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8.4.3 The observed information is the negative of the ma-
trix of second partial derivatives of the loglikelihood
function, evaluated at θ̂.

In the multiparameter case the second derivative "′′(θ) becomes a matrix,
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This second-derivative matrix is often called the Hessian of "(θ). The observed in-
formation matrix is −"′′(θ̂), which generalizes (8.34).

Result For large samples, under certain general conditions, the MLE
θ̂ of the m-dimensional parameter θ is distributed approximately as an
m-dimensional multivariate normal random vector with variance matrix

Σ̂ = −"′′(θ̂)−1, (8.40)

i.e.,

Σ̂−1/2(θ̂ − θ) D→ Nm(0, Im) (8.41)

as n→∞.

Example 5.5 (continued from page 132) In the Hecht et al experiments
on threshold for visual perception of light, the response variable was an indication
of whether or not light was observed by a particular subject (“yes” or “no”), and
the explanatory variable was the intensity of the light (in units of average number
of light quanta per flash). Several different intensities were used, and for each the
experiment was repeated many times. The results for one series of trials in one
subject are plotted in Figure 8.9.

As illustrated in Figure 8.9, the linear regression model (8.39) does not work
very well in this example. The proportions vary between 0 and 1 but a line y =
a + bx is unrestricted and can not represent the variation accurately, at least not for
proportions that get close to 0 or 1. A solution is to replace the line y = a + bx by


