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a sigmoidal curve, which goes to zero as the explanatory variable x goes to −∞ and
increases to one as x→∞. The fitted curve in Figure 8.9 is based on the following
statistical model: for the i-th value of light intensity we let Yi be the number of light
flashes on which the subject perceives light and then take

Yi ∼ B(ni, pi) (8.42)

pi =
exp(β0 + β1xi)

1 + exp(β0 + β1xi)
. (8.43)

This is known as the logistic regression model. There are many possible approaches
to estimating the parameter vector θ = (β0, β1) but the usual solution is to apply
maximum likelihood. The observed information matrix is then used to get stan-
dard errors of the coefficients. These calculations are performed by most statistical
software packages. For the data in Figure 8.9 we obtained β̂0 = −20.5 ± 2.4 and
β̂1 = 10.7 ± 1.2. Further discussion of logistic regression, and interpretation of this
result, are given in Section 14.1. !

8.4.4 When using numerical methods to implement ML es-
timation, some care is needed.

There are three issues surrounding the application of numerical maximization to ML
estimation. The first is that, while loglikelihood functions are usually well behaved
near their maxima, they may be poorly behaved away from the maxima. In partic-
ular, a loglikelihood may have multiple smaller peaks, and numerical methods may
get stuck in a region away from the actual maximum. Except in cases where the
loglikelihood is known to be concave (see Section 14.1.6), it is essential to begin
an iterative algorithm with a good preliminary estimate. Sometimes models may
be altered and simplified in some way to get guesses at the parameter values. In
some cases the method of moments may be used to get initial values for an iterative
maximization algorithm.

Illustration: Gamma distribution On page 180 we found the method of
moments estimator for the Gamma distribution,

β∗ =
x̄

s2

α∗ =
x̄2

s2
.


