function on a real interval. For many, many calculations it is useful
to approximate f linearly, i.e., to write y = f(x) ≈ a+ bx for suitable coefficients a
and b. This is accomplished using the derivative of f , which is given by

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
,

assuming this limit is well-defined. We may also write

df

dx
= f ′(x)
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and if we wish to specify that the derivative is evaluated at x = x0 we write

df

dx

∣
∣
∣
∣
x=x0

= f ′(x0).

The linear approximation of f at a value x0 is given by b = f ′(x0). If y0 = f(x0) we
may then plug (x0, y0) into y = a + bx to get a = y0 − f ′(x0)x0 and then we have
y ≈ a+ bx as the linear approximation to f at x0. By rearranging terms we can also
write this in the form

y ≈ f(x0) + f ′(x0)(x− x0) (A.2)

or

f(x) ≈ f(x0) + f ′(x0)(x− x0). (A.3)

When this kind of linear approximation is put in a form that explicitly recognizes
the approximation error it is called a first-order Taylor series. Thus, a first-order
Taylor series of the function f(x) is the linear approximation having the form

f(x) = f(x0) + f ′(x0)(x− x0) +R

where the remainder R satisfies R→ 0 as x→ x0. Taylor series may be carried out
to higher terms, involving higher derivatives.

Functions of several variables also have linear approximations based on deriva-
tives, but the derivatives must be taken with respect to each of the function argu-
ments and are then called partial derivatives. If y = f(x1, x2) we write the partial
derivatives as

∂f

∂x1
= lim

h→0

f(x1 + h, x2)− f(x1, x2)

h
∂f

∂x2

= lim
h→0

f(x1, x2 + h)− f(x1, x2)

h
,

if these limits exist, and then the linear approximation of y = f(x1, x2) near (x1, x2) =
(a, b), which generalizes (A.2), is

y ≈ f(a, b) +
∂f

∂x1

∣
∣
∣
∣
(x1,x2)=(a,b)

(x1 − a) +
∂f

∂x2

∣
∣
∣
∣
(x1,x2)=(a,b)

(x2 − b).

Linear approximations of functions y = f(x1, x2, . . . , xn) are analogous.
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A.4 The Exponential Function and Logarithms

For a number A and positive integer k, Ak is the k-fold product of A with itself.
Exponentiation begins with this process, and extends to cases Az where z is any
complex number. For now let us assume x is real, and write f(x) = Ax, but let
us leave the value of A arbitrary. The inverse function is the logarithm: logA(y) =
f−1(y), in other words, logA(f(x)) = x.

The defining property of exponentiation is that it converts addition into multi-
plication, i.e.,

f(a+ b) = f(a)f(b). (A.4)

Logarithms convert multiplication into addition:

f−1(ab) = f−1(a) + f−1(b).

Although mathematics books usually define exponentiation via convergent Taylor
series (which is quick), equation (A.4) may, literally, be used to define exponentiation:
if a function satisfies (A.4) it must have the form f(x) = Ax for some A. The
derivative of f(x) has the form f ′(x) ∝ f(x). If we choose the proportionality
constant to be 1, i.e., f ′(x) = f(x), we obtain the “natural” base for exponentiation,
which is the number A = e. We sometimes write ex = exp(x). We will always mean
the natural logarithm (base e) when we write log(x), unless we say otherwise. It may
be shown that the only solutions to the differential equation

f ′(x) ∝ f(x)

are functions of the form f(x) = aebx.

Using (A.3) with x0 = 0 we get

exp(x) ≈ 1 + x

when x is near zero. More formally, we say that t→ 0 implies exp(x)/(1 + x) → 1.
Similarly, the derivative of log(x) is 1/x, and with f(t) = log(1+ t) we have f(0) = 0
and f ′(0) = 1. Equation (A.3) then gives

log(1 + t) ≈ t (A.5)

for small t. Formally, we say that t→ 0 implies (1/t) log(1 + t)→ 1.
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Now consider log(1 + x/n). For n large use (A.5) to get

log(1 +
x

n
) ≈ x

n

so that
n log(1 +

x

n
) ≈ x.

From the logarithm property log(ab) = b log(a) we have

log
(

(1 +
x

n
)n
)

≈ x

and exponentiating both sides we obtain, for large n,

ex ≈ (1 +
x

n
)n,

or, more formally, we say that as n→∞ we have

(1 +
x

n
)n → ex. (A.6)

A.5 Trigonometry, Inner Products, and Orthogo-

nal Projections

In any right triangle, if θ is one of the acute angles, its cosine, written as cos θ, is
the ratio of the length of the adjacent side to the length of the hypotenuse and its
sine, written as sin θ, is the ratio of the length of the opposite side to the length of
the hypotenuse. More generally, if we let the two-dimensional vector (x, y) lie on the
unit circle defined by x2 + y2 = 1, and if the angle of this vector with the horizontal
vector (1,0) is θ, then the cosine and sine functions are given by x = cos θ and
y = sin θ. From this definition of sine and cosine the vector (cos θ, sin θ) is the rotation
of the vector (1,0) counter-clockwise through an angle θ. Because (cos θ, sin θ) is
on the unit circle we also obtain (cos θ)2 + (sin θ)2 = 1 for all θ, which is usually
written cos2 θ + sin2 θ = 1 for all θ. The tangent function is tan θ = sin θ/ cos θ.
Angles are measured either in radians or degrees. We will almost always use radians:
2π radians = 360 degrees.

Because (0,1) results from rotating (1,0) by an angle π
2
, the y-component of a

point on the unit circle at angle θ is the same as the x-component of a point at angle
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θ − π
2
, so the sine and cosine functions are simply phase translations of each other:

sin θ = cos(θ − π

2
). (A.7)

The cosine and sine functions are periodic, with period 2π, that is, cos(θ + 2kπ) =
cos θ for any integer k. The sine is an odd function, sin(−θ) = − sin θ, and the
cosine is an even function, cos(−θ) = cos θ. The inverse functions of sine, cosine, and
tangent are the arcsine, arccosine, and arctangent, and they are written arccos(x),
arcsin(x), and arctan(x).

Consider a triangle with angles A,B,C having opposite sides of length a, b, c.
The value of A (in radians) may be determined from B and C using A = π−B−C.
The value of a may be determined from b, c, and A as follows (see Figure A.1).
Let h be the height of the perpendicular dropped from the vertex having angle C
onto the side of length c. We have h = a sinA. This perpendicular, together with
the side of length a, form a right triangle. Call the length of its third side d. We
have d = c − b cosA. Because it is a right triangle, a2 = h2 + d2. Plugging in the
expressions for h and d we get the law of cosines,

a2 = b2 + c2 − 2bc cosA. (A.8)

Next, consider two unit vectors v1 and v2 at angles θ1 and θ2 with the x-axis.
They have coordinates v1 = (cos θ1, sin θ1) and v2 = (cos θ2, sin θ2). Let v = v1 − v2.
The length ||v|| may be found by the ordinary (Euclidean) distance formula

||v||2 = (cos θ1 − cos θ2)
2 + (sin θ1 − sin θ2)

2

and by the law of cosines (see the bottom panel of Figure A.1)

||v||2 = 2− 2 cos(θ1 − θ2).

Equating these gives the important cosine addition (or subtraction) formula

cos(θ1 − θ2) = cos θ1 cos θ2 + sin θ1 sin θ2. (A.9)

The corresponding formula for sine addition, obtained from (A.9) by rewriting cosines
as sines according to (A.7), is

sin(θ1 − θ2) = sin θ1 cos θ2 − sin θ2 cos θ1. (A.10)
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Figure A.1: Top two panels Illustration of law of cosines. The top panel displays
a triangle with sides of lengths a,b,c, and opposite angles A,B,C. The second panel
displays the same triangle, but with the addition of the perpendicular of length h
dropped from the top vertex onto its opposite side. Bottom panel The vector version
of the law of cosines. The vectors v1, v2 and v = v1 − v2 form a triangle. If we take
a = ||v||, b = ||v1|| and c = ||v2|| the law of cosines may be applied to produce the
formula for ||v||2 given in the text.
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A general sinusoidal function of period T is given by

f(t) = R cos(2πωt− φ),

where ω = 1/T is the frequency in cycles per unit t and φ is the phase. Using the
addition formula (A.9), this function may instead be written

f(t) = A cos(2πωt) +B sin(2πωt)

where A = cosφ, B = sin φ, R =
√
A2 +B2, and φ = arctan(−B/A). This repre-

sentation is very important in regression analysis of periodic data.

The derivatives of the cosine and sine functions are

d

dθ
sin(θ) = cos θ

and
d

dθ
cos(θ) = − sin θ.

For θ near zero we have
sin θ ≈ θ (A.11)

and
cos θ ≈ 1. (A.12)

Now consider a pair of two-dimensional vectors v1 = (x1, y1) and v2 = (x2, y2)
(which need not be unit vectors), let θ be the angle between them and let v = v1−v2.
We may, as above, obtain the length ||v|| from both the ordinary distance formula
and the law of cosines. The distance formula gives

||v||2 = (x1 − y1)
2 + (x2 − y2)

2 = x2
1 − 2x1y1 + y2

1 + x2
2 − 2x2y2 + y2

2

and the law of cosines gives

||v||2 = ||v1||2 + ||v2||2 − 2||v1||||v2|| cos θ = x2
1 + y2

1 + x2
2 + y2

2 − 2||v1||||v2|| cos θ.

Equating these gives
x1y1 + x2y2 = ||v1||||v2|| cos θ

the left-hand side of which is the dot product v1 · v2, as in (A.1). This is also the
Euclidean inner product:

〈v1, v2〉 = x1y1 + x2y2.



616 APPENDIX A. APPENDIX: MATHEMATICAL BACKGROUND

The Euclidean inner product formula extends immediately to n-dimensional vec-
tors v1 = (x1, . . . , xn) and v2 = (y1, . . . , yn). The vectors v1 and v2 lie in a plane
(which is the set of all vectors formed as linear combinations of v1 and v2), and when
we speak of the angle between v1 and v2 we mean the angle between them within
that plane. We have

〈v1, v2〉 =
n∑

i=1

xiyi

= x1y1 + x2y2 + · · ·+ xnyn

= ||v1||||v2|| cos θ (A.13)

where θ is the angle between v1 and v2. The squared length of a vector v =
(x1, . . . , xn) is

||v||2 = 〈v, v〉 = v · v =
n∑

i=1

x2
i .

If ||v|| = 1 the vector v is called a unit vector. For any vectors v and w and constants
a and b, 〈av, bw〉 = ab〈v, w〉.

Two n-dimensional vectors v1 and v2 are said to be orthogonal if 〈v1, v2〉 = 0.
They are orthonormal if, in addition, they are unit vectors. The orthogonal projection
of a vector y onto a vector v is the vector ŷ that has the form ŷ = cv, for some nonzero
constant c, and satisfies

〈ŷ, y − ŷ〉 = 0 (A.14)

(see Figure A.2). From (A.14) the vector ŷ satisfies the Pythagorean relationship

||y||2 = ||y − ŷ||2 + ||ŷ||2 (A.15)

and ŷ is the closest vector to y having the form cv in the sense that it minimizes the
Euclidean distance

||y − ŷ|| = min ||y − cv|| (A.16)

where the minimum is taken over nonzero constants c.

We may solve for c by substituting cv for ŷ in (A.14) to get

〈cv, y〉 = 〈cv, cv〉

so that

c =
〈v, y〉
〈v, v〉 (A.17)
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Figure A.2: Top panel Orthogonal projection of the vector y onto the vector v,
resulting in the vector ŷ in the direction of v. Bottom panel Orthogonal projection
of the vector y onto the vector subspace V resulting in the vector ŷ in V .
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and, therefore,

ŷ =
〈v, y〉
〈v, v〉v. (A.18)

Let u1 = v/||v||, which is the normalized version of v, meaning the unit vector in
the same direction as v. Another expression for ŷ is

ŷ = 〈u1, y〉u1 = (||y|| cosθ)u1

where θ is the angle between y and v. The vector y− ŷ is in the same plane as y and
v. Let r = y − ŷ and define u2 = r/||r||. Then u1 and u2 are an orthonormal pair of
vectors that lie in the same plane as y and v. We return to orthogonal projections
is Section A.9.

A.6 Matrices

An m × k rectangular array of numbers, with m rows and k columns, is called an
m× k matrix. The numbers m and k are are the dimensions of the matrix. We refer
to the elements of a matrix by using subscripts of the form ij where i is the row and
j is the column. For example, the 2 × 3 matrix A having rows (A11, A12, A13) and
(A21, A22, A23) is

A =

(
A11 A12 A13

A21 A22 A23

)

.

The value Aij is the (i, j) element of A. To distinguish matrices from numbers,
in several places we will instead use lower case aij (a number) to denote the (i, j)
element of A (a matrix). An n×1 dimensional matrix is an n-dimensional vector. If
A is an m× k matrix then its i-th row, written rowi(A), is a 1× k vector and its jth
column, written colj(B) is an m×1 vector. A 1-dimensional vector is a number, and
in the context of vector and matrix manipulations is often referred to as a scalar.
We say that a vector or matrix is non-zero if at least one of its elements is non-zero.
The n-dimensional zero vector is the vector consisting of n zeroes and the m×k zero
matrix is the m× k matrix all of whose elements are zero.

If A is an m× k matrix having elements aij fori = 1, 2, . . . , m, j = 1, 2, . . . , k its
transpose, denoted by AT , is the k×m matrix with elements aji for j = 1, 2, . . . , k, i =
1, 2, . . . , m. That is, AT is obtained from A by interchanging the rows and columns
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(rowi(A
T ) = coli(A)). If A is a k × k (square) matrix for which A = AT it is said to

be symmetric.

Matrices are added element-wise. If A and B are both m × k matrices, having
elements aij and bij , for i = 1, 2, . . . , m, j = 1, 2, . . . , k, then the sum of A and B is
an m× k matrix C, written C = A +B, having elements cij given by

cij = aij + bij i = 1, 2, . . . , m j = 1, 2, . . . , k.

Note that the addition of matrices is defined only for matrices of the same dimensions.
If c is a number A is an m× k matrix with elements aij then cA = Ac is an m× k
matrix B with elements bij that satisfy bij = caij for i = 1, 2, . . . , m, j = 1, 2, . . . , k.
If A is an m×n matrix having elements aij and B is an n×k matrix having elements
bij then their product C = AB is the m× k matrix C whose element cij is given by

cij = rowi(A) · colj(B)

=
n∑

ℓ=1

aiℓbℓj

for all i = 1, 2, . . . , m, j = 1, 2, . . . , k. For the product AB to be defined, the column
dimension of A must equal the row dimension of B. Then the row dimension of AB
equals the row dimension of A and the column dimension of AB equals the column
dimension of B.

A square matrix A is said to be diagonal if its only non-zero entries are on its
main diagonal, i.e., Aij = 0 when i 6= j. The k-dimensional identity matrix, denoted
by Ik, is the k × k diagonal matrix having all of its main diagonal elements equal to
1.

A.7 Linear Independence

A pair of vectors v1 and v2 is linearly dependent if they are multiples of each other,
meaning that v2 = kv1 for some nonzero number k or, equivalently, if c1v1 + c2v2 = 0
where 0 represents the zero vector (the vector all of whose components are zero) and
where c1 = k and c2 = −1. Otherwise, if v1 and v2 are not multiples of each other,
and neither is the non-zero vector, there are no nonzero numbers c1 and c2 for which
cv1 + c2v2 = 0 and we say that v1 and v2 are linearly independent. More generally,
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we say that a set of several vectors v1, v2, . . . , vk are linearly independent if for every
set of numbers c1, c2, . . . , ck that are not all zero,

c1v1 + c2v2 + · · ·+ ckvk 6= 0.

Equivalently, v1, v2, . . . , vk are linearly independent if c1v1 + c2v2 + · · · + ckvk = 0
implies that c1 = c2 = · · · = ck = 0. When v1, v2, . . . , vk are not linearly independent
then c1v1 + c2v2 + · · · + ckvk = 0 for some nonzero set of coefficients c1, c2, . . . , ck,
and the vectors are instead linearly dependent. In this case it becomes possible to
write any one of the vectors as a linear combination of the others for suitably chosen
coefficients. For example, assuming c1 6= 0 we can set ai = −ci/c1 for i = 2, . . . , k
and by dividing c1v1 + c2v2 + · · ·+ ckvk = 0 through by c1 and then subtracting v1

from both sides we get v1 = a2v2 + · · ·+ akvk.

For an m × k matrix A we may consider the set of m vectors consisting of the
rows of A, i.e., the vectors vi = rowi(A) for i = 1, . . . , m. The row rank of A
is the maximum number of these row vectors that can be collected together and
still remain linearly independent. Similarly, if we consider the k column vectors
col1(A), col2(A), . . . , colk(A), the column rank of A is the maximum number of these
vectors that may be collected together and remain linearly independent. It may be
shown that the row rank and the column rank of a matrix are equal. Thus, we speak
of the rank of A, which is both the row rank and the column rank and is written
rank(A). Note that for an m × k matrix A we must have rank(A) ≤ min(m, k). If
rank(A) = min(m, k) then A is said to be of full rank. When a square matrix is of
full rank it is called nonsingular.

Two key characterizations of nonsingular matrices are the following. First, a k×k
matrix A is nonsingular if and only if for every non-zero vector x the vector Ax is
also non-zero. Second, a k×k matrix A is nonsingular if and only if it has an inverse
A−1 such that

AA−1 = A−1A = Ik.

A third important characterization involves the determinant of A, denoted by |A|,
and defined to be the scalar

|A| = a11 if k = 1

|A| =∑k
j=1 a1j |A1j|(−1)1+j if k > 1

where A1j is the (k − 1)× (k − 1) matrix obtained by deleting the first row and jth

column of A. Also, |A| = ∑k
j=1 aij |Aij |(−1)i+j using the ith row in place of the first
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row. We have that A is nonsingular if and only if |A| 6= 0. If A is nonsingular then
|A−1| = 1/|A|.

If A is a k × k matrix with elements aij its trace, written tr(A) is the sum of its

diagonal elements: tr(A) =
∑k

i=1 aii.

A.8 Orthogonal Matrices and the Spectral De-

composition

A square matrix A is said to be orthogonal if its columns form an orthonormal set of
vectors. This means that coli(A) ·colj(A) = 1 if i = j and is 0 for i 6= j. Another way
to say this is that ATA = Ik and, because IT

k = Ik, we also have AAT = Ik. These
relations show that a square matrix A is orthogonal if and only if AT = A−1. As a
special case, suppose A is a 2× 2 orthogonal matrix. Then col1(A) is a unit vector,
so it lies on the unit circle, and therefore may be written in the form (cos θ, sin θ)
for some θ; by orthogonality col2(A) then has the form vector ±(− sin θ, cos θ). If
we take col2(A) = (− sin θ, cos θ) then for every two-dimensional vector x, Ax is
the rotation of x counter-clockwise by the angle θ. We say that A is a rotation
matrix. Note that ATx (which is also A−1x) becomes a rotation of x clockwise by
the angle θ. If instead col2(A) = −(− sin θ, cos θ) then Ax results from first rotating
x counter-clockwise by the angle θ, and then multiplying the second co-ordinate by
−1. This multiplication by −1 amounts to a re-orientation of the y-axis so that it
points in the opposite direction. It follows that every 2 × 2 orthogonal matrix is
either a rotation matrix or a rotation matrix followed by re-orientation of the axes.
In higher dimensions every orthogonal matrix is also necessarily a rotation matrix
followed by some possible re-orientation of axes.

If A is a k × k square matrix, λ is a scalar, and x is a vector satisfying

Ax = λx

then λ is said to be an eigenvalue of A and x is an eigenvector corresponding to
λ. Suppose A is a symmetric matrix. If for all non-zero x we have xTAx > 0 then
A is positive definite; if for all non-zero x we have xTAx ≥ 0 then A is positive
semi-definite. Note that variance matrices are positive semi-definite (see Section 4.3,
page 109). We now state one of the most powerful and important theorems in matrix
algebra.
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The Spectral Decomposition Theorem If A is a k × k symmetric matrix
then it has a representation in the form

A = PDP T (A.19)

where D is a k × k diagonal matrix with Dii being an eigenvalue of A, and P is
orthogonal with coli(P ) being an eigenvector corresponding to Dii.

The spectral decomposition of a k × k symmetrix matrix A gives a way of speci-
fying a set of eigenvalues and eigenvectors for A. In general, if Ax = λx and v = x/c
for a non-zero scalar c then Av = (cλ)v, so that cλ is also an eigenvalue. If, however,
we require eigenvectors to be unit vectors, as in the spectral decomposition, then the
corresponding eigenvalue is uniquely determined. When eigenvalues are computed
by software they are usually put in descending order: λ1 ≥ λ2 ≥ · · · ≥ λk. If A is
also positive semi-definite then λi ≥ 0 for all i = 1, . . . , k and the number of positive
eigenvalues is equal to its rank. We note that a symmetric matrix is positive definite
if and only if it is non-singular. Thus, a positive semi-definite matrix is non-singular
if and only if all its eigenvalues are positive.

The spectral decomposition has a very nice geometrical interpretation. First, the
set of two-dimensional points (u1, u2) satisfying

u2
1

D11
+

u2
2

D22
= c2 (A.20)

where D11 and D22 are positive numbers, forms an ellipse centered at the origin.
Furthermore, the ellipse is oriented so that its two axes fall along the u1 and u2

coordinate axes, and the lengths of its two axes are 2c
√
D11 and 2c

√
D22. If we let

u = (u1, u2) then Equation (A.20) may be written

uTDu = c2 (A.21)

where D is the diagonal matrix with diagonal elements D11 and D22. Now let Rθ be
the 2 × 2 orthogonal matrix that rotates each vector counter-clockwise through an
angle θ. As pointed out above, RT

θ is the 2× 2 orthogonal matrix that rotates each
vector clockwise through an angle θ. If we define x = Rθu then u = RT

θ x and from
(A.21) we have

xTRθDR
T
θ x = c2 (A.22)

so that (A.22) must be the equation of an ellipse whose axes fall along the axes
defined by the vectors col1(Rθ) and col2(Rθ) and have lengths 2c

√
D11 and 2c

√
D22.
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Because every orthogonal matrix is a rotation followed by a possible re-orientation of
the axes, and such a re-orientation of axes defining x would not change the location
of the ellipse defined by (A.22), for any 2× 2 orthogonal matrix P , the equation

xTPDP Tx = c2, (A.23)

is the equation of an ellipse whose axes fall along the axes defined by the vectors
col1(P ) and col2(P ) and have lengths 2c

√
D11 and 2c

√
D22. An analogous interpre-

tation of equation (A.23) holds when x is k-dimensional and P and D are k × k
matrices. Thus, for a positive definite matrix A, the equation xTAx = 1 defines an
ellipse, and the spectral decomposition of A shows that the axes of this ellipse are
oriented along the eigenvectors of A and have lengths equal to twice the square-root
of the corresponding eigenvalue.

A.9 Vector Spaces

The vectors e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) play a
special role because they specify the axes or coordinate directions for each component
vectors (their length is 1). When we write x = (x1, x2, . . . , xn) we also have

x = x1e1 + x2e2 + · · ·+ xnen. (A.24)

We think of the set of n-tuples as forming a vector space, which we call n-dimensional
real space and write as Rn. When we have a set of n linearly independent vectors
v1, . . . , vn, the vectors v1, . . . , vn are said to form a basis for Rn; the basis is the
set of vectors, which we write as {v1, . . . , vn}. Note that every vector x in Rn may
be written as a linear combination of these basis vectors, i.e., there are numbers
c1, . . . , cn for which x = c1v1 + · · ·+cnvn; the basis vectors are said to span the vector
space Rn and Rn is said to be the span of {v1, . . . , vn}. If we have a smaller set of
linear independent vectors, say {w1, . . . , wk}, where k < n, then the set of all linear
combinations of those vectors (including the zero vector) is also called their span; let
us denote it by V . Then V is a k-dimensional vector space, which is a subspace of
Rn. We may now generalize the notion of orthogonal projection given in Section A.5.
If y ∈ Rn the orthogonal projection of y onto V , written ŷ, is the vector ŷ for which

〈v, y − ŷ〉 = 0 (A.25)
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for all v ∈ V . It may be shown that for any y there is only one vector ŷ with this
property. If the columns of an n× k matrix X span a k-dimensional vector space V
in Rn then we may write

V = {Xβ such that β ∈ Rk}. (A.26)

Equation (A.26) provides an important way to think about linear regression: by
(A.26) we may rewrite (A.25) in the form

〈Xβ, y − ŷ〉 = 0 (A.27)

for all β ∈ Rk. This is the same as Equation (12.56).

A.10 Complex Numbers

Imaginary numbers were introduced to solve equations that do not have real so-
lutions, like x2 = −1. One solution of this equation is the imaginary1 number i
(sometimes instead denoted by j). The other solution is −i. If we multiply i by any
real number y we get an imaginary number iy. A complex number is one that may
have both real and imaginary components. The usual notation writes a generic com-
plex number as z = x+ iy, with x = Re(z) being the real part of z and y = Im(z)
being the imaginary part of z. A real number x = x+ i0 is also considered a complex
number; similarly, an imaginary number iy = 0+ iy is also considered complex. The
number z = x− iy is called the complex conjugate of z. The magnitude of z is

|z| =
√

x2 + y2 =
√
zz.

Once we allow complex numbers, every polynomial equation can be solved.

1Imaginary numbers are like real numbers in being abstract constructions that do not represent
perfectly any measurement process, and so they live in what might be called a theoretical world (of
mathematics, physics, statistics, etc.) rather than our real world of sensations and physical tools.
The name “imaginary” (apparently given by Descartes in 1637), is perhaps somewhat misleading
in that it seems to imply real numbers are more “real” than imaginary numbers, which they are
not. The great mathematician Gauss lamented this name for example, suggesting it might have
been better to call square-roots of negative numbers “lateral.” (See T. Dantzig (1954) Number:

The Language of Science, Fourth Edition, Doubleday, p. 230.)
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The amazing properties of complex numbers are derived fairly easily2 by repre-
senting them in the form of two-dimensional vectors (x, y), where again x and y are
the real and imaginary components, and then also using the polar coordinate form
(R, θ), where x = R cos θ and y = R sin θ. Here, R =

√

x2 + y2 is the length of the
vector (x, y) and θ is the angle between (x, y) and the x-axis. In this representation
the real number 1 becomes (1,0), -1 becomes (-1,0) and i becomes (0,1). Consider
the product z = z1z2 of two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2.
Applying the addition formulas for cosine and sine we have

z = x1x2 − y1y2 + i(x1y2 + x2y1)

= R1R2(cos(θ1 + θ2) + i sin(θ1 + θ2)).

Let us specialize to the case in which |z1| = |z2| = 1 so that z1 and z2 become vectors
on the unit circle, and we have

z = z1z2 = cos(θ1 + θ2) + i sin(θ1 + θ2). (A.28)

This is illustrated in Figure A.3. Equation (A.28) says that multiplication of complex
unit vectors corresponds to addition of the corresponding angles. We thus have an
instance of addition (of angles) being transformed to multiplication (of complex
unit vectors). But conversion of addition to multiplication is carried out by the
exponential function. Apparently, there is some kind of exponentiation going on here.
This exponential transformation is revealed in Euler’s Formula, given by Equation
(A.30).

In Equation (A.28), let us set θ1 = θ2 = θ/2, where z = cos θ + i sin θ. We then
have

z =

(

cos(
θ

2
) + i sin(

θ

2
)

)2

.

Repeating this multiplication for n vectors each having angle θ/n we obtain

z =

(

cos(
θ

n
) + i sin(

θ

n
)

)n

,

or,

cos θ + i sin θ =

(

cos(
θ

n
) + i sin(

θ

n
)

)n

(A.29)

2A rigorous argument would require additional details about convergence. In particular, Euler’s
formula (A.30) follows immediately from a comparison of the infinite Taylor series expansions of the
complex exponential, cosine, and sine functions—but that requires proof of convergence of these
series.
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θ1

θ2

θ

Z

Z2

Z1

Figure A.3: Multiplication of complex unit vectors. The complex numbers z1 and
z2 are pictured as vectors with coordinates xi = cos θi and yi = sin θi for i = 1, 2,
θi being the angle between zi and the x-axis. Their product z = z1z2 is a new
complex number which, when pictured as a unit vector, has coordinates x = cos θ
and y = sin θ where θ = θ1 + θ2.

for every positive integer n. Now consider what happens as we make n indefinitely
large. Applying Equations (A.11) and (A.12) we get

cos(
θ

n
) + i sin(

θ

n
) ≈ 1 +

iθ

n

and then, inserting this in the right-hand side of (A.29), letting n→∞, and applying
(A.6) we get

(

cos(
θ

n
) + i sin(

θ

n
)

)n

→ eiθ.

In other words, (A.29) together with (A.6) gives

cos θ + i sin θ → eiθ

which, because the left-hand side does not involve n, can only be true if these quan-
tities are equal; we thereby obtain Euler’s formula:

eiθ = cos θ + i sin θ. (A.30)

This formula is the foundation for Fourier analysis. On the one hand, it provides
a kind of “book-keeping” of cosine and sine terms within an imaginary exponential
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while, on the other hand, it simplifies many manipulations because multiplication
becomes addition of exponents. We also have

cos θ =
eiθ + e−iθ

2
(A.31)

and

sin θ =
eiθ − e−iθ

2
(A.32)

which are used to convert results involving complex exponentials to results involving
sines and cosines. Using Euler’s formula (A.30) we may represent any complex
number z, in an exponential polar co-ordinate form,

z = Reiθ

where R = |z| =
√

x2 + y2 and θ = arctan(y/x), with x = Re(z) and y = Im(z).

Just as the cosine and sine functions are periodic with period 2π, the complex
exponential function is periodic with period 2πi, i.e., ez = ez+i2kπ for every integer k.
Special values of ez include 1 = e0 (and thus 1 = ei2kπ for every integer k), i = eiπ/2,
and −1 = eiπ. The latter may be written

eiπ − 1 = 0,

which appeals to many people’s sense of mathematical aesthetics because it combines
the five most fundamental numbers in a single equation. It is often called Euler’s
equation.
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continuous data, 28
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random variable, 60
random variables, 59
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regularity and variability, 11
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