
X3T10

DRAFT 994D

Revision 18
November 27, 1995

Information technology -
SCSI-3 Architecture Model

Secretariat:
Information Technology Industry Council

This is a draft proposed American National Standard of Accredited Standards Committee X3. As such this is not
a completed standard. The X3T10 Technical Committee may modify this document as a result of comments
received during public review and its approval as a standard. Use of the information contained here in is at your
own risk.

Permission is granted to members of X3, its technical committees, and their associated task groups to reproduce
this document for the purposes of X3 standardization activities without further permission, provided this notice is
included. All other rights are reserved. Any commercial or for-profit duplication is strictly prohibited.

ASC X3T10 Technical Editor: Charles Monia
Digital Equipment Corporation
SHR3-2/C5
334 South Street
Shrewsbury, MA 01545
USA

Telephone: 508-841-6757
Facsimile: 508-841-6100
Email: monia@shr.dec.com

Reference number
ISO/IEC **** : 199x

ANSI X3.270 - 199x
Printed November, 27, 1995 10:27am

Revision 0: Outline Revision 1: Completed definition of model Revision 2: Corrected model and figures, added further descriptive material on targets and objects. Revision 3: Added suggested editorial changes. Revision 4: Incorporated comments from 8/92 Plenary, added proposed format for device, target routine, logical unit addresses. Began definition of command processing model. Revision 5: Rewrite to incorporate client-server model and new terminology. Deleted transport and protocol details. Revision 6: Added queuing model and completed description for commands and task management functions. Incorporated comments from last review.

Document Editing Conventions:

Special Characters: To facilitate creation of a readable ASCII text version of this document, the following characters not in the ASCII set are generated by invoking specific styles: Symbol Style ASCII Equiv.. WP special character ------ ----- ------------ -------------------- <- (Left arrow) left_arrow, "<-" (use hard hyphen, KP5,-) char: 6,22 || (double vertical line) DVLINE, "||" char: 6,17 "**" (superscript) superscript "**" N/A Before generating an ASCII text document, the above styles should be temporarily modified to substitute the ASCII equivalents for the symbols listed. An easy way to do this is to have ASCII and non-ASCII versions in separate style files.

X3T10/994D revision 18 November 27, 1995

POINTS OF CONTACT:

X3T10 Chair X3T10 Vice-Chair
John B. Lohmeyer Larry Lamers
NCR Corporation Adaptec, Inc.
1635 Aeroplaza Drive 4611 Park Norton Place
Colo Spgs, CO 80916 San Jose, CA 95136

Tel: (719) 573-5662 Tel: (408) 957-7817
Fax: (719) 597-8225 Fax: (408) 957-7193
Email: john.lohmeyer@ftcollinsco.ncr.com Email: ljlamers@aol.com

X3 Secretariat
Lynn Barra
Administrator Standards Processing
X3 Secretariat Telephone: 202-626-5738
1250 Eye Street, NW Suite 200 Facsimile: 202-638-4922
Washington, DC 20005

SCSI Reflector
Internet address for subscription to the SCSI reflector: scsiadm@wichitaks.ncr.com
Internet address for distribution via SCSI reflector: scsi@wichitaks.ncr.com

SCSI Bulletin Board
719-574-0424

Document Distribution
Global Engineering Telephone: 303-792-2181 or
15 Inverness Way East 800-854-7179
Englewood, CO 80112-5704 Facsimile: 303-792-2192

ABSTRACT

This standard specifies the SCSI Architecture Model. The purpose of the architecture is to provide a common basis
for the coordination of SCSI-3 standards and to specify those aspects of SCSI-3 I/O system behavior which are
independent of a particular technology and common to all implementations.

PATENT STATEMENT

CAUTION: The developers of this standard have requested that holder's of patents that may be required for the
implementation of the standard, disclose such patents to the publisher. However, neither the developers nor the
publisher have undertaken a patent search in order to identify which, if any, patents may apply to this standard.

As of the date of publication of this standard and following calls for the identification of patents that may be
required for the implementation of the standard, no such claims have been made. No further patent search is
conducted by the developer or the publisher in respect to any standard it processes. No representation is made
or implied that licenses are not required to avoid infringement in the use of this standard.

November 27, 1995 X3T10/994D revision 18

working draft SCSI-3 Architecture Model 3

Table of Contents

Foreword . 7

0. Introduction . 9

1 Scope of the Architecture . 9
1.1 Scope of SCSI-3 Standards . 9
1.2 Architecture Standard . 10
1.3 Implementation Standards . 11
1.3.1 Commands . 11
1.3.2 Device Access Methods . 11
1.3.3 SCSI-3 Protocol Standards . 11
1.3.4 Interconnect Standards . 11

2 Normative References . 11

3 Glossary and Conventions . 11
3.1 Glossary . 12
3.2 References to SCSI Standards . 18
3.3 Acronyms and Abbreviations: . 18
3.4 Editorial Conventions . 18
3.5 Numeric Conventions . 18
3.6 Reserved Fields and Codes . 19
3.7 Objects and Object Notation . 19
3.7.1 Notation for Objects . 19
3.7.2 Object Addresses and Identifiers . 21
3.7.3 Predefined Objects . 21
3.7.4 Hierarchy Diagrams . 21
3.8 Notation for Procedures and Functions . 22
3.9 State Diagram . 23

4 SCSI-3 Architecture Model . 24
4.1 Introduction . 24
4.2 The SCSI-3 Distributed Service Model . 24
4.3 The SCSI-3 Client-Server Model . 25
4.4 The SCSI-3 Structural Model . 27
4.5 SCSI Domain . 28
4.6 The Service Delivery Subsystem . 29
4.6.1 Synchronizing Client and Server States . 30
4.6.2 Request/Response Ordering . 31
4.7 SCSI Device Models . 31
4.7.1 SCSI Initiator Model . 33
4.7.2 SCSI Target . 34
4.7.3 The Task Manager . 34
4.7.4 Logical Unit . 35
4.8 The SCSI-3 Model for Distributed Communications . 37

5 SCSI Command Model . 41
5.1 Command Descriptor Block . 42
5.1.1 Operation Code . 43
5.1.2 Control Field . 44
5.2 Status . 44
5.3 Protocol Services in Support of Execute Command . 46
5.3.1 Data Transfer Protocol Services . 47

X3T10/994D revision 18 November 27, 1995

4 working draft SCSI-3 Architecture Model

5.3.2 Data-In Delivery Service . 48
5.3.3 Data-Out Delivery service . 48
5.4 Task and Command Lifetimes . 49
5.5 Command Processing Examples . 50
5.5.1 Unlinked Command Example . 50
5.5.2 Linked Command Example . 51
5.6 Command Processing Considerations and Exception Conditions . 52
5.6.1 Auto Contingent Allegiance . 52
5.6.1.1 Logical Unit Response to Auto Contingent Allegiance . 52
5.6.1.2 Clearing an Auto Contingent Allegiance Condition . 53
5.6.2 Overlapped Commands . 53
5.6.3 Incorrect Logical Unit Selection . 54
5.6.4 Sense Data . 54
5.6.4.1 Asynchronous Event Reporting . 55
5.6.4.2 Autosense . 56
5.6.5 Unit Attention Condition . 56
5.6.6 Hard Reset . 57

6 Task Management Functions . 58
6.1 ABORT TASK . 59
6.2 ABORT TASK SET . 59
6.3 CLEAR ACA . 60
6.4 CLEAR TASK SET . 60
6.5 TARGET RESET . 60
6.6 TERMINATE TASK . 61
6.7 Task Management Protocol Services . 61
6.8 Task Management Function Example . 62

7 Task Set Management . 64
7.1 Terminology . 64
7.2 Task Management Events . 64
7.3 Task Abort Events . 65
7.4 Task States . 65
7.4.1 Enabled . 65
7.4.2 Blocked . 66
7.4.3 Dormant . 66
7.4.4 Ended . 66
7.5 Task Attributes . 66
7.5.1 SIMPLE Task . 66
7.5.2 ORDERED Task . 66
7.5.3 HEAD OF QUEUE Task . 66
7.5.4 ACA Task . 66
7.6 Task State Transitions . 67
7.7 Task Set Management Examples . 68
7.7.1 Blocking Boundaries . 68
7.7.2 HEAD OF QUEUE Tasks . 69
7.7.3 Ordered Tasks . 70
7.7.4 ACA Task . 71
7.7.5 Deferred Task Completion . 72

November 27, 1995 X3T10/994D revision 18

working draft SCSI-3 Architecture Model 5

Object Definitions
Object Definition 1 SCSI Domain . 29
Object Definition 2: Service Delivery Subsystem . 30
Object Definition 3: SCSI Device . 32
Object Definition 4: Initiator . 33
Object Definition 5: Target . 34
Object definition 6: Logical Unit . 35
Object Definition 7: Task . 36

Figures

Figure 1: Requirements Precedence . 9
Figure 2: Functional Scope of SCSI-3 Standards . 10
Figure 3: Example of Hierarchy Diagram . 21
Figure 4: State Diagram . 23
Figure 5: Client-Server Model . 25
Figure 6: SCSI Client-Server Model . 26
Figure 7: SCSI I/O System and Domain Model . 27
Figure 8: SCSI Hierarchy . 28
Figure 9: Domain Functional Model . 28
Figure 10: Domain Hierarchy . 29
Figure 11: Service Delivery Subsystem Hierarchy . 29
Figure 12: SCSI Device Functional Models . 32
Figure 13: SCSI Device Hierarchy Diagram . 32
Figure 14: Target Object Hierarchy . 34
Figure 15: Logical Unit Object Hierarchy . 35
Figure 16: Protocol Service Reference Model . 38
Figure 17: Protocol Service Model . 39
Figure 18: Request-Response ULP Transaction and Related LLP Services . 40
Figure 19: Model for buffered data transfers . 47
Figure 20: Command processing events . 50
Figure 21: Linked Command Processing Events . 51
Figure 22: Task Management Request Processing . 63
Figure 23: Example of Dormant Task Behavior . 65
Figure 24: Task States . 67
Figure 25: HEAD OF QUEUE Tasks . 69
Figure 26: HEAD OF QUEUE Tasks and Blocking Boundaries . 70
Figure 27: Ordered Tasks and Blocking Boundaries . 71
Figure 28: ACA Task Example . 72
Figure 29: Example of Deferred Task Completion . 73

X3T10/994D revision 18 November 27, 1995

6 working draft SCSI-3 Architecture Model

List of Tables

Table 1 -- Format of Command Descriptor Block . 43
Table 2 -- Operation Code . 43
Table 3 -- Control Field . 44
Table 4 -- Status Codes . 45

scope.wp

November 27, 1995 X3T10/994D revision 18

working draft SCSI-3 Architecture Model 7

Foreword

The purpose of this standard is to provide a basis for the coordination of SCSI-3 standards development and to
define requirements, common to all SCSI-3 technologies and implementations, which are essential for compatibility
with host SCSI-3 application software and device-resident firmware across all SCSI-3 protocols. These
requirements are defined through a reference model which specifies the behavior and abstract structure which
is generic to all SCSI-3 I/O system implementations.

As with any other technical document, there may arise questions of interpretation as new products are
implemented. The X3 Committee has established procedures to issue technical opinions concerning the
standards developed by the X3 organization. These procedures may result in SCSI Technical Information
Bulletins being published by X3.

These Bulletins, while reflecting the opinion of the Technical Committee which developed the standard, are
intended solely as supplementary information to other users of the standard. This standard, ANS X3.270-199x,
as approved through the publication and voting procedures of the American National Standards Institute, is not
altered by these bulletins. Any subsequent revision to this standard may or may not reflect the contents of these
Technical Information Bulletins.

Technical Committee X3T10 on Lower Level Interfaces, which developed this standard, had the following
members:

John B. Lohmeyer, Chair
Lawrence J. Lamers, Vice-Chair
Ralph O. Weber, Secretary

I. Dal Allan Bob Masterson Michael Wingard
Paul D. Aloisi David McFadden Mark Woithe
Ron Apt James McGrath Ezra Alcudia (Alt.)
Geoffrey Barton Pete McLean Michael Alexenko (Alt.)
Robert Bellino Patrick Mercer Steven A. Anderson (Alt.)
Charles Brill Gene Milligan David Andreatta (Alt.)
Peter Brown Charles Monia Tak Asami (Alt.)
Michael Bryan Dennis P. Moore Akram Atallah (Alt.)
Joe Chen Ian Morrell Paul Boulay (Alt.)
Chris D'Iorio John Moy Kevin Calvert (Alt.)
Joe Dambach S. Nadershahi John Cannon (Alt.)
Jan V. Dedek Erich Oetting Kurt Chan (Alt.)
Stephen G. Finch Alan R. Olson Shufan Chan (Alt.)
Edward Fong Dennis Pak Ting Li Chan (Alt.)
Louis Grantham Duncan Penman Mike Chenery (Alt.)
Norm Harris George Penokie Nancy Cheng (Alt.)
Edward Haske Doug Piper William Clemmey (Alt.)
Dennis R. Haynes Donna Pope Dan Colegrove (Alt.)
Stephen F. Heil Robert Reiseh Roger Cummings (Alt.)
Stephen Holmstead Scott Smyers Zane Daggett (Alt.)
David Hudson Robert N. Snively William Dallas (Alt.)
Peter Johansson Jeff Stai Varouj Der-Hacopian (Alt.)
Gerry Johnsen Gary R. Stephens
Skip Jones Clifford E. Strang Jr.
Edward Lappin Thomas 'Rick' Tewell
Joe Lawlor Dean Wallace
David Lawson Harvey Waltersdorf
Robert Liu Gary M. Watson

X3T10/994D revision 18 November 27, 1995

8 working draft SCSI-3 Architecture Model

Dhiru N. Desai (Alt.) Mike Hetzel (Alt.) John Masiewicz (Alt.)
Mike Eneboe (Alt.) Gerald Houlder (Alt.) Daniel E. Moczarny (Alt.)
Timothy Feldman (Alt.) Paul Jackson (Alt.) E.J. Mondor (Alt.)
Edward A. Gardner (Alt.) Kevin James (Alt.) Jay Neer (Alt.)
John Geldman (Alt.) Brian Johnson (Alt.) Tim Norman (Alt.)
Chuck Grant (Alt.) Mark Jordan (Alt.) Vit Novak (Alt.)
Peter Haas (Alt.) Richard Kalish (Alt.) Kevin R. Pokorney (Alt.)
Douglas Hagerman (Alt.) Greg Kapraun (Alt.) Gary Porter (Alt.)
Kenneth J. Hallam (Alt.) Thomas J. Kulesza (Alt.) Doug Prins (Alt.)
William Ham (Alt.) Dennis Lang (Alt.) Steven Ramberg (Alt.)
Tom Hanan (Alt.) Bill Mable (Alt.) Ron Roberts (Alt.)
Rick Heidick (Alt.) Gerald Marazas (Alt.)

John P. Scheible (Alt.) Nicos Syrimis (Alt.) Jeffrey L. Williams (Alt.)
J. R. Sims (Alt.) Pete Tobias (Alt.) Kurt Witte (Alt.)
Michael Smith (Alt.) Adrienne Turenne (Alt.) Devon Worrell (Alt.)
Allen Spalding (Alt.) Joseph Wach (Alt.) Charles I. Yang (Alt.)
Arlan P. Stone (Alt.) Roger Wang (Alt.) Danny Yeung (Alt.)
Joe Stoupa (Alt.) Dave Weber (Alt.) Mike Yokoyama (Alt.)
George Su (Alt.) Bob Whiteman (Alt.)

SCSI-3 Architecture Model

SCSI-3
Implementation

Generic
requirements

Implementation
requirements

SCSI-3 Implementation
Standard

SCSI-3 Implementation
Standard

SCSI-3 Implementation
Standard

November 27, 1995 X3T10/994D revision 18

working draft SCSI-3 Architecture Model 9

Figure 1 : Requirements Precedence

0. Introduction

This specification describes a reference model for the coordination of standards applicable to SCSI-3 I/O systems
and a set of common behavioral requirements which are essential for the development of host software and device
firmware that can interoperate with any SCSI-3 interconnect or protocol.

1 Scope of the Architecture

The set of SCSI-3 standards consists of the SCSI-3 Architecture Model (this specification) and the SCSI-3
implementation standards described in 1.1.

This standard defines generic requirements, which pertain to SCSI-3 implementation standards, and
implementation requirements. An implementation requirement specifies behavior in terms of measurable or
observable parameters which apply directly to an implementation. Examples of implementation requirements
defined in this document are the command descriptor block format and the status values to be returned upon
command completion.

Generic requirements are transformed to implementation requirements by an implementation standard. An
example of a generic requirement is the hard reset behavior specified in subclause 5.6.6.

As shown in figure 1, all SCSI-3 implementation standards shall reflect the generic requirements defined herein.
In addition, an implementation claiming SCSI-3 compliance shall conform to the applicable implementation
requirements defined in this standard and the appropriate SCSI-3 implementation standards. In the event of a
conflict between this document and other SCSI-3 standards under the jurisdiction of technical committee X3T10,
the requirements of this standard shall apply.

1.1 Scope of SCSI-3 Standards

Figure 2 uses a representative set of specifications to show the functional partitions and the relationships among
SCSI-3 standards.

SCSI-3
Interlocked

Protocol
(SIP)

SCSI-3
Parallel

Interface
(SPI)

SCSI-3
Fibre Channel

Protocol
(FCP)

Fibre Channel
Physical and Signaling

Interface (FC-PH)

IEEE 1394
High

Performance
Serial Bus

SCSI-3
Serial Bus

Protocol
(SBP)

SCSI-3
SSP

Protocol

Serial Storage
Architecture Bus

(SSA-PH)

S
C

S
I-

3
A

rc
hi

te
ct

ur
e

M
od

el
(S

A
M

)

Protocols

Interconnects

SCSI-3 Block
Commands (SBC)

SCSI-3 Stream
Commands (SSC)

SCSI-3 Graphic
Commands (SGC)

SCSI-3 Medium
Changer

Commands (SMC)

SCSI-3 Primary Commands (SPC)

Commands

C
om

m
on

 A
cc

es
s

M
et

ho
d

(C
A

M
)

X3T10/994D revision 18 November 27, 1995

10 working draft SCSI-3 Architecture Model

Figure 2 : Functional Scope of SCSI-3 Standards

The functional areas define the scope of each standard as follows:

SCSI Architecture Model: Defines the SCSI systems model, the functional partitioning of the SCSI-3 standard set
and requirements applicable to all SCSI-3 implementations and implementation standards.

Commands: Implementation standards which define device classes including a device model for each class. These
standards specify the required commands and behavior that is common to all devices or unique to a given class
of devices and prescribe the rules to be followed by an initiator when sending commands to a device.

Common Access Method: Implementation standard which defines a host architecture and set of services for device
access.

Protocols: Implementation standards which define the rules for exchanging information so that different SCSI-3
devices can communicate.

Interconnects: Implementation standards which define the electrical and signaling rules essential for devices to
interoperate over a given physical interconnect.

The diagram of figure 2 shows how the standards listed below fit within each category. The standards included
in the diagram are meant to serve as examples and may not reflect the full set of standards currently in force.

1.2 Architecture Standard

SCSI-3 Architecture Model (X3.270-199x) (SAM): Defines the functional partitions and specifies a model for
SCSI-3 I/O system and device behavior which applies to all SCSI interconnects, protocols, access methods
and devices.

WARNING -- glossary.wp must be created by merging glossary.pri and glossary.sec.

glossary.pri

DO NOT EDIT GLOSSARY.WP.

This file is used as the formatting template to create glossary.wp, by merging with glossary.sec, which contains the alphabetically sorted glossary entries. To allow sorting with the WordPerfect sort tool, multi-word terms in the glossary are formatted with hard spaces between each word so sort will treat them as single-word entities. The last entry must be the delimiting string shown in the template. Sorting will cause this entry to always be placed last.

November 27, 1995 X3T10/994D revision 18

working draft SCSI-3 Architecture Model 11

1.3 Implementation Standards

1.3.1 Commands

SCSI-3 Primary Commands (X3T10-995D) (SPC) - Commands and device behavior common to all SCSI-3
target devices.

SCSI-3 Block Commands (X3T10-996D) (SBC) - Block oriented SCSI-3 devices (e.g., disks).

SCSI-3 Stream Commands (X3T10-997D) (SSC) - Stream-oriented SCSI-3 devices (e.g., tape).

SCSI-3 Graphics Commands (X3T10-998D) (SGC) - Graphical input or output SCSI-3 devices (e.g.,
printers).

SCSI-3 Medium Changer Commands (X3T10-999D) (SMC) - SCSI-3 media changers such as CD/ROM
carousels.

SCSI-3 Controller Commands (X3T10-XXXD) (SCC) - SCSI-3 I/O subsystem controllers such as a disk array
device controller.

1.3.2 Device Access Methods

SCSI-3 Common Access Method (X3.332-199x) (CAM): A host architecture for performing SCSI device I/O.
CAM defines a layered environment and set of services, based on the C computer language, which allow
device drivers to be written that are independent of interconnects, protocols, operating systems and host
platforms.

1.3.3 SCSI-3 Protocol Standards

The following is a representative list of SCSI-3 protocol standards and the physical interconnects on which these
are implemented.

SCSI-3 Interlocked Protocol (X3T10-856D) (SIP) - SCSI-3 Parallel Interface.
SCSI-3 Serial Bus Protocol (X3T10-992D) (SBP) - High Performance Serial Bus (IEEE 1394).
Fibre Channel Protocol for SCSI (X3T10-993D) (FCP) - Fibre Channel interconnects.
SCSI-3 Serial Storage Protocol (X3T10-XXXX) (SSP) - SCSI-3 Serial Storage Architecture.

1.3.4 Interconnect Standards

SCSI-3 Parallel Interface (X3T10-885D) (SPI)
Fibre Channel - PH (X3T11-XXXX)
High Performance Serial Bus (IEEE 1394)
Serial Storage Architecture - PH (X3T10.1-XXX) (SSA)

2 Normative References

X3.131-1994 American National Standard Small Computer System Interface -2.

3 Glossary and Conventions

X3T10/994D revision 18 November 27, 1995

12 working draft SCSI-3 Architecture Model

3.1 Glossary

3.1.1 aborted command: An SCSI command that has been ended by aborting the task created to execute it.

3.1.2 ACA command: A command performed by a task with the ACA attribute (see subclause 3.3 and object
definition 6).

3.1.3 application client: An object that is the source of SCSI commands.

3.1.4 auto contingent allegiance: The condition of a task set following the return of a CHECK CONDITION or
COMMAND TERMINATED status.

3.1.5 blocked (task state): The state of a task that is prevented from completing due to an ACA condition.

3.1.6 blocking boundary: A task set boundary denoting a set of conditions that inhibit tasks outside the boundary
from entering the Enabled state.

3.1.7 byte: An 8-bit construct.

3.1.8 call: The act of invoking a procedure.

3.1.9 client-server: A relationship established between a pair of distributed objects where one (the client)
requests the other (the server) to perform some operation or unit of work on the client's behalf.

3.1.10 client: An object that requests a service from a server.

3.1.11 command: A request describing a unit of work to be performed by a device server.

3.1.12 command descriptor block: A structure up to 16 bytes in length used to communicate a command from
an application client to a device server.

3.1.13 completed command: A command that has ended by returning a status and service response of Task
Complete, Linked Command Complete , or Linked Command Complete (with flag) .

3.1.14 completed task: A task that has ended by returning a status and service response of Task Complete .
The actual events comprising the Task Complete response are protocol specific.

3.1.15 confirmation: A response returned to an object, which signals the completion of a service request.

3.1.16 confirmed protocol service: A service available at the protocol service interface, which requires
confirmation of completion.

3.1.17 current task: A task that is in the process of sending status or transferring command data to or from the
initiator.

3.1.18 destination device: The SCSI device to which a service delivery transaction is addressed. See source
device.

3.1.19 device server: An object within the logical unit which executes SCSI tasks according to the rules for task
management described in clause 7.

3.1.20 device service request: A request, submitted by an application client, conveying an SCSI command to
a device server.

November 27, 1995 X3T10/994D revision 18

working draft SCSI-3 Architecture Model 13

3.1.21 device service response: The response returned to an application client by a device server on completion
of an SCSI command.

3.1.22 domain: An I/O system consisting of a set of SCSI devices that interact with one another by means of a
service delivery subsystem.

3.1.23 dormant (task state): The state of a task that is prevented from starting execution due to the presence of
certain other tasks in the task set.

3.1.24 enabled (task state): The state of a task that may complete at any time. Alternatively, the state of a task
that is waiting to receive the next command in a series of linked commands.

3.1.25 ended command: A command that has completed or aborted.

3.1.26 faulted initiator: The initiator to which a COMMAND TERMINATED or CHECK CONDITION status was
returned.

3.1.27 faulted task set: A task set that contained a faulting task.

3.1.28 faulting command: A command that completed with a status of CHECK CONDITION or
COMMAND TERMINATED.

3.1.29 faulting task: A task that has completed with a status of CHECK CONDITION or
COMMAND TERMINATED.

3.1.30 function complete: A logical unit response indicating that a task management function has finished. The
actual events comprising this response are protocol specific.

3.1.31 hard reset: A target response to a reset event or a TARGET RESET in which the target performs the
operations described in subclause 5.6.6.

3.1.32 I/O operation: An operation defined by an unlinked SCSI command, a series of linked SCSI commands
or a task management function.

3.1.33 implementation: The physical realization of an object.

3.1.34 implementation-specific: A requirement or feature that is defined in an SCSI-3 standard but whose
implementation may be specified by the system integrator or vendor.

3.1.35 implementation option: An option whose actualization within an implementation is at the discretion of the
implementor.

3.1.36 initiator: An SCSI device containing application clients which originate device service and task
management requests to be processed by a target SCSI device.

3.1.37 interconnect subsystem: One or more physical interconnects which appear as a single path for the
transfer of information between SCSI devices in a domain.

3.1.38 in transit: Information that has been sent to a remote object but not yet received.

3.1.39 layer: A subdivision of the architecture constituted by subsystems of the same rank.

3.1.40 linked CDB: A CDB with the link bit in the control byte set to one.

X3T10/994D revision 18 November 27, 1995

14 working draft SCSI-3 Architecture Model

3.1.41 linked command: One in a series of SCSI commands executed by a single task, which collectively make
up a discrete I/O operation. In such a series, each command has the same task identifier, and all, except the
last, have the link bit in the CDB control byte set to one.

3.1.42 logical unit: A target-resident entity which implements a device model and executes SCSI commands sent
by an application client.

3.1.43 logical unit number: A 64-bit identifier for a logical unit.

3.1.44 logical unit option: An option pertaining to a logical unit, whose actualization is at the discretion of the
logical unit implementor.

3.1.45 lower level protocol: A protocol used to carry the information representing upper level protocol
transactions.

3.1.46 mandatory: The referenced item is required to claim compliance with a standard.

3.1.47 media information: Information stored within an SCSI device, which is non-volatile (retained through a
power cycle) and accessible to an initiator through the execution of SCSI commands.

3.1.48 object: An architectural abstraction or "container" that encapsulates data types, services, or other objects
that are related in some way.

3.1.49 option, optional: Implementation of the referenced item is not required to claim compliance with an SCSI-3
standard. The implementation of an optional item shall comply with the standard.

3.1.50 peer-to-peer protocol service: A service used by an upper level protocol implementation to exchange
information with its peer.

3.1.51 peer entities: Entities within the same layer.

3.1.52 pending task: A task that is not a current task.

3.1.53 physical interconnect: A single physical pathway for the transfer of information between SCSI devices
in a domain.

3.1.54 port: Synonymous with "service delivery port".

3.1.55 procedure: An operation that can be invoked through an external calling interface.

3.1.56 protocol-specific: Implementation of the referenced item is defined by an SCSI-3 protocol standard (see
1.3.3).

3.1.57 protocol: The rules governing the content and exchange of information passed between distributed objects
through the service delivery subsystem.

3.1.58 protocol option: An option whose definition within an SCSI-3 protocol standard is discretionary.|

3.1.59 protocol service confirmation: A signal from the lower level protocol service layer notifying the upper
layer that a protocol service request has completed.

3.1.60 protocol service indication: A signal from the lower level protocol service layer notifying the upper level
that a protocol transaction has occurred.

November 27, 1995 X3T10/994D revision 18

working draft SCSI-3 Architecture Model 15

3.1.61 protocol service request: A call to the lower level protocol service layer to begin a protocol service
transaction.

3.1.62 protocol service response: A reply from the upper level protocol layer in response to a protocol service
indication.

3.1.63 queue: The arrangement of tasks within a task set, usually according to the temporal order in which they
were created. See "task set".

3.1.64 receiver: A client or server that is the recipient of a service delivery transaction.

3.1.65 reference model: A standard model used to specify system requirements in an implementation-
independent manner.

3.1.66 request: A transaction invoking a service.

3.1.67 request-response transaction: An interaction between a pair of distributed, cooperating objects,
consisting of a request for service submitted to an object followed by a response conveying the result.

3.1.68 request-confirmation transaction: An interaction between a pair of cooperating objects, consisting of a
request for service submitted to an object followed by a response from the object confirming request completion.

3.1.69 reserved: The term used for bits, fields, signals, and code values that are set aside for future
standardization.

3.1.70 reset event: A protocol-specific event which may trigger a hard reset response from an SCSI device as
described in subclause 5.6.6.

3.1.71 response: A transaction conveying the result of a request.

3.1.72 SCSI application layer: The protocols and procedures that implement SCSI commands and task
management functions by invoking services provided by an SCSI protocol layer.

3.1.73 SCSI Device: A device that is connected to a service delivery subsystem and supports an SCSI application
protocol.

3.1.74 SCSI device identifier: An address by which an SCSI device is referenced within a domain.

3.1.75 SCSI I/O system: An I/O system, consisting of two or more SCSI devices, an SCSI interconnect and an
SCSI protocol, which collectively interact to perform SCSI I/O operations.

3.1.76 SCSI protocol layer: The protocol and services used by an SCSI application layer to transport data
representing an SCSI application protocol transaction.

3.1.77 sender: A client or server that originates a service delivery transaction.

3.1.78 server: An SCSI object that performs a service on behalf of a client.

3.1.79 service: Any operation or function performed by an SCSI-3 object, which can be invoked by other SCSI-3
objects.

3.1.80 service delivery failure: Any non-recoverable error causing the corruption or loss of one or more service
delivery transactions while in transit.

X3T10/994D revision 18 November 27, 1995

16 working draft SCSI-3 Architecture Model

3.1.81 service delivery port: a device-resident interface used by the application client, device server or task
manager to enter and retrieve requests and responses from the service delivery subsystem. Synonymous with
"port".

3.1.82 service delivery subsystem: That part of an SCSI I/O system which transmits service requests to a
logical unit or target and returns logical unit or target responses to an initiator.

3.1.83 service delivery transaction: A request or response sent through the service delivery subsystem.

3.1.84 signal: (n) A detectable asynchronous event possibly accompanied by descriptive data and parameters.
(v) The act of generating such an event.

3.1.85 source device: The SCSI device from which a service delivery transaction originates. See destination
device.

3.1.86 subsystem: An element in a hierarchically partitioned system which interacts directly only with elements
in the next higher division or the next lower division of that system.

3.1.87 suspended information: Information stored within a logical unit that is not available to any pending tasks.

3.1.88 target: An SCSI device which receives SCSI commands and directs such commands to one or more logical
units for execution.

3.1.89 task: An object within the logical unit representing the work associated with a command or group of linked
commands.

3.1.90 task abort event: An event or condition indicating that the task has been aborted by means of a task
management function.

3.1.91 task completion event: An event or condition indicating that the task has ended with a service response
of Task Complete .

3.1.92 task ended event: An event or condition indicating that the task has completed or aborted.

3.1.93 task management function: A task manager service which can be invoked by an application client to affect
the execution of one or more tasks.

3.1.94 task management request: A request submitted by an application client, invoking a task management
function to be executed by a task manager.

3.1.95 task management response: The response returned to an application client by a task manager on
completion of a task management request.

3.1.96 task manager: A server within the target which executes task management functions.

3.1.97 task set: A group of tasks within a target device, whose interaction is dependent on the queuing and auto|
contingent allegiance rules of clause 7.

3.1.98 task slot: Resources within the logical unit that may be used to contain a task.

3.1.99 third-party command: An SCSI command which requires a logical unit within the target device to assume
the initiator role and send an SCSI command to a target device.

notation.wp

November 27, 1995 X3T10/994D revision 18

working draft SCSI-3 Architecture Model 17

3.1.100 transaction: A cooperative interaction between two objects, involving the exchange of information or the
execution of some service by one object on behalf of the other.

3.1.101 unconfirmed protocol service: A service available at the protocol service interface, which does not result
in a completion confirmation.

3.1.102 unlinked command: An SCSI-3 command having the link bit set to zero in the CDB control byte.

3.1.103 upper level protocol: An application-specific protocol executed through services provided by a lower level
protocol.

3.1.104 vendor-specific: Specification of the referenced item is determined by the device vendor.

X3T10/994D revision 18 November 27, 1995

18 working draft SCSI-3 Architecture Model

3.2 References to SCSI Standards

The original Small Computer System Interface Standard, X3.131-1986, is referred to herein as SCSI-1. SCSI-1
was revised resulting in the Small Computer System Interface -2 (X3.131-1994), referred to herein as SCSI-2.
The set of SCSI-3 standards are collectively referred to as SCSI-3. The term SCSI is used wherever it is not
necessary to distinguish between the versions of SCSI.

References to individual SCSI-3 standards within this document use one of the three-character mnemonics shown
in 1.1.

3.3 Acronyms and Abbreviations:

ACA: Auto contingent allegiance.

AER: Asynchronous event report.

CAM: Common Access Method.

CDB: Command descriptor block.

LLP: Lower level protocol.

LUN: Logical unit number.

SDP: service delivery port.

SDS: Service Delivery Subsystem.

ULP: Upper level protocol.

3.4 Editorial Conventions

Certain words and terms used in this standard have a specific meaning beyond the normal English meaning.
These words and terms are defined either in the glossary or in the text where they first appear.

Upper case is used when referring to the name of a numeric value defined in this specification or a formal attribute
possessed by an object. When necessary for clarity, names of objects, procedures, parameters or discrete states
are capitalized or set in bold type.

3.5 Numeric Conventions

Digits 0-9 in the text of this standard that are not immediately followed by lower-case "b" or "h" are decimal values.
Digits 0 and 1 immediately followed by lower case "b" are binary values. Digits 0-9 and the upper case letters "A"-
"F" immediately followed by lower-case "h" are hexadecimal values.

Large numbers are not separated by commas or spaces (e.g., 12345; not 12,345 or 12 345).

November 27, 1995 X3T10/994D revision 18

working draft SCSI-3 Architecture Model 19

3.6 Reserved Fields and Codes

Reserved fields and code values within a data structure specified by this or any other SCSI-3 standard are set
aside for future standardization. Their use and interpretation may be specified by future extensions to these
standards. A reserved field shall be set to zero, or in accordance with a future extension to any SCSI-3 standard.

3.7 Objects and Object Notation

The SCSI architecture is defined in terms of objects. As specified in this standard, objects are abstractions
encapsulating a set of related functions, data types and other objects. Certain objects, such as an interconnect,
may correspond to a physical entity while others, such as a task, may only exist conceptually. That is, although
such objects exhibit a well-defined, observable set of behaviors, they do not exist as separate physical elements.

An object is a container that may enclose single entities and other objects. For example, an SCSI device may
contain logical units. A logical unit may have tasks, a task set and so forth. The following clauses describe
notational and graphical conventions for specifying objects.

3.7.1 Notation for Objects

The following symbols are used to define the composition of an object.

= "is composed of" This symbol indicates that the object named on the left is composed
of the objects named of the right.

+ "together with" This symbol collects objects into a group. No ordering is implied. In
the expression:

A = B + C

object A is composed of B together with C.

[|] "select one of" This is equivalent to an "exclusive or" operation. In the expression:

A = [B|C|D]

object A is composed of one object selected from B, C or D.

() "optional" The objects enclosed in parenthesis are optional. In the expression:

A = B + (C)

object A includes B and, optionally, C.

X3T10/994D revision 18 November 27, 1995

20 working draft SCSI-3 Architecture Model

{ } "instances of" A set of objects enclosed within curly brackets may occur any
number of times in a given instance. No physical ordering is
implied. The brackets may be indexed. For example, M{...}N
indicates any number of instances from M to N. Thus:

{...}3 implies 0, 1, 2 or 3 instances.

3{...} implies 3 or more instances. The upper limit is
implementation or protocol specific.

3{...}3 implies exactly 3 instances.

3{...}5 implies from 3 to 5 instances.

"xxx" ASCII character Object consists of the ASCII encodings for the characters enclosed
string in quotation marks.

nn binary encoded Object consists of the binary encoding representing the specified
value value. For example

A = 54

defines object A as the binary encoding of the decimal value 54.

... range Denotes a sequential set of discrete values. Thus:

[1|...|100] implies one out of a set of binary encoded integers
between 1 and 100.

["A"|...|"Z"] implies one out of a set of ASCII-encoded alphabetic
characters between "A" and "Z".

Unless stated otherwise, literals outside the range of specified
values are reserved for future standardization.

7 " p h y s i c a l l y
contains"

As in A 7 B. Object A physically contains object B.

Use of this notation is restricted to the specification of object
addresses and identifiers as described below.

<nn> vector of objects Denotes "nn" physically contiguous instances of the object. Thus,
for example:

byte<10> defines a physically contiguous vector of ten bytes.

/*...*/ remark Encloses a comment.

There is no physical ordering implied by the sequence in which objects are specified in a grouping. Thus, the term
"8{byte}8" or the expression "A + B + C" in an object definition says nothing about the physical ordering of these
objects. A physically contiguous vector of items is denoted by means of the array notation specified above.

Chapter Index

Section Introductory
Text

Figure

Book

Preface Table of
Contents

November 27, 1995 X3T10/994D revision 18

working draft SCSI-3 Architecture Model 21

Figure 3 : Example of Hierarchy Diagram

3.7.2 Object Addresses and Identifiers

This standard defines certain objects that are referenced externally by an address. By convention, such an object
is made up of two components: a storage object specifying the maximum size of the address field and a set of
allowable identifier values. The following is an example of an identifier object definition.

Ident_a = byte 7 [0 | ... | 243]

The object "Ident_a" is an identifier composed of an 8-bit "container" (the 'byte' object) and the binary encoding
of a single value from 0 to 243. Values not in the range are reserved. The left arrow operator ("7") indicates that
the storage object physically contains the encoding for one of the allowed values.

3.7.3 Predefined Objects

The following predefined objects are used throughout this standard:

Constant: Object containing a fixed value. The container size and contents are
implementation-specific.

Buffer = Byte<nn>: Byte array of size nn.

Value: Numeric quantity.

Flag = bit 7 [0|1]: A two-valued quantity as shown.

3.7.4 Hierarchy Diagrams

Hierarchy diagrams show how objects are related to each other. The hierarchy diagram of figure 3, for example,
shows the relationships among the objects comprising the "Book" object described in the following definition.

Book = 1{Chapter} + (Index) + Table of Contents + (Preface)

Chapter = 1{Section} + 0{Figure}

Preface = 1{Introductory Text} + 0{Figure}

X3T10/994D revision 18 November 27, 1995

22 working draft SCSI-3 Architecture Model

As given in the object definition, a Book object consists of one or more Chapters, a Table of Contents, an optional
Preface and optional Index. In the corresponding hierarchy diagram, labeled boxes denote the above objects.
The composition and relation of one object to others is shown by the connecting lines. In this case, the connecting
lines indicate the relationship between "Book" and its constituent objects "Chapter", "Index", "Table of Contents"
and �Preface�. Similarly, connecting lines show that "Chapter" contains objects "Section" and "Figure". Note that
the Figure object may also be a component of Preface.

The hierarchy diagram does not show multiple instances of an object or the fact that certain objects are optional.
In this example, the Figure object is shown only once, even though a chapter or preface may have several (or no)
instances of this object. Similarly, the Index object is shown even though it too is optional.

3.8 Notation for Procedures and Functions

In this standard, the model for functional interfaces between objects is the callable procedure. Such interfaces are
specified using the following notation:

[Result =] Procedure Name ([input-1] [,input-2] ...] || [output-1] [,output-2] ...)

Where:

Result: A single value representing the outcome of the procedure or function.

Procedure Name: A descriptive name for the function to be performed.

"(...)": Parentheses enclosing the lists of input and output arguments.

Input-1, Input-2, ...: A comma-separated list of names identifying caller-supplied input data
objects.

Output-1, Output-2, ...: A comma-separated list of names identifying output data objects to be
returned by the procedure.

"||": A separator providing the demarcation between inputs and outputs. Inputs
are listed to the left of the separator; outputs are listed to the right.

"[...]": Brackets enclosing optional or conditional parameters and arguments.

The data objects are specified using the notation of 3.7.1. This notation allows any data objects to be specified as inputs
and outputs. The following is an example of a procedure specification:

Found = Search (Pattern, Item List || [Item Found])

Where:

Found = Flag

Flag, which, if set, indicates that a matching item was located.

Input Arguments:

Pattern = ... /* Definition of Pattern object */

S0: State 0 S1: State 1
Actions taken on entry to S0 Actions taken on entry to S1

E0: Condition for transition of S0 back to itself E0: Condition for transition of S1 to S0

E1: Condition for transition of S0 to S1

S0:S0

S0:S1

S1:S0

transition label
The S0 entry actions are executed

following this transition.

November 27, 1995 X3T10/994D revision 18

working draft SCSI-3 Architecture Model 23

Figure 4 : State Diagram

Object containing the search pattern.

Item List = Item<NN> /* Array of NN Item objects*/

Contains the items to be searched for a match.

Output Arguments:

Item Found = Item ... /* Item located by the search procedure */

This object is only returned if the search succeeds.

Predefined objects commonly used as arguments are defined in 3.7.3.

3.9 State Diagram

All state diagrams use the notation shown in figure 4.

A system specified in this manner has the following properties:

a) Time elapses only within discrete states.

b) State transitions are logically instantaneous.

c) Every time a state is entered, the actions of that state are started. Note that this means that a transition that points
back to the same state will restart the actions from the beginning.

archmod.wp

X3T10/994D revision 18 November 27, 1995

24 working draft SCSI-3 Architecture Model

4 SCSI-3 Architecture Model

4.1 Introduction

The purpose of the SCSI-3 architecture model is to:

d) Provide a basis for the coordination of SCSI-3 standards development which allows each standard to be placed
into perspective within the overall SCSI-3 Architecture model.

e) Identify areas for developing standards and provide a common reference for maintaining consistency among related
standards so that independent teams of experts may work productively and independently on the development of
standards within each functional area.

f) Provide the foundation for application compatibility across all SCSI-3 interconnect and protocol environments by
specifying generic requirements that apply uniformly to all implementation standards within each functional area.

The development of this standard is assisted by the use of an abstract model. To specify the external behavior of a real
SCSI-3 system, elements in a real system are replaced by functionally equivalent components within this model. Only
externally observable behavior is retained as the standard of behavior. The description of internal behavior in this standard
is provided only to support the definition of the observable aspects of the model. Those aspects are limited to the generic
properties and characteristics needed for host applications to interoperate with SCSI-3 devices in any SCSI-3 interconnect
and protocol environment. As such, the model does not address other requirements which may be essential to some I/O
system implementations such as the mapping from SCSI device addresses to network addresses, the procedure for
discovering SCSI-3 devices on a network and the definition of network authentication policies for SCSI initiators or targets.
These considerations are outside the scope of the architecture model.

The reader not familiar with the concept of abstract modeling is cautioned that concepts introduced in the description of
an SCSI-3 I/O system constitute an abstraction despite a similar appearance to concepts possibly found in real systems.
Therefore, a real SCSI-3 I/O system need not be implemented as described by the model. Such a system, regardless of
how it is implemented, shall, however, comply with the requirements of this and all other applicable standards.

The SCSI-3 architecture model is described in terms of objects, protocol layers and service interfaces between objects.
As discussed in 3.7, an object may be a single numeric parameter, such as a logical unit number, or a complex entity
that performs a set of operations or services on behalf of another object.

Service interfaces are defined between distributed objects and protocol layers. The template for a distributed service
interface is the client-server model described in 4.2. Subclause 4.4 specifies the structure of an SCSI I/O system by
defining the relationship among objects. The set of distributed services to be provided are specified in clauses 5 and 6.

Requirements that apply to each SCSI-3 protocol standard are specified in the protocol service model described in
subclauses 5.3 and 6.7. The model describes required behavior in terms of layers, objects within layers and protocol
service transactions between layers.

4.2 The SCSI-3 Distributed Service Model

Service interfaces between distributed objects are represented by the client-server model shown in figure 5. Dashed
horizontal arrows denote a single request-response transaction as it appears to the client and server. The solid arrows
indicate the actual transaction path through the service delivery subsystem. In such a model, each client or server is a
single thread of execution which runs concurrently with all other clients or servers.

Client Server
Server Request

Server Response

Client-Server Transaction

Service Delivery Subsystem

Protocol Service
Interface

November 27, 1995 X3T10/994D revision 18

working draft SCSI-3 Architecture Model 25

Figure 5 : Client-Server Model

A client-server transaction is represented as a remote procedure call with inputs supplied by the caller (the client). The
procedure executed by the server returns outputs and a procedure status. A client directs requests to a remote server,
via the client's service delivery subsystem, and receives a completion response or a failure notification. The request,
which identifies the server and the service to be performed, includes the input data. The response conveys the output
data and request status. The function of the service delivery subsystem is to transport an error-free copy of the request
or response between sender and receiver. A failure notification indicates that a condition has been detected, such as
a reset, or service delivery failure, that precludes request completion.

As seen by the client, a request becomes pending when it is passed to the service delivery subsystem for transmission.
The request is complete when the server response is received or when a failure notification is returned. As seen by the
server, the request becomes pending upon receipt and completes when the response is passed to its service delivery
subsystem for return to the client. As a result there will usually be a time skew between the server and client's perception
of request status and logical unit state. All allusions to a pending command or task management function in this standard
are in the application client's frame of reference.

Client-server relationships are not symmetrical. A client may only originate requests for service. A server may only
respond to such requests. The client calls the server-resident procedure and waits for completion. From the client's
standpoint, the behavior of a remote service invoked in this manner is indistinguishable from a conventional procedure
call. In this model, confirmation of successful request or response delivery by the sender is not required. The model
assumes that delivery failures will be detected by the client's service delivery port.

4.3 The SCSI-3 Client-Server Model

As shown in figure 6, each SCSI-3 target device provides two classes of service, device services executed by the logical
units under the control of the target and task management functions performed by the task manager. A logical unit is an
object that implements one of the device functional models described in the SCSI-3 command standards and executes
SCSI-3 commands such as reading from or writing to the media. Each pending SCSI command or series of linked
commands defines a unit of work to be performed by the logical unit. As described below, each unit of work is represented
within the target by a task which can be externally referenced and controlled through requests issued to the task manager.

Application
Client

Task
Manager

Initiator Target

Device Service Request

Task Management Req.

Device Service Response

Task Management Resp.

Logical
Unit

Device
Server

X3T10/994D revision 18 November 27, 1995

26 working draft SCSI-3 Architecture Model

Figure 6 : SCSI Client-Server Model

All requests originate from application clients residing within an initiator device. An application client represents a thread
of execution whose functionality is independent of the interconnect and SCSI-3 protocol. In an implementation, that thread
could correspond to the device driver and any other code within the operating system that is capable of managing I/O
requests without requiring knowledge of the interconnect or SCSI-3 protocol. In the architecture model, an application
client is created to issue a single SCSI-3 command or task management function; it ceases to exist once the command
or task management function ends. Consequently, there is one application client for each pending command or task
management request. Within the initiator, one or more controlling entities, whose definition is outside the scope of the
architecture model, oversee the creation of and interaction among application clients.

As described in 4.2, each request takes the form of a procedure call with arguments and a status to be returned. An
SCSI-3 command is issued as a request for device service directed to a device server within a logical unit. Each device
service request contains a command descriptor block, defining the operation to be performed, along with a list of
command-specific inputs and other parameters specifying how the command is to be processed. If supported by a logical
unit, a sequence of linked commands may be used to define an extended I/O operation.

A task is an object within the logical unit representing the work associated with a command or series of linked commands.
A new command or the first in a series of linked commands causes the creation of a task. The task persists until a
command completion response is sent or until the task is ended by a task management function or exception condition.
Subclause 5.5.1 gives an example of the processing for a single command. Subclause 5.5.2 gives an example of linked
command processing.

An application client may request execution of a task management function through a request directed to the task
manager. Subclause 6.8 shows the interactions between the task manager and application client when a task
management request is processed.

Power Power

DATADATA

SCSI Device SCSI Device SCSI Device SCSI Device

Service Delivery Subsystem

I/O System

Domain

November 27, 1995 X3T10/994D revision 18

working draft SCSI-3 Architecture Model 27

Figure 7 : SCSI I/O System and Domain Model

4.4 The SCSI-3 Structural Model

This clause uses the notation for hierarchy diagrams of 3.7.4 and the object notation specified in 3.7.1 to formally define
the structure of an SCSI-3 I/O system as seen by an application client. Certain object definitions may include one or more
numeric parameters defining an allowable range for addresses or identifiers. The range of addresses or identifiers that
shall be supported by an SCSI-3 protocol implementation shall be defined in the SCSI-3 protocol standard that applies
to that implementation. Such objects, however, shall not exceed the values specified in this standard. In addition, unless
specified otherwise in this standard, an address or identifier supported by an SCSI-3 protocol may be less than the
maximum defined herein. To ensure compatibility with any SCSI-3 protocol, the protocol-independent portions of a system
implementation should be designed to use the address or identifier specifications as they appear in this standard.

The SCSI-3 structural model represents a view of the elements comprising an SCSI-3 I/O system as seen by the
application clients interacting with the system through the service delivery port. In an implementation, this view is similar
to that seen by a CAM device driver interacting with the system through the CAM SIM layer. This model is defined as a
hierarchy of objects. As shown in figure 7, the fundamental object is the SCSI domain, which represents an I/O system.
A domain is made up of SCSI devices and a service delivery subsystem, which transports commands and data. An SCSI
device, in turn, may consist of logical units and so forth.

Domain

Service
Delivery

Subsystem

Service
Delivery

Port

Interconnect
Subsystem

SCSI
Device

Initiator

Application
Client

Target

Logical
Unit

Task
Manager

Task Set
(Queue)

Device
Server

SCSI
Device

SCSI
Device

SCSI
Device

SCSI
Device

Service
Delivery

Port

Service
Delivery

Port

Service
Delivery

Port

Service
Delivery

Port

Service Delivery Subsystem

X3T10/994D revision 18 November 27, 1995

28 working draft SCSI-3 Architecture Model

Figure 8 : SCSI Hierarchy

Figure 9 : Domain Functional Model

Figure 8 shows the main functional components of the SCSI hierarchy. The following clauses define these components
in greater detail using the conventions of 3.7.

4.5 SCSI Domain

SCSI Domain

Service Delivery
Subsystem

SCSI Device

November 27, 1995 X3T10/994D revision 18

working draft SCSI-3 Architecture Model 29

Figure 10 : Domain Hierarchy

Object Definition 1 SCSI Domain

SCSI Domain = 2{SCSI Device} + Service Delivery Subsystem

Object Descriptions:

SCSI Device: A device that originates or services SCSI-3 commands. As described in 4.7,
an SCSI-3 device originating a command is called an initiator; a device
containing logical units that service commands is called a target.

Service Delivery Subsystem through which clients and servers communicate (see 4.6).
Subsystem:

The domain boundaries are established by the system implementor, within the constraints of a specific SCSI-3 protocol
and interconnect standard.

Service Delivery
Subsystem

Service Delivery
Port

Interconnect
Subsystem

X3T10/994D revision 18 November 27, 1995

30 working draft SCSI-3 Architecture Model

Figure 11 : Service Delivery Subsystem Hierarchy

Object Definition 2: Service Delivery Subsystem

4.6 The Service Delivery Subsystem

Service Delivery Subsystem = 2{Service Delivery Port} + Interconnect Subsystem

Object Descriptions:

Service Delivery Port: Device-resident component of the service delivery subsystem (see object
definition 3). This object may contain hardware and software that
implements the protocols and interface to the interconnect subsystem.

Interconnect A set of one or more physical interconnects that appear to a client or server
Subsystem: as a single path for the transfer of data between SCSI devices.

The service delivery subsystem is assumed to provide error-free transmission of requests and responses
between client and server. Although a device driver in an SCSI-3 implementation may perform these transfers
through several interactions with its SCSI-3 protocol layer, the architecture model portrays each operation,
from the viewpoint of the application client, as occurring in one discrete step. In this model, the data
comprising an outgoing request is sent in a single "package" containing all the information required to execute
the remote procedure call. Similarly, an incoming server response is returned in a package enclosing the
output data and status. The request or response package is "sent" when it is passed to the service delivery
port for transmission; it is "in transit" until delivered and "received" when it has been forwarded to the receiver
via the destination device's service delivery port.

4.6.1 Synchronizing Client and Server States

The client is usually informed of changes in server state through the arrival of server responses. In the
architecture model such state changes occur after the server has sent the associated response and possibly
before the response has been received by the initiator. Some SCSI-3 protocols, however, may require the
target to verify that the response has been received successfully before completing a state change. State
changes controlled in this manner are said to be synchronized. Since synchronized state changes are not
assumed or required by the architecture model, there may be a time lag between the occurrence of a state
change within the target and the initiator�s awareness of that change.

The model assumes that state synchronization, if required by an SCSI-3 protocol standard, is enforced by the
service delivery subsystem transparently to the server. That is, whenever the server invokes a protocol service
to return a response as described in subclauses 6.7 and 5.3, it is assumed that the service delivery port for

November 27, 1995 X3T10/994D revision 18

working draft SCSI-3 Architecture Model 31

such a protocol will not return control to the server until the response has been successfully delivered to the
initiator.

4.6.2 Request/Response Ordering

In this standard, request or response transactions are said to be in order if, relative to a given pair of sending
and receiving devices, transactions are delivered in the order they were sent.

A sender may occasionally require control over the order in which its requests or responses are presented
to the receiver. For example, the sequence in which requests are received is often important whenever an
initiator issues a series of SCSI-3 commands with the ORDERED attribute to a logical unit as described in
clause 7. In this case, the order in which these commands are completed, and hence the final state of the
logical unit, may depend on the order in which these commands are received. Similarly, the initiator acquires
knowledge about the state of pending commands and task management functions and may subsequently
take action based on the nature and sequence of target responses. For example, if the initiator aborts a
command whose completion response is in transit and the abort response is received out of order, the initiator
could incorrectly conclude that no further responses are expected from that command.

The manner in which ordering constraints are established is implementation-specific. An implementation may
choose to delegate this responsibility to the application client (e.g., the device driver) or the service delivery
port. In some cases, in-order delivery may be an intrinsic property of the transport subsystem or a requirement
established by the SCSI-3 protocol standard.

For convenience, the SCSI-3 architecture model assumes in-order delivery to be a property of the service
delivery subsystem. This assumption is made to simplify the description of behavior and does not constitute
a requirement. In addition, this specification makes no assumption about, or places any requirement on the
ordering of requests or responses between one sending device and several receiving devices.

Service
Delivery

Port

SCSI
Device

Logical
Unit

Service
Delivery

Subsystem

Target
Model

SCSI
Device

Initiator
Model

Applica-
tion

Client

Initiator

SCSI
Device

Target

Logical
Unit

Combined
Model

Applica-
tion

Client

Service
Delivery

Subsystem

Service
Delivery

Port

Service
Delivery

Port

Service
Delivery

Subsystem

SCSI
Device

Initiator Target Service
Delivery

Port

X3T10/994D revision 18 November 27, 1995

32 working draft SCSI-3 Architecture Model

Figure 12 : SCSI Device Functional Models

Figure 13 : SCSI Device Hierarchy Diagram

4.7 SCSI Device Models

Figure 12 shows the functional models for SCSI devices that can perform only target or initiator functions or
are capable of supporting both functions. The definition and hierarchy are shown in object definition 3 and
figure 13.

November 27, 1995 X3T10/994D revision 18

working draft SCSI-3 Architecture Model 33

Object Definition 3 : SCSI Device

Object Definition 4: Initiator

SCSI Device = [Initiator | Target | Target + Initiator] + 1{Service Delivery Port}

Service Delivery Port = Implementation-specific hardware and software

Object Descriptions:

Initiator: An SCSI-3 device which is capable of originating SCSI-3 commands and
task management requests (see 4.7.1).

Target: An SCSI-3 device which is capable of executing SCSI-3 commands and
task management requests (see 4.7.2).

Service Delivery Port: Device-resident component of the Service Delivery Subsystem containing
the hardware and software needed to implement an SCSI-3 protocol and an
interface to the interconnect subsystem (see object definition 2).

A device is referred to by its role when it participates in an I/O operation. That is, such a device is called a target
when it executes an SCSI-3 command or task management function and an initiator when it issues an SCSI-3
command or task management request.

The following sections formally define the target and initiator device models.

4.7.1 SCSI Initiator Model

Initiator = 0{Application Client}

Object Descriptions:

Application Client: Source of commands and task management functions. There is one
application client for each pending command or task management function.

Logical
Unit

Target

Target
Identifier

Task
Manager

X3T10/994D revision 18 November 27, 1995

34 working draft SCSI-3 Architecture Model

Figure 14 : Target Object Hierarchy

Object Definition 5 : Target

4.7.2 SCSI Target

Target = 0{Logical Unit} + Logical Unit 0 + 1{Target Identifier} + Task Manager

Target Identifier = bit<64> 7 [0|...|2 -1]64

Object Descriptions:

Target Identifier: 64 bits identifying the target device.

As implied by object definition 5 above, a target device may respond to more
than one target identifier. Each target identifier shall be unique within the
scope of the domain. The set of identifiers by which a target device is
referenced shall be the same for every initiator in the domain.

Task Manager: Server that controls one or more tasks in response to task management
requests.

Logical Unit: Object to which SCSI-3 device commands are directed.

Logical Unit 0: A logical unit whose logical unit number is zero (see 4.7.4).

4.7.3 The Task Manager

The task manager controls the execution of one or more tasks by servicing the task management functions
specified in clause 6. Its external address is equal to the target identifier. As specified in object definition 5,
there is one task manager per target device.

The order in which task management requests are executed is not specified by this standard. In particular,
this standard does not require in-order delivery of such requests, as defined in 4.6.2, or execution by the task
manager in the order received. To guarantee the execution order of task management requests directed to
a specific logical unit, an initiator should, therefore, not have more than one such request pending to that
logical unit.

Logical
Unit

Device
Server

Logical Unit
Number

Task Set

Tagged
Task

Untagged
Task

November 27, 1995 X3T10/994D revision 18

working draft SCSI-3 Architecture Model 35

Figure 15 : Logical Unit Object Hierarchy

Object definition 6 : Logical Unit

4.7.4 Logical Unit

Logical Unit = Device server + Logical Unit Number + Task Set

Logical Unit Number = bit<64> 7 [0|...|2 -1]64

Logical Unit Identifier = Target Identifier + Logical Unit Number

Task Set = [0{Tagged Task} + 0{Untagged Task} | 0{Untagged Task}]

Object Descriptions:

Device Server: Object that executes SCSI commands and manages the task set according
to the rules defined in clause 7.

Task Set : A set of tasks whose interaction is determined by the rules for task set
management specified in clause 7 and the auto contingent allegiance rules
specified in subclause 5.6.1.

Tagged task: A task whose identifier includes an initiator-specified component (tag) and
one of the task attributes specified in object definition 7.

Untagged task: A task whose identifier does not include a tag component (see object
definition 7).

Logical Unit Number: An encoded identifier for the logical unit.

Logical Unit Identifier: External identifier used by an initiator to reference the logical unit.

X3T10/994D revision 18 November 27, 1995

36 working draft SCSI-3 Architecture Model

Object Definition 7 : Task

Task = [Tagged Task | Untagged Task]

Tagged Task = Tagged Task Identifier + Task Attribute

Untagged Task = Untagged Task Identifier + SIMPLE

Tag = bit<64> 7 [0|...|2 -1]64

Task Attribute = [SIMPLE | ORDERED | HEAD OF QUEUE| ACA]

Task Identifier = [Untagged Task Identifier | Tagged Task Identifier]

Tagged Task Identifier = Initiator Identifier + Logical Unit Identifier + Tag

Untagged Task Identifier = Initiator Identifier + Logical Unit Identifier

Task Address = [Untagged Task Address | Tagged Task Address]

Tagged Task Address = Logical Unit Identifier + Tag

Untagged Task Address = Logical Unit Identifier

Initiator Identifier = bit<64> 7 [0|...|2 -1]64

Object Descriptions:

Tag: 64-bit identifier assigned by the initiator.

Initiator Identifier: Protocol-specific identifier of the initiator from which the command originated
(see 4.7.1).

Logical Unit Identifier: Logical unit identifier as defined in object definition 6.

Task Attribute: One of the attributes described in subclause 7.5

Task Address: The address used by an application client to reference a task.

Tagged Task Address: The address used by an application client to reference a tagged task. When
used as an argument in a device server or task manager request, the
service delivery subsystem will convert this parameter to a tagged task
identifier before passing it to the server.

Untagged Task The address used by an application client to reference an untagged task.
Address: When used as an argument in a device server or task manager request, the

service delivery subsystem will convert this parameter to an untagged task
identifier before passing it to the server.

Every SCSI-3 protocol shall support tagged and untagged tasks. Support for the creation of tagged tasks by a
logical unit, however, is a logical unit implementation option.

November 27, 1995 X3T10/994D revision 18

working draft SCSI-3 Architecture Model 37

A task identifier that is in use shall be unique as seen by the initiator originating the command and the target to
which the command was addressed. (A task identifier is in use over the interval bounded by the events specified
in 5.4). A task identifier is unique if one or more of its components is unique within the scope specified above. By
implication, therefore, an initiator shall not cause the creation of more than one untagged task having identical
values for the target and logical unit identifiers. Conversely, an initiator may create more than one task with the
same tag value, provided at least one of the remaining identifier components is unique.

4.8 The SCSI-3 Model for Distributed Communications

The SCSI-3 model for communications between distributed objects is based on the technique of layering.
According to this technique, the initiator and target I/O systems are viewed as being logically composed of the
ordered set of subsystems represented for convenience by the vertical sequence shown in figure 16.

The layers comprising this model and the specifications defining the functionality of each layer are denoted by
horizontal sequences. A layer consists of peer entities which communicate with one another by means of a
protocol. Except for the physical interconnect layer, such communication is accomplished by invoking services
provided by the adjacent lower layer. By convention, the layer from which a request for service originates is called
the upper level protocol layer or ULP layer. The layer providing the service is referred to as the lower level protocol
layer or LLP layer. The following layers are defined:

a) SCSI-3 application layer: Contains the clients and servers that originate and execute SCSI-3 I/O operations
by means of an SCSI-3 application protocol;

b) SCSI-3 protocol layer: Consists of the services and protocols through which clients and servers
communicate;

c) Physical interconnect layer: Comprised of the services, signaling mechanism and interconnect subsystem
needed for the physical transfer of data from sender to receiver.

The subsystems that make up the protocol and interconnect layers are collectively referred to as the service
delivery subsystem. The service delivery port is the device-resident portion of this system.

The set of protocol services implemented by the service delivery subsystem are intended to identify external
behavioral requirements that apply to SCSI-3 protocol specifications. While these protocol services may serve
as a guide for designing reusable software or firmware that can be adapted to different SCSI-3 protocols, there
is no requirement for an implementation to provide the service interfaces specified in this standard.

SCSI-3
Application

SCSI-3
Application

SCSI-3
Protocol
Services

SCSI-3
Protocol
Services

Physical
Interconnect

Services

Physical
Interconnect

Services

Protocol Service Interface

Physical Interconnect
Service Interface

Physical Interconnect

SCSI Protocol

SCSI-3 Application
Protocol

SAM

SCSI-3 Application
Layer

SCSI-3 Protocol
Layer

Physical Interconnect
Layer

SCSI-3
Protocol
Standard

Physical
Interconnect

Standard

Initiator I/O System Target I/O System

X3T10/994D revision 18 November 27, 1995

38 working draft SCSI-3 Architecture Model

Figure 16 : Protocol Service Reference Model

LLP Layer

ULP Layer

Protocol Service
Request

Protocol Service
Confirmation

Protocol Service
Indication

Protocol Service
Response

November 27, 1995 X3T10/994D revision 18

working draft SCSI-3 Architecture Model 39

Figure 17 : Protocol Service Model

An interaction between layers can originate from an entity within the LLP or ULP layer. Such interactions are
defined with respect to the ULP layer as outgoing or incoming interactions. An outgoing interaction takes the form
of a procedure call invoking an LLP service. An incoming interaction appears as a signal sent by the LLP layer,
which may be accompanied by parameters and data. Both types of interaction are described using the notation
for procedures specified in 3.8. In this model, input arguments are defined relative to the layer receiving an
interaction. That is, an input is a parameter supplied to the receiving layer by the layer initiating the interaction.

The following types of service interactions between layers are defined:

a) Protocol service request: A request from the ULP layer invoking some service provided by the LLP layer;

b) Protocol service indication: A signal from the LLP layer informing the ULP layer that an asynchronous event
has occurred, such as a reset or the receipt of a peer-to-peer protocol transaction;

c) Protocol service response: A call to the LLP layer invoked by the ULP layer in response to a protocol
service indication. A protocol service response may be invoked to return a reply to the ULP peer;

d) Protocol service confirmation: A signal from the LLP layer notifying the ULP layer that a protocol service
request has completed. A confirmation may communicate parameters that indicate the completion status
of the protocol service request or any other status. A protocol service confirmation may be used to convey
a response from the ULP peer.

The services provided by an LLP layer are either confirmed or unconfirmed. A ULP service request invoking a
confirmed service always results in a confirmation from the LLP layer.

All four protocol service types are related as shown in the following diagram:

Protocol Service
Request

Protocol Service
Indication

LLP Protocol
Transactions

Protocol Service
Response

Protocol Service
Confirmation

LLP Protocol
Transactions

Server Request

Server Response

LLP Layer

ULP Layer

Client Server

Protocol Service
Interface

X3T10/994D revision 18 November 27, 1995

40 working draft SCSI-3 Architecture Model

Figure 18 : Request-Response ULP Transaction and Related LLP Services

Figure 18 shows how protocol services may be used to execute a client-server request-response transaction at
the SCSI application layer.

The dashed lines show an SCSI application protocol transaction as it might appear to sending and receiving
entities within the client and server. The solid lines show the corresponding protocol services and LLP transactions
that are used to physically transport the data.

procmod.wp

November 27, 1995 X3T10/994D revision 18

working draft SCSI-3 Architecture Model 41

5 SCSI Command Model

An application client invokes the following remote procedure to execute an SCSI command:

Service response = Execute Command (Task Address, CDB, [Task Attribute], [Data-Out Buffer],

[Command Byte Count], [Autosense Request] || [Data-In Buffer], [Sense Data],

Status)

Input Arguments:

Task Address: See object definition 7.

CDB: Command descriptor block (see 5.1).

Task Attribute: A value specifying one of the task attributes defined in subclause 7.5. This
argument shall not be specified for an untagged command or the next
command in a sequence of linked commands. (Untagged tasks shall
implicitly have the SIMPLE attribute. The attribute of a task that executes
linked commands shall be set according to the Task Attribute argument
specified for the first command in the sequence.)

Data-Out Buffer : A buffer containing command-specific information to be sent to the logical
unit, such as data or parameter lists needed to service the command.

Command Byte Count: The maximum number of bytes to be transferred by the command.

Autosense Request: An argument requesting the automatic return of sense data by means of the
autosense mechanism specified in 5.6.4.2. It is not an error for the
application client to provide this argument when autosense is not supported
by the SCSI-3 protocol or logical unit.

Output Arguments:

Data-In buffer : A buffer containing command-specific information returned by the logical
unit on command completion. The application client shall not assume that
the buffer contents are valid unless the command completes with a status
of GOOD, INTERMEDIATE, or INTERMEDIATE-CONDITION MET. While
some valid data may be present for other values of status, the application
client will usually have to obtain additional information from the logical unit,
such as sense data, to determine the state of the buffer contents.

.

Sense Data: A buffer containing sense data returned by means of the autosense
mechanism (see 5.6.4.2).

X3T10/994D revision 18 November 27, 1995

42 working draft SCSI-3 Architecture Model

Status: A one-byte field containing command completion status (see 5.2). If the
command ends with a service response of Service Delivery or
Target Failure , the application client shall consider this parameter to be
undefined.

An SCSI-3 command shall not allow both the Data-In Buffer and the Data-Out Buffer arguments.

Service Response assumes one of the following values:

Task Complete : A logical unit response indicating that the task has ended. The status
parameter shall have one of the values specified in 5.2 other than
INTERMEDIATE or INTERMEDIATE-CONDITION MET.

Linked Command
Complete :

Linked Command
Complete (with

flag) :

Logical unit responses indicating that a linked command has completed
successfully. As specified in 5.2, the status parameter shall have a value of
INTERMEDIATE or INTERMEDIATE-CONDITION MET. A value of Linked
Command Complete (with flag) indicates that a linked command with
the flag bit set to one in the CDB control byte has completed.

Service Delivery
or Target Failure :

The command has been ended due to a service delivery failure or target
device malfunction. All output parameters may be invalid.

The actual protocol events corresponding to a response of Task Complete , Linked Command Complete ,
Linked Command Complete (with flag) or Service Delivery or Target Failure shall be
specified in each protocol standard.

An application client requests execution of a linked command by setting the link bit to one in the CDB control byte
as specified in 5.1.2. The task attribute is determined by the Task Attribute argument specified for the first
command in the sequence. Upon receiving a response of Linked Command Complete or Linked Command
Complete (with flag) , an application client may issue the next command in the series through an
Execute Command remote procedure call having the same task identifier. The Task Attribute argument shall be
omitted. If the application client issues the next command without waiting for one of the linked command complete
responses, the overlapped command condition described in 5.6.2 may result.

5.1 Command Descriptor Block

The command descriptor block defines the operation to be performed by the device server. For some commands,
the command descriptor block is accompanied by a list of command parameters contained in the Data-Out buffer
defined in clause 5. The parameters required for each command are specified in the applicable SCSI-3 command
standards.

Validation of reserved fields in a CDB is a logical unit option. If a logical unit validates reserved CDB fields and
receives a reserved field within the CDB that is not zero or receives a reserved CDB code value, the logical unit
shall terminate the command with CHECK CONDITION status; the sense key shall be set to ILLEGAL REQUEST
with an additional sense code of INVALID FIELD IN CDB (see the SPC standard). It shall also be acceptable for
a logical unit to interpret a field or code value in accordance with a future revision to an SCSI-3 standard.

For all commands, if the logical unit detects an invalid parameter in the command descriptor block, then the logical
unit shall complete the command without altering the medium.

November 27, 1995 X3T10/994D revision 18

working draft SCSI-3 Architecture Model 43

Bit
Byte

7 6 5 4 3 2 1 0

0 Operation Code

1
Command-Specific Parameters

n -1

n Control

Table 1 -- Format of Command Descriptor Block

Bit 7 6 5 4 3 2 1 0

Group Code Command Code

Table 2 -- Operation Code

As shown in table 1, all command descriptor blocks shall have an operation code as the first byte and a control
byte as the last byte. The remaining parameters depend on the command to be executed. All SCSI protocol
specifications shall accept command descriptor blocks less than or equal to 16 bytes in length. Command
descriptor blocks shall not exceed sixteen bytes in length.

5.1.1 Operation Code

The first byte of an SCSI command descriptor block shall contain an operation code. The operation code (table
2) of the command descriptor block has a group code field and a command code field. The three-bit group code
field provides for eight groups of command codes. The five-bit command code field provides for thirty-two
command codes in each group. A total of 256 possible operation codes exist. Operation codes are defined in
the SCSI command standards. The group code for CDBs specified therein shall correspond to the length of the
command descriptor as set forth in the following list.

The group code specifies one of the following groups:
Group 0 - six-byte commands
Group 1 - ten-byte commands
Group 2 - ten-byte commands
Group 3 - reserved
Group 4 - sixteen-byte commands
Group 5 - twelve-byte commands
Group 6 - vendor specific
Group 7 - vendor specific

X3T10/994D revision 18 November 27, 1995

44 working draft SCSI-3 Architecture Model

Bit 7 6 5 4 3 2 1 0

Vendor Specific Reserved NACA Flag Link

Table 3 -- Control Field

5.1.2 Control Field

The control field is the last byte of every command descriptor block. The control field is defined in table 3.

All SCSI-3 protocol specifications and protocol implementations shall provide the functionality needed for a logical
unit to implement the NACA bit, link bit and flag bit as described herein.

The NACA (Normal ACA) bit is used to control the rules for handling an ACA condition caused by the command.
Subclause 5.6.1.1 specifies the actions to be taken by a logical unit in response to an auto contingent allegiance
condition for NACA bit values of one or zero. All logical units shall implement support for the Normal ACA value
of zero and may support the Normal ACA value of one. The ability to support a Normal ACA value of one is
indicated in standard INQUIRY data.

If the NACA bit is set to a value which is not supported, the logical unit shall complete the command with a status
of CHECK CONDITION and a sense key of ILLEGAL REQUEST. The rules for handling the resulting auto
contingent allegiance condition shall be in accordance with the supported bit value.

The link bit is used to continue the task across multiple commands. The flag bit may be used, in conjunction with
the link bit, to notify the initiator in an expedited manner that the command has completed.

Support for the link bit is a logical unit option. A link bit of one indicates that the initiator requests continuation of
the task across two or more SCSI commands. If the link bit is one and the flag bit is zero and if the command
completes successfully, a logical unit that supports the link bit shall continue the task and return a status of
INTERMEDIATE or INTERMEDIATE-CONDITION MET and a service response of Linked Command Complete
(see 5.2.).

Support for the flag bit is a logical unit option. If the link bit and flag bit are both set to one and if the command
completes with a status of INTERMEDIATE or INTERMEDIATE-CONDITION MET a logical unit that supports the
flag bit shall return a service response of Linked Command Complete (with flag) .

The logical unit shall complete the command with a status of CHECK CONDITION and a sense key of ILLEGAL
REQUEST if:

e) The link bit is set to one and the logical unit does not support linked commands or,
f) The flag bit is set to one and the logical unit does not support the flag bit or,
g) The flag bit is set to one and the link bit is set to zero.

5.2 Status

The status codes are specified in table 4. Status shall be sent from the logical unit to the application client
whenever a command ends with a service response of Task Complete , Linked Command Complete , or
Linked Command Complete (with flag) . The receipt of any status, except INTERMEDIATE or
INTERMEDIATE-CONDITION MET, shall indicate that the associated task has ended.

November 27, 1995 X3T10/994D revision 18

working draft SCSI-3 Architecture Model 45

Status byte codes Status

0h
2h
4h
8h
10h
14h
18h
22h
28h
30h

All other codes

GOOD
CHECK CONDITION
CONDITION MET
BUSY
INTERMEDIATE
INTERMEDIATE-CONDITION MET
RESERVATION CONFLICT
COMMAND TERMINATED
TASK SET FULL
ACA ACTIVE

Reserved

Table 4 -- Status Codes

Definitions for each status byte code are given below.

GOOD. This status indicates that the Device Server has successfully completed the task.

CHECK CONDITION. This status indicates that an auto contingent allegiance condition has occurred (see 5.6.1).

CONDITION MET. This status is returned whenever the requested operation specified by an unlinked command
is satisfied (see the SEARCH DATA (SBC) and PRE-FETCH (SBC) commands).

BUSY. This status indicates that the logical unit is busy. This status shall be returned whenever a logical unit
is unable to accept a command from an otherwise acceptable initiator (i.e., no reservation conflicts). The
recommended initiator recovery action is to issue the command again at a later time.

INTERMEDIATE. This status or INTERMEDIATE-CONDITION MET shall be returned for each successfully
completed command in a series of linked commands (except the last command), unless the command is
terminated with CHECK CONDITION, RESERVATION CONFLICT, TASK SET FULL, BUSY or
COMMAND TERMINATED status. If INTERMEDIATE or INTERMEDIATE-CONDITION MET status is not
returned, the series of linked commands is terminated and the task is ended.

INTERMEDIATE-CONDITION MET. This status is returned whenever the operation requested by a linked
command is satisfied (see the SEARCH DATA (SBC) and PRE-FETCH (SBC) commands), unless the command
is terminated with CHECK CONDITION, RESERVATION CONFLICT, TASK SET FULL, BUSY or
COMMAND TERMINATED status. If INTERMEDIATE or INTERMEDIATE-CONDITION MET status is not
returned, the series of linked commands is terminated and the task is ended.

RESERVATION CONFLICT. This status shall be returned whenever an initiator attempts to access a logical unit
or an extent within a logical unit that is reserved with a conflicting reservation type for another SCSI device (see
the Reserve commands in the SPC standard). The recommended initiator recovery action is to issue the
command again at a later time.

COMMAND TERMINATED. This status shall be returned whenever the logical unit terminates a task in response
to a TERMINATE TASK task management request (see 6.6). This status also indicates that an auto contingent
allegiance has occurred (see 5.6.1)

X3T10/994D revision 18 November 27, 1995

46 working draft SCSI-3 Architecture Model

TASK SET FULL. This status shall be implemented if the logical unit supports the creation of tagged tasks (see
object definition 7). This status shall be returned when the logical unit receives a command and does not have
enough resources to enter the associated task in the task set.

ACA ACTIVE. This status shall be returned when an auto contingent allegiance exists within a task set and an
initiator issues a command for that task set when at least one of the following is true:

a) There is a task with the ACA attribute in the task set;
b) The initiator issuing the command did not cause the ACA condition;
c) The task created to execute the command did not have the ACA attribute and the NACA bit was set to one

in the CDB control byte of the faulting command (see 5.6.1).

The initiator may reissue the command after the ACA condition has been cleared.

If more than one condition applies to a completed task, the report of a BUSY, RESERVATION CONFLICT,
ACA ACTIVE or TASK SET FULL status shall take precedence over the return of any other status for that task.

5.3 Protocol Services in Support of Execute Command

This section describes the protocol services which support the Execute Command remote procedure call. All
SCSI-3 protocol specifications shall define the protocol-specific requirements for implementing the Send SCSI
Command Protocol service request and the Command Complete Received confirmation described below. Support
for the SCSI Command Received indication and Send Command Complete response by an SCSI-3 protocol
standard is optional. All SCSI-3 I/O systems shall implement these protocols as defined in the applicable protocol
specification.

Unless stated otherwise, argument definitions and the circumstances under which a conditional argument must
be present are the same as in clause 5.

Protocol Service Request:

Send SCSI Command (Task Address, CDB, [Task Attribute], [Data-Out Buffer], [Command Byte

Count], [Autosense Request] ||)

Protocol Service Indication:

SCSI Command Received (Task Identifier, [Task Attribute], CDB, [Autosense Request] ||)|

Autosense Request: This parameter is only present if the Autosense Request parameter was
specified in the Send SCSI Command call and autosense delivery is
supported by the SCSI-3 protocol and logical unit.

Protocol Service Response (from device server):

Send Command Complete (Task Identifier, [Sense Data], Status, Service Response ||)

The Sense Data argument, if present, instructs the target's service delivery port to return sense information to the
initiator automatically (see 5.6.4.2).

Protocol Service Confirmation:

Device Server
Data Buffer

Application Client
Data Buffer

Application Client
Buffer Offset

Command Byte
Count

Byte Count
Requested by
Device Server

November 27, 1995 X3T10/994D revision 18

working draft SCSI-3 Architecture Model 47

Figure 19 : Model for buffered data transfers

Command Complete Received (Task Address, [Data-In Buffer], [Sense Data], Status,

Service Response ||)

5.3.1 Data Transfer Protocol Services

The data transfer services described in this section are provided to complete the functional model of target protocol
services which support the Execute Command remote procedure call. All SCSI-3 protocol standards shall define
the protocols required to implement these services.

It is assumed that the buffering resources available to the device server are limited and may be much less than
the amount of data that can be transferred in one SCSI command. In this case, such data must be moved between
the application client and the media in segments that are smaller than the transfer size specified in the SCSI
command. The amount of data moved per request is usually a function of the buffering resources available to the
logical unit. Figure 19 shows the model for such incremental data transfers.

As shown in figure 19, the application client's buffer is a single, logically contiguous block of memory large enough
to hold all the data required by the command. The model requires unidirectional data transfer. That is, the
execution of an SCSI-3 command shall not require the transfer of data for that command both to and from the
application client.

The movement of data between the application client and device server is controlled by the following parameters:

Application client buffer Offset in bytes from the beginning of the application client's buffer to the first
offset: byte of transferred data.

Byte count requested by Number of bytes to be moved by the data transfer request.
device server:

Command byte count: Upper limit on the extent of the data to be transferred by the SCSI
command.

If an SCSI-3 protocol supports random buffer access, as described below, the offset and byte count specified for each
data segment to be transferred may overlap. In this case the total number of bytes moved for a command is not a reliable

X3T10/994D revision 18 November 27, 1995

48 working draft SCSI-3 Architecture Model

indicator of transfer extent and shall not be used by an initiator or target implementation to determine the command byte
count.

All SCSI-3 protocol specifications and initiator implementations shall support a resolution of one byte for the above
parameters. A target device may support any convenient resolution.

Random buffer access occurs when the device server requests data transfers to or from segments of the application
client's buffer which have an arbitrary offset and extent. Buffer access is sequential when successive transfers access
a series of monotonically increasing, adjoining buffer segments. Support for random buffer access by an SCSI-3 protocol
specification is optional. A device server implementation designed for any protocol implementation should be prepared
to use sequential buffer access when necessary.

The following clauses specify the LLP confirmed services used by the device server to request the transfer of command
data to or from the application client. The initiator protocol service interactions are unspecified.

5.3.2 Data-In Delivery Service

Request:

Send Data-In (Task Identifier, Device Server Buffer , Application Client Buffer Offset, Request Byte

Count||)

Argument Descriptions:

Task Identifier: See object definition 7.

Device server buffer : Buffer from which data is to be transferred.

Application client buffer Offset in bytes from the start of the buffer to the location within the
offset: application client�s buffer to receive the first byte of data.|

Request byte count: Number of bytes to be moved by this request.

Confirmation:

Data Delivered (Task Identifier ||)

This confirmation notifies the device server that the specified data was successfully delivered to the application client
buffer.

5.3.3 Data-Out Delivery service

Request:

Receive Data-Out (Task Identifier, Application Client Buffer Offset, Request Byte Count,

Device Server Buffer ||)

Argument Descriptions:

See 5.3.2.

November 27, 1995 X3T10/994D revision 18

working draft SCSI-3 Architecture Model 49

Confirmation:

Data-Out Received (Task Identifier||)

This confirmation notifies the device server that the requested data has been successfully delivered to its buffer.

5.4 Task and Command Lifetimes

This clause specifies the events delimiting the beginning and end of a task or pending SCSI-3 command from the
viewpoint of the device server and application client.

The device server shall create a task upon receiving an SCSI Command Received indication unless the command
represents a continuation of a linked command as described in clause 5.

The task shall exist until:

a) The device server sends a protocol service response for the task of Task Complete .

b) A power on condition occurs.

c) The target executes a hard reset operation as described in 5.6.6.

d) The task manager executes an ABORT TASK referencing the specified task

e) The task manager executes an ABORT TASK SET or CLEAR TASK SET task management function directed to
the task set containing the specified task.

An SCSI-3 command is pending when the associated SCSI Command Received indication is passed to the device server.
The command ends on the occurrence of one of the conditions described above or when the device server sends a
service response for the task of Linked Command Complete or Linked Command Complete (with flag) .

The application client assumes that the task exists from the time the Send SCSI Command protocol service request is
invoked until it receives one of the following target responses:

a) A service response of Task Complete for that task,

b) A unit attention condition with one of the following additional sense codes:

COMMANDS CLEARED BY ANOTHER INITIATOR (if in reference to the task set containing the task),
POWER ON,
RESET,
TARGET RESET.

c) A service response of Service Delivery or Target Failure for the command,

In this case, system implementations shall guarantee that the task associated with the failed command has ended.

d) A service response of Function Complete following an ABORT TASK task management request directed to
the specified task

e) A service response of Function Complete following an ABORT TASK SET or CLEAR TASK SET task
management function directed to the task set containing the specified task.

Time

Time

Application Client

Task

Waiting

Working

Activity

Activity

Initiator

Target

1

2 3

4

X3T10/994D revision 18 November 27, 1995

50 working draft SCSI-3 Architecture Model

Figure 20 : Command processing events

f) A service response of Function Complete in response to a TARGET RESET.

The application client assumes the command is pending from the time it calls the Send SCSI Command protocol service
until one of the above responses or a service response of Linked Command Complete or Linked Command
Complete (with flag) is received.

As discussed in 4.6.1, when an SCSI-3 protocol does not require state synchronization, there will usually be a time skew
between the completion of a device server request-response transaction as seen by the application client and device
server. As a result, the lifetime of a task or command as it appears to the application client will usually be different from
the lifetime observed by the device server.

5.5 Command Processing Examples

The following clauses give examples of the interactions for linked and unlinked commands.

5.5.1 Unlinked Command Example

An unlinked command is used to show the events associated with the processing of a single device service request. This
example does not include error or exception conditions.

The numbers in figure 20 identify the events described below.

1. The application client performs an Execute Command remote procedure call by invoking the
Send SCSI Command protocol service to send the CDB and other input parameters to the logical unit.

2. The Device Server is notified through an SCSI Command Received indication containing the CDB and command
parameters. A task is created and entered into the task set. The device server may invoke the appropriate data
delivery service one or more times to complete command execution.

Time

Time

Application
Client

Application
Client

Task A

Waiting Waiting

Working Waiting Working

Activity

Activity

Initiator

Device Server

1 84 5

2 3 6 7

November 27, 1995 X3T10/994D revision 18

working draft SCSI-3 Architecture Model 51

Figure 21 : Linked Command Processing Events

3. The task ends upon completion of the command. On command completion, the Send Command Complete
protocol service is invoked to return a status of GOOD and a service response of Command Complete Task
Complete .

4. A confirmation of Command Complete Received is sent to the ULP by the initiator's service delivery subsystem.

5.5.2 Linked Command Example

A task may consist of multiple commands "linked" together. After the logical unit notifies the application client that a
linked command has successfully completed, the application client issues the next command in the series.

The following example shows the events in a sequence of two linked commands.

The numbers in figure 21 Identify the events described below.

1. The application client performs an Execute Command remote procedure call by invoking the
Send SCSI Command protocol service to send the CDB and other input parameters to the logical unit. The link
bit is set to one in the CDB control byte (see 5.1.2).

2. The target's service delivery port issues an SCSI Command Received indication to the device server. The device
server creates a task (task A) and enters it into the task set.

3. Upon completion of the first command, the device server invokes the Send Command Complete protocol service
with the Status argument set to INTERMEDIATE or INTERMEDIATE-CONDITION MET and a Service Response
of Linked Command Complete . Task A is not terminated.

4. The initiator's service delivery port returns the status and service response to the ULP by means of a Command
Complete Received confirmation.

5. The Application Client performs an Execute Command remote procedure call by means of the Send SCSI
Command protocol service as described in step 1. The Task Attribute argument is omitted. The link bit in the CDB
control byte is clear.

X3T10/994D revision 18 November 27, 1995

52 working draft SCSI-3 Architecture Model

6. The device server receives the last command in the sequence and executes the operation.

7. The command completes successfully. Task A is terminated. A protocol service response of Task Complete ,
with status GOOD, is sent to the application client.

8. The LLP delivers a Command Complete Received confirmation to the application client, which contains the
service response and status.

5.6 Command Processing Considerations and Exception Conditions

The following clauses describe some exception conditions and errors associated with command processing and the
sequencing of commands.

5.6.1 Auto Contingent Allegiance

The auto contingent allegiance condition shall exist within the task set when the logical unit completes a command by
returning a COMMAND TERMINATED or CHECK CONDITION status (see 5.2).

In the following discussion, the term "faulting command" refers to the command that completed with a CHECK
CONDITION or COMMAND TERMINATED status. The term "faulted initiator" refers to the initiator receiving the
COMMAND TERMINATED or CHECK CONDITION status. The term "faulted task set" refers to the task set having the
auto contingent allegiance condition.

5.6.1.1 Logical Unit Response to Auto Contingent Allegiance

The auto contingent allegiance condition shall not cross task set boundaries and shall be preserved until it is cleared as
described in 5.6.1.2. If requested by the application client and supported by the protocol and logical unit, sense data shall
be returned as described in 5.6.4.2.

Notes:

1. The SCSI-2 contingent allegiance condition and extended auto contingent allegiance condition have been replaced in SCSI-3 by auto
contingent allegiance.

2. If the SCSI-3 protocol does not enforce state synchronization as described in 4.6.1, there may be a time delay between the occurrence of
the auto contingent allegiance condition and the point at which the initiator becomes aware of the condition.

After sending status and a service response of Task Complete , the logical unit shall modify the state of all tasks in the
faulted task set as described in clause 7.

A task created by the faulted initiator while the auto contingent allegiance condition is in effect may be entered into the
faulted task set under the conditions described below. Tasks created by other initiators while the ACA condition is in effect
shall not be entered into the faulted task set and shall be completed with a status of ACA ACTIVE.

As described in 5.6.1.2, the setting of the NACA bit in the control byte of the faulting command determines the rules that
apply to an ACA condition caused by that command. If the NACA bit was set to zero the SCSI-2 contingent allegiance
rules shall apply. In that case, the completion of a subsequent command from the faulted initiator with a status of CHECK
CONDITION or COMMAND TERMINATED shall cause a new auto contingent allegiance condition to exist. The rules for
responding to the new auto contingent allegiance condition shall be determined by the state of the NACA bit in the new
faulted command.

If the NACA bit was set to one in the CDB control byte of the faulting command, then a new task created while the ACA
condition is in effect shall be entered into the faulted task set provided:

a) The command was originated by the faulted initiator,

November 27, 1995 X3T10/994D revision 18

working draft SCSI-3 Architecture Model 53

b) The task has the ACA attribute,
c) No other task having the ACA attribute is in the task set.

The auto contingent allegiance condition shall not be cleared. If the conditions listed above are not met, the newly created
task shall not be entered into the task set and shall be completed with a status of ACA ACTIVE.

If a task having the ACA attribute is received and no auto contingent allegiance condition is in effect for the task set or
if the NACA bit was set to zero in the CDB for the faulting command, then the ACA task shall be completed with a status
of CHECK CONDITION. The sense key shall be set to ILLEGAL REQUEST with an additional sense code of INVALID
MESSAGE ERROR. As noted in 5.6.1.2, a new auto contingent allegiance condition shall be established.

5.6.1.2 Clearing an Auto Contingent Allegiance Condition

An auto contingent allegiance condition shall always be cleared after a power on condition or a hard reset (see 5.6.6).

If the logical unit accepts a value of one for the NACA bit and this bit was set to one in the CDB control byte of the faulting
command, then the auto contingent allegiance condition may also be cleared by means of a CLEAR ACA task
management function issued by the faulting initiator as described in 6.3.

If the NACA bit is set to zero in the CDB control byte of the faulting command, then the SCSI-2 rules for clearing
contingent allegiance shall apply. In this case, the logical unit shall also clear the associated contingent allegiance
condition upon the return of sense data by means of the autosense mechanism described in 5.6.4.2.

While the SCSI-2 rules for clearing the ACA condition are in effect, a logical unit that supports the CLEAR ACA task
management function shall ignore all CLEAR ACA requests and shall return a service response of Function Complete
(see 6.3).

The state of all tasks in the task set when an auto contingent allegiance condition is cleared shall be modified as described
in clause 7.

5.6.2 Overlapped Commands

An overlapped command occurs when an application client reuses a task address in a new command while a previous
command to which that address was assigned is still pending as specified in 5.4. (The format of a task address is
described in object definition 7.)

Each SCSI-3 protocol standard shall specify whether or not a logical unit is required to detect overlapped commands. A
logical unit that detects an overlapped command shall abort all tasks for the initiator in the task set and shall return
CHECK CONDITION status for that command. If the overlapped command condition was caused by an untagged task
or a tagged task with a tag value exceeding FFh, then the sense key shall be set to ABORTED COMMAND and the
additional sense code shall be set to OVERLAPPED COMMANDS ATTEMPTED. Otherwise, an additional sense code
of TAGGED OVERLAPPED TASKS shall be returned with the additional sense code qualifier byte set to the value of the
duplicate tag.

IMPLEMENTORS NOTES:

1) An overlapped command may be indicative of a serious error and, if not detected, could result in corrupted data. This is considered a
catastrophic failure on the part of the initiator. Therefore, vendor-specific error recovery procedures may be required to guarantee the data
integrity on the medium. The target logical unit may return additional sense data to aid in this error recovery procedure (e.g., sequential-access
devices may return the residue of blocks remaining to be written or read at the time the second command was received).

2) Some logical units may not detect an overlapped command until after the command descriptor block has been received.

X3T10/994D revision 18 November 27, 1995

54 working draft SCSI-3 Architecture Model

5.6.3 Incorrect Logical Unit Selection

The target's response to an incorrect logical unit identifier is described in the following paragraphs.

The logical unit identifier may be incorrect because:

a) The target does not support the logical unit (e.g., some targets support only one peripheral device).

In response to any other command except REQUEST SENSE and INQUIRY, the target shall terminate the
command with CHECK CONDITION status. Sense data shall be set to the values specified for the REQUEST
SENSE command above;

b) The target supports the logical unit, but the peripheral device is not currently attached to the target.

In response to an INQUIRY command the target shall return the INQUIRY data with the peripheral qualifier set to
the value required in the SPC standard. In response to a REQUEST SENSE command, the target shall return
sense data. The sense key shall be set to ILLEGAL REQUEST and the additional sense code shall be set to
LOGICAL UNIT NOT SUPPORTED.

In response to any other command except REQUEST SENSE and INQUIRY, the target shall terminate the
command with CHECK CONDITION status. Sense data shall be set to the values specified for the REQUEST
SENSE command above;

c) The target supports the logical unit and the peripheral device is attached, but not operational.

In response to an INQUIRY command the target shall return the INQUIRY data with the peripheral qualifier set to
the value required in the SPC standard. In response to REQUEST SENSE, the target shall return sense data.

The target's response to any command other than INQUIRY and REQUEST SENSE is vendor specific;

d) The target supports the logical unit but is incapable of determining if the peripheral device is attached or is not
operational when it is not ready.

In response to an INQUIRY command the target shall return the INQUIRY data with the peripheral qualifier set to
the value specified in the SPC standard. In response to a REQUEST SENSE command the target shall return the
REQUEST SENSE data with a sense key of NO SENSE unless an auto contingent allegiance exists. The target's
response to any other command is vendor specific.

5.6.4 Sense Data

Sense data shall be made available by the logical unit in the event a command completes with a CHECK CONDITION
status, COMMAND TERMINATED status or other conditions. The format, content and conditions under which sense data
shall be prepared by the logical unit are specified in this standard, the SPC standard, the applicable device command
standard and applicable SCSI-3 protocol standard.

Sense data shall be preserved by the logical unit for the initiator until it is transferred by one of the methods listed below
or until another task from that initiator is entered into the task set.

This information may be obtained by the initiator through:

a) The REQUEST SENSE command specified in the SPC standard;
b) An asynchronous event report;
c) Autosense delivery.

November 27, 1995 X3T10/994D revision 18

working draft SCSI-3 Architecture Model 55

The following clauses describe the last two delivery methods.

5.6.4.1 Asynchronous Event Reporting

Asynchronous event reporting is used by a logical unit to signal another device that an asynchronous event has occurred.
The mechanism automatically returns sense data associated with the event. Each SCSI protocol specification shall
provide a mechanism for asynchronous event reporting, including a procedure whereby an SCSI device can selectively
enable or disable asynchronous event reports from being sent to it by a specific target. (In this subclause, references to
asynchronous event reporting assume that the device to be notified has enabled asynchronous event reports from the
target.) Support for asynchronous event reporting is a logical unit option.

IMPLEMENTORS NOTE: An SCSI device which can produce asynchronous event reports at initialization time should provide means to defeat
these reports. This can be done with a switch or jumper wire. Devices which implement saved parameters may alternatively save the
asynchronous event reporting permissions either on a per SCSI device basis or as a system wide option.

Parameters affecting the use of asynchronous event reporting are contained in the control mode page (see the SPC
standard).

Asynchronous event reporting is used to signal a device that one of the four events listed below has occurred:

a) an error condition was encountered after command completion;
b) a newly initialized device is available;
c) some other type of unit attention condition has occurred;
d) an asynchronous event has occurred.

An example of the first case above is a device that implements a write cache. If the target is unable to write cached data
to the medium, it may use an asynchronous event report to inform the initiator of the failure.

An example of the second case above is a logical unit that generates an asynchronous event report, following a power-on
cycle, to notify other SCSI devices that it is ready to accept I/O commands.

An example of the third case above is a device that supports removable media. Asynchronous event reporting may be
used to inform an initiator of a not-ready-to-ready transition (medium changed) or of an operator initiated event (e.g.,
activating a write protect switch or activating a start or stop switch).

An example of the fourth case above is a sequential-access device performing a REWIND command with the immediate
bit set to one. An asynchronous event report may be used to inform an initiator that the beginning of medium has been
reached. Completion of a CD-ROM AUDIO PLAY command started in the immediate mode is another example of this
case.

Sense data accompanying the report identifies the condition (see 5.6.4).

An error condition or unit attention condition shall be reported to a specific initiator once per occurrence of the event
causing it. The logical unit may choose to use an asynchronous event report or to return CHECK CONDITION status on
a subsequent command, but not both. Notification of command-related error conditions shall be sent only to the device
that initiated the affected task.

Asynchronous event reports may be used to notify devices that a system resource has become available. If a logical
unit uses this method of reporting, the sense key in the AER sense data shall be set to UNIT ATTENTION.

X3T10/994D revision 18 November 27, 1995

56 working draft SCSI-3 Architecture Model

5.6.4.2 Autosense

Autosense is the automatic return of sense data to the application client coincident with the completion of an SCSI-3
command under the conditions described below. The return of sense data in this way is equivalent to an explicit command
from the application client requesting sense data immediately after being notified that an ACA condition has occurred.
Inclusion of autosense support in an SCSI-3 protocol standard is optional.

As specified in clause 5, the application client may request autosense service for any SCSI command. If supported by
the protocol and logical unit and requested by the application client, the device server shall only return sense data in this
manner coincident with the completion of a command with a status of CHECK CONDITION or COMMAND TERMINATED.
The sense data shall then be cleared.

Protocol standards that support autosense shall require an autosense implementation to:
a) Notify the logical unit when autosense data has been requested for a command and
b) Inform the application client when autosense data has been returned upon command completion (see 5).

It is not an error for the application client to request the automatic return of sense data when autosense is not supported
by the SCSI-3 protocol or logical unit implementation. If the application client requested the return of sense data through
the autosense facility and the protocol service layer does not support this feature, then the confirmation returned by the
initiator's service delivery port should indicate that no sense data was returned. If the protocol service layer supports
autosense but the logical unit does not, then the target should indicate that no sense data was returned. In either case,
sense information shall be preserved and the application client may issue a command to retrieve it.

5.6.5 Unit Attention Condition

Each logical unit shall generate a unit attention condition whenever the logical unit has been reset as described in 5.6.6
or by a power-on reset. In addition, a logical unit shall generate a unit attention condition for each initiator whenever one
of the following events occurs:

a) A removable medium may have been changed;
b) The mode parameters in effect for this initiator have been changed by another initiator;
c) The version or level of microcode has been changed;
d) Tasks for this initiator were cleared by another initiator;
e) INQUIRY data has been changed;
f) The mode parameters in effect for the initiator have been restored from non-volatile memory;
g) A change in the condition of a synchronized spindle;
h) Any other event requiring the attention of the initiator.

Logical units may queue unit attention conditions. After the first unit attention condition is cleared, another unit attention
condition may exist (e.g., a power on condition followed by a microcode change condition).

A unit attention condition shall persist on the logical unit for each initiator until that initiator clears the condition as
described in the following paragraphs.

If an INQUIRY command is received from an initiator to a logical unit with a pending unit attention condition (before the
logical unit generates the auto contingent allegiance condition), the logical unit shall perform the INQUIRY command and
shall not clear the unit attention condition.

If a request for sense data is received from an initiator with a pending unit attention condition (before the logical unit
establishes the automatic contingent allegiance condition), then the logical unit shall either:

a) report any pending sense data and preserve the unit attention condition on the logical unit, or,
b) report the unit attention condition.

November 27, 1995 X3T10/994D revision 18

working draft SCSI-3 Architecture Model 57

If the second option is chosen (reporting the unit attention condition), the logical unit may discard any pending sense data
and may clear the unit attention condition for that initiator. |

If the logical unit has already generated the auto contingent allegiance condition for the unit attention condition, the logical
unit shall perform the second action listed above.

If an initiator issues a command other than INQUIRY or REQUEST SENSE while a unit attention condition exists for that
initiator (prior to generating the auto contingent allegiance condition for the unit attention condition), the logical unit shall
not perform the command and shall report CHECK CONDITION status unless a higher priority status as defined by the
logical unit is also pending (see 44).

If a logical unit successfully sends an asynchronous event report informing the initiator of the unit attention condition, then
the logical unit shall clear the unit attention condition for that initiator on the logical unit (see 5.6.4.1).

5.6.6 Hard Reset

Hard reset is a target response to a TARGET RESET task management request, (see 6.5) or a reset event within the
service delivery subsystem. The definition of reset events is protocol and interconnect specific. Each SCSI-3 protocol
standard shall specify the target response to a reset event including the conditions under which a hard reset shall be
executed.

To execute a hard reset a target shall:

a) Abort all tasks in all task sets;
b) Clear all auto contingent allegiance conditions;
c) Release all SCSI device reservations;
d) Return any device operating modes to their appropriate initial conditions, similar to those conditions that would be

found following device power-on. The MODE SELECT conditions (see the SPC standard) shall be restored to their
last saved values if saved values have been established. MODE SELECT conditions for which no saved values
have been established shall be returned to their default values;

e) Unit Attention condition shall be set (see 5.6.5).

In addition to the above, the target shall execute any additional functions required by the applicable protocol or
interconnect specifications.

taskfunc.wp

X3T10/994D revision 18 November 27, 1995

58 working draft SCSI-3 Architecture Model

6 Task Management Functions

Task management functions provide an initiator with a way to explicitly control the execution of one or more tasks. An
application client invokes a task management function by means of a procedure call having the following format:

Service response = Function name(Object Identifier [,Input-1] [,Input-2-]... || [Output-1] [,Output-2]...)

Service Response:

One of the following protocol-specific responses shall be returned:

Function Complete : A logical unit response indicating that the requested function is complete.
The task manager shall unconditionally return this response upon
completion of a task management request supported by the logical unit or
target device to which the request was directed. Upon receiving a request
to execute an unsupported function, the task manager may return this
response or the Function Rejected response described below.

Function Rejected : An optional task manager response indicating that the operation is not
supported by the object to which the function was directed (e.g., the logical
unit or target device).

Service Delivery
or Target Failure:

The request was terminated due to a service delivery failure or target
malfunction. The target may or may not have successfully performed the
specified function.

Each SCSI protocol standard shall define the actual events comprising each of the above service responses.

The following task management functions are defined:

ABORT TASK(Task Address ||) - Abort the specified task. This function shall be supported if the logical unit supports
tagged tasks and may be supported if the logical unit does not support tagged tasks (see object definition 7).

ABORT TASK SET(Logical Unit Identifier ||) - Abort all tasks in the task set for the requesting initiator. This function
shall be supported by all logical units.

CLEAR ACA (Logical Unit Identifier ||) - Clear auto contingent allegiance condition. This function shall be supported
if the logical unit accepts an NACA bit value of one in the CDB control byte and may be supported if the logical unit
does not accept an NACA bit value of one in the CDB control byte (see 5.1.2).

CLEAR TASK SET (Logical Unit Identifier ||) - Abort all tasks in the specified task set. This function shall be
supported by all logical units that support tagged tasks (see object definition 7) and may be supported by logical units
that do not support tagged tasks.

TARGET RESET (Target Identifier ||) - Reset the target device and terminate all tasks in all task sets. All target
devices shall support this function.

TERMINATE TASK (Task Address ||) - Terminate the specified task. Implementation of this function is a logical unit
option.

Argument descriptions:

November 27, 1995 X3T10/994D revision 18

working draft SCSI-3 Architecture Model 59

Target Identifier: Target device identifier defined in object definition 5.

Logical Unit Identifier: Logical Unit identifier defined in object definition 6.

Task Address: Task address defined in object definition 7.

IMPLEMENTORS NOTES: The TARGET RESET, CLEAR TASK SET, ABORT TASK and ABORT TASK SET functions provide a means to
terminate one or more tasks prior to normal completion. The TARGET RESET command clears all tasks for all initiators on all task sets of the
target. The CLEAR TASK SET function terminates all tasks for all initiators on the specified task set of the target. An ABORT TASK SET
function terminates all tasks for the initiator on the specified task set of the target. An ABORT TASK function terminates only the specified task.

All SCSI-3 protocol specifications shall provide the functionality needed for a task manager to implement all of the task
management functions defined above.

6.1 ABORT TASK

Function Call:

Service Response = ABORT TASK(Task Address ||)

Description:

This function shall be supported by a logical unit that supports tagged tasks and may be supported by a logical unit
that does not support tagged tasks.

The task manager shall abort the specified task if it exists. Previously established conditions, including MODE SELECT
parameters, reservations, and auto contingent allegiance shall not be changed by the ABORT TASK function.

If the logical unit supports this function, a response of Function Complete shall indicate that the task was aborted
or was not in the task set. In either case, the target shall guarantee that no further responses from the task are sent
to the initiator.

6.2 ABORT TASK SET

Function Call:

Service Response = ABORT TASK SET(Logical Unit Identifier ||)

Description:

This function shall be supported by all logical units.

The task manager shall terminate all tasks in the task set which were created by the initiator.

The task manager shall perform an action equivalent to receiving a series of ABORT TASK requests. All tasks from
that initiator in the task set serviced by the logical unit shall be aborted. Tasks from other initiators or in other task
sets shall not be terminated. Previously established conditions, including MODE SELECT parameters, reservations,
and auto contingent allegiance shall not be changed by the ABORT TASK SET function.

X3T10/994D revision 18 November 27, 1995

60 working draft SCSI-3 Architecture Model

6.3 CLEAR ACA

Function Call

Service response = CLEAR ACA (Logical Unit Identifier ||)

Description:

This function shall only be implemented by a logical unit that accepts an NACA bit value of one in the CDB control byte
(see 5.1.2).

The initiator invokes CLEAR ACA to clear an auto contingent allegiance condition from the task set serviced by the
logical unit according to the rules specified in 5.6.1.2. The function shall always be terminated with a service response
of Function Complete .

If the task manager clears the auto contingent allegiance condition, any task within that task set may be completed
subject to the rules for task set management specified in clause 7.

6.4 CLEAR TASK SET

Function Call:

Service response = CLEAR TASK SET (Logical Unit Identifier ||)

Description:

This function shall be supported by all logical units that support tagged tasks (see object definition 7) and may be
supported by logical units that do not support tagged tasks.

The target shall perform an action equivalent to receiving a series of ABORT TASK requests from each initiator. All
tasks, from all initiators, in the specified task set shall be aborted. The medium may have been altered by partially
executed commands. All pending status and data for that logical unit for all initiators shall be cleared. No status shall
be sent for any task. A unit attention condition shall be generated for all other initiators with tasks in that task set. When
reporting the unit attention condition the additional sense code shall be set to COMMANDS CLEARED BY ANOTHER
INITIATOR.

Previously established conditions, including MODE SELECT parameters (see the SPC standard), reservations, and
auto contingent allegiance shall not be changed by the CLEAR TASK SET function.

6.5 TARGET RESET

Function Call:

Service Response = TARGET RESET (Target Identifier ||)

Description:

This function shall be supported by all target devices.

Before returning a Function Complete response the target shall perform the hard reset functions specified in 5.6.6
and shall create a unit attention condition for all initiators as specified in 5.6.5.

November 27, 1995 X3T10/994D revision 18

working draft SCSI-3 Architecture Model 61

6.6 TERMINATE TASK

Function Call:

Service response = TERMINATE TASK (Task Address ||)

Description:

Support for this function is a logical unit option.

The TERMINATE TASK function is invoked by the initiator to request task completion. A response of
Function Complete indicates that the request has been accepted and does not imply that the referenced task has
ended. Assuming the task existed when the TERMINATE TASK function was invoked, the initiator shall consider the
task to continue in existence until one of the events specified in 5.4 is detected.

With the following exceptions, the logical unit shall complete the specified task and return COMMAND TERMINATED
status. The sense key shall be set to NO SENSE. The additional sense code and qualifier are set to TASK
TERMINATED.

If the work performed by the terminated task involves the transfer of data, the logical unit shall set the valid bit in the
sense data to one and set the information field as follows:

f) If the command descriptor block specifies an allocation length or parameter list length, the information field shall
be set to the difference (residue) between the number of bytes successfully transferred and the requested length;

g) If the command descriptor block specifies a transfer length field, the information field shall be set as defined in the
REQUEST SENSE command (see the SPC standard).

If an error is detected for the specified task, the logical unit shall ignore the TERMINATE TASK request and return
a service response of Function Complete .

If the operation requested for the specified task has been completed but status has not been returned, the logical unit
shall ignore the TERMINATE TASK request and return a service response of Function Complete .

If the target does not support this function or is unable to stop the task, the target shall return a service response of
Function Rejected to the initiator and continue the task in a normal manner.

The effect of a TERMINATE TASK request on the task set depends on the task set error recovery option specified
in the control mode page (see the SPC standard) and on whether or not an auto contingent allegiance condition is
generated.

IMPLEMENTORS NOTE: The TERMINATE TASK function provides a means for the initiator to request the logical unit to reduce the transfer
length of the referenced command to the amount that has already been transferred. The initiator can use the sense data to determine the actual
number of bytes or blocks that have been transferred. This function is normally used by the initiator to stop a lengthy read, write, or verify
operation when a higher-priority command is available to be executed. It is up to the initiator to complete the terminated command at a later
time, if required.

6.7 Task Management Protocol Services

The confirmed service described in this subclause is used by an application client to issue a task management remote
procedure call. The following arguments are passed:

X3T10/994D revision 18 November 27, 1995

62 working draft SCSI-3 Architecture Model

Object Address: A Task Address, Logical Unit Identifier or Target Identifier supplied by the
application client to identify the object to be operated upon. The initiator's
service delivery port will convert a Task Address to a Task Identifier before
forwarding the request to the target.

Object Identifier: A Task Identifier, Logical Unit Identifier or Target Identifier passed to the
task manager by the protocol service indication.

Function Identifier: Parameter encoding the task management function to be performed.

All SCSI-3 protocol specifications shall define the protocol-specific requirements for implementing the Send Task
Management Request protocol service and the Received Function-Executed confirmation described below. Support for
the Task Management Request Received indication and Task Management Function Executed protocol service response
by the SCSI-3 protocol standard is optional. All SCSI-3 I/O systems shall implement these protocols as defined in the
applicable protocol specification.

The argument definitions correspond to those of clause 6.

Request:

Send Task Management Request (Object Address, Function Identifier ||)

Indication received by task manager:

 Task Management Request Received (Object Identifier, Function Identifier||)

Response from task manager:

Task Management Function Executed (Object Identifier, Service Response ||)

The Service Response parameter encodes a value representing one of the following (see 6):

Function Rejected : The task manager does not implement the requested function.

Function Complete : The requested function has been completed.

Confirmation:

Received Function-Executed (Object Address, Service Response ||)

Since the object identifier does not uniquely identify the transaction, there may be no way for an initiator to associate a
confirmation with a request. An SCSI protocol that does not provide such an association should not allow an initiator to
have more than one pending task management request per logical unit.

6.8 Task Management Function Example

The following diagram shows the sequence of events associated with a task management function.

Time

Time

Application Client

Task Manager

Waiting

Working

Activity

Activity

Initiator

Target

4

32

1

November 27, 1995 X3T10/994D revision 18

working draft SCSI-3 Architecture Model 63

Figure 22 : Task Management Request Processing

The numbers in figure 22 Identify the events described below.

1. The application client issues a task management request by invoking the Send Task Management Request
protocol service.

2. The task manager is notified through a Task Management Request Received indication and begins executing
the function.

3. The task manager performs the requested operation and responds by invoking the Task Management Function
Executed protocol service to notify the application client. The Service Response parameter is set to a value of
Function Complete

4. A confirmation of Received Function-Executed is returned to the application client.

taskmod.wp

X3T10/994D revision 18 November 27, 1995

64 working draft SCSI-3 Architecture Model

7 Task Set Management

This clause specifies task set management requirements in terms of task states, task attributes and events that cause
task state transitions.

Task behavior, as specified herein, refers to the functioning of a task as observed by an application client within the
initiator -- including the results of command execution and interactions with other tasks. Examples of behavior not
observable by the application client are the physical activity on the interconnect or the format of transmitted data packets
associated with a command. To define these and other aspects of behavior, SCSI-3 protocol and interconnect standards
may impose other requirements, outside the scope of this standard, which are related to observable behavior within the
protocol or interconnect layers.

The rules for task set management only apply to a task after it has been entered into the task set. A task shall be entered
into the task set unless a condition exists which causes that task to be completed with a status of BUSY,
RESERVATION CONFLICT, TASK SET FULL, ACA ACTIVE or CHECK CONDITION (if caused by the detection of an
overlapped command). A task may also be completed in this manner because of a CHECK CONDITION status caused
by certain protocol-specific errors. In these cases, the task shall be completed as soon as the condition is detected.

7.1 Terminology

The following definitions are used extensively in this clause.

suspended information: Information within the logical unit that is not available to a pending task.

current task: A task that has a data transfer protocol service request in progress (see
5.3.1) or is in the process of returning command status. Each SCSI-3
protocol standard shall define the protocol-specific conditions under which
a task is considered a current task.

pending task: Any task that is not a current task.

7.2 Task Management Events

 The following is a description of the events that drive changes in task state.

All older tasks ended: All tasks have ended that were accepted into the task set earlier in time than
the referenced task.

All older Head of Queue All Head of Queue and Ordered tasks have ended that were accepted into
and older Ordered tasks the task set earlier in time than the referenced task.

ended:

ACA : An auto contingent allegiance condition has occurred .

task abort: One of the events described in subclause 7.3 has occurred.

task completion: The device server has returned a service response of Task Complete for
the task (see clause 5 and subclause 5.4).

task ended: A task has completed or aborted.

Task
Created

Task
Enabled

Task
Completed

Task Dormant

Time Line

Application Client
observes system state

A B C

Task Created
and Enabled

Task
Completed

Time Line

A B C

Case 1

Case 2

November 27, 1995 X3T10/994D revision 18

working draft SCSI-3 Architecture Model 65

Figure 23 : Example of Dormant Task Behavior

ACA cleared: An ACA condition has been cleared.

Subclause 7.4 describes the events, changes in task state and device server actions for a Simple, Ordered, ACA or Head
of Queue task.

7.3 Task Abort Events

A Task Abort event is one of the following:

h) Completion of an ABORT TASK task management function directed to the specified task;
i) Completion of an ABORT TASK SET task management function under the conditions specified in subclause 6.2;
j) Completion of a CLEAR TASK SET task management function referencing the task set containing the specified

task;
k) An ACA condition was cleared and the QErr bit was set to one in the control mode page (see the SPC standard);
l) An ACA condition was cleared and the task had the ACA attribute;
m) A hard reset (see 5.6.6);
n) The return of an Execute Command service response of Service Delivery or Target Failure as

described in clause 5.
o) A power on condition.

7.4 Task States

7.4.1 Enabled

A task in the Enabled state may become a current task and may complete at any time, subject to the task completion
constraints specified in the control mode page (see the SPC standard). A task that has been accepted into the task set
shall not complete or become a current task unless it is in the enabled state.

Except for the use of target resources required to preserve task state, a task shall produce no effects detectable by the
application client before the task's first transition to the Enabled state. Although, before entering this state for the first time,
the task may perform other activities visible to lower layers -- such as pre-fetching data to be written to the media -- this
activity shall not result in a detectable change in device state as perceived by an application client. In addition, the
behavior of a completed task, as defined by the commands it has executed, shall not be affected by the task's states
before it became enabled.

X3T10/994D revision 18 November 27, 1995

66 working draft SCSI-3 Architecture Model

Figure 23 shows the events corresponding to two task execution sequences. Except for the Dormant state between times
A and B in case 1, logical unit conditions and the commands executed by the task are identical. Assuming in each case
the task completes with a status of GOOD at time C, the system state observed by the application client for case 1 shall
be indistinguishable from the state observed for case 2.

7.4.2 Blocked

A task in the Blocked state is prevented from completing due to an auto contingent allegiance condition. A task in this state
shall not become a current task. While a task is in the Blocked state, any information the logical unit has or accepts for
the task shall be suspended.

7.4.3 Dormant

A task in the Dormant state is prevented from completing due to the presence of certain other tasks in the task set. A task
in this state shall not become a current task. While a task is in the Dormant state, any information the logical unit has or
accepts for the task shall be suspended.

7.4.4 Ended

A task in the Ended state is removed from the task set.

7.5 Task Attributes

A task shall have one of the attributes defined below.

7.5.1 SIMPLE Task

A task having the Simple attribute shall be accepted into the task set in the Dormant state. The task shall not enter the
Enabled state until all older Head of Queue and older Ordered tasks in the task set have ended (see 7.2).

7.5.2 ORDERED Task

A task having the Ordered attribute shall be accepted into the task set in the Dormant state. The task shall not enter the
Enabled state until all older tasks in the task set have ended (see 7.2).

7.5.3 HEAD OF QUEUE Task

A task having the Head of Queue attribute shall be accepted into the task set in the Enabled state.

7.5.4 ACA Task

A task having the ACA attribute shall be accepted into the task set in the Enabled state. As specified in 5.6.1.1, there may
be no more than one ACA task per task set.

S2: Blocked

S0: Dormant S1: Enabled
S0:S1

S1:S2
ACA

S2:S1

ACA
Cleared

S3: Ended
Remove task from task set

S0:S3
Task Abort Task End

S1:S3

Task Abort

S2:S3

ACA Clear and:

Simple Task: All older Head of Queue and
older Ordered tasks ended

Ordered Task: All older tasks ended

November 27, 1995 X3T10/994D revision 18

working draft SCSI-3 Architecture Model 67

Figure 24 : Task States

7.6 Task State Transitions

The task state diagram of figure 24 shows the behavior of a single task in response to an external event.

The following clauses describe task state transitions, actions and associated triggering events as they appear to an
application client. Although the logical unit response to events affecting multiple tasks, such as a Clear Task Set, may be
different from the response to an event affecting a single task, from the viewpoint of the application client the collective
behavior appears as a series of state changes occurring to individual tasks.

In the discussion below, "dormant task" refers to a task in the Dormant state, "enabled task" to a task in the Enabled state,
and so forth.

7.6.1 Transition S0:S1 (Ordered Task): Provided an ACA condition does not exist, a dormant task having the
ORDERED attribute shall enter the Enabled state when all older tasks have ended. This transition shall not occur while
an ACA condition is in effect for the task set.

X3T10/994D revision 18 November 27, 1995

68 working draft SCSI-3 Architecture Model

7.6.2 Transition SO:S1 (Simple task): Provided an ACA condition does not exist, a dormant task having the SIMPLE
attribute shall enter the Enabled state when all older Head of Queue and older Ordered tasks have ended. This transition
shall not occur while an ACA condition is in effect for the task set.

7.6.3 Transitions S0:S3, S2:S3: A task abort event shall cause the task to unconditionally enter the Ended state.

7.6.4 Transition S1:S2: An ACA condition shall cause an enabled task to enter the Blocked state.

7.6.5 Transition S1:S3: A task that has completed or aborted shall enter the Ended state. This is the only state transition
that applies to an ACA task.

7.6.6 Transition S2:S1: When an ACA condition is cleared and the QErr bit is set to zero in the control mode page (see
the SPC standard), a task in the Blocked state shall re-enter the Enabled state.

7.7 Task Set Management Examples

The following subclauses give several task set management scenarios. These are valid for single or multi-initiator cases.
That is, the interaction among tasks in a task set is independent of the initiator originating a task. The figure accompanying
each example shows successive snapshots of a task set after various events, such as task creation or completion. In all
cases, the constraints on task completion order settable through the control mode page (see the SPC standard) are not
in effect.

A task set is shown as an ordered list or queue of tasks with the head of the queue towards the top of the page. A new
Head of Queue task always enters the task set at the head, displacing older Head of Queue tasks . Simple, Ordered and
ACA tasks always enter the task set at the end of the queue.

Tasks, denoted by rectangles, are numbered in ascending order from oldest to most recent. Fill, shape and line weight
are used to distinguish task states and attributes as follows:

Task attributes:

a) Simple tasks -- rounded corners;
b) Ordered and ACA tasks -- square corners and thin lines;
c) Head of Queue -- square corners and thick lines.

Task states:

a) Enabled -- no fill;
b) Dormant -- grey (50 percent fill);
c) Blocked -- black.

7.7.1 Blocking Boundaries

The conditions preventing a dormant task from becoming enabled (in the absence of an ACA condition) are shown by
means of �blocking boundaries�. Such boundaries appear as dotted horizontal lines with an arrow on both ends. The
accompanying text identifies the tasks causing the barrier condition. A task is impeded by the barrier if is between the
boundary and the end of the queue. When no ACA is in effect, a task enters the Enabled state after all intervening barriers
have been removed.

Blocking boundaries are not shown while an ACA condition exists. In this case, the blocking effect of an ACA condition
takes precedence.

1 2

Task Set

Task Set

Simple Task 2

Simple Task 4

Simple Task 4

Head of Queue
Task 3

Head of Queue
Task 1

Blocking boundary
task 1

Blocking boundary
task 3

3

Simple Task 2

Head of Queue
Task 1

Blocking boundary
task 1

Task Set

Head of Queue
Task 1

Simple Task 2

Blocking boundary
task 1

November 27, 1995 X3T10/994D revision 18

working draft SCSI-3 Architecture Model 69

Figure 25 : HEAD OF QUEUE Tasks

7.7.2 HEAD OF QUEUE Tasks

Figure 25 shows task set conditions when several Head of Queue tasks are executed,

In snapshot 1 the task set initially contains one Head of Queue and one Simple task. As shown by the blocking boundary,
simple task 2 is Dormant because of the older Head of Queue task. Snapshot 2 shows the task set after Head of Queue
task 3 and Simple task 4 are created. The new Head of Queue task is placed at the front of the queue in the Enabled
state, displacing task 1. Snapshot 3 shows the task set after task 3 completes. Since the conditions indicated by the task
1 blocking boundary are still in effect, tasks 2 and 4 are held in the Dormant state.

Figure 26 is the same as the previous example, except that task 1 completes instead of task 3.

Task Set

Head of Queue
Task 1

Simple Task 2

1 2

Task Set

Simple Task 2

Simple Task 4

Simple Task 4

Head of Queue
Task 3

Head of Queue
Task 1

3

Task Set

Simple Task 2

Head of Queue
Task 3

Blocking boundary
task 1

Blocking boundary
task 1

Blocking boundary
task 3

Blocking boundary
task 3

X3T10/994D revision 18 November 27, 1995

70 working draft SCSI-3 Architecture Model

Figure 26 : HEAD OF QUEUE Tasks and
Blocking Boundaries

The completion of task 1 allows task 2 to enter the Enabled state. Simple task 4 is held in the Dormant state until task 3
completes..

7.7.3 Ordered Tasks

An example of Ordered and Simple task interaction is shown in figure 27.

Task Set

Simple Task 1

Ordered Task 2

Ordered Task 5

Ordered Task 5

Simple Task 3

Simple Task 4

3

Ordered Task 2

Simple Task 3

Simple Task 4

Task Set

1 2

Simple Task 3

Simple Task 4

Ordered Task 5

Task Set

Blocking boundary
Tasks 3 and 4, task 5

Blocking boundary
tasks 1 and 2

Blocking boundary
task 2

Blocking boundary
task 2

Blocking boundary
tasks 1 - 4, task 5

Blocking boundary
tasks 2 - 4, task 5

November 27, 1995 X3T10/994D revision 18

working draft SCSI-3 Architecture Model 71

Figure 27 : Ordered Tasks and Blocking Boundaries

The state of dormant tasks 2 through 5 is determined by the following rules:

Tasks 2 and 5 -- An Ordered task cannot enter the Enabled state until all older tasks have ended.
Tasks 3 and 4 -- A Simple task cannot enter the Enabled state until all older Head of Queue and older Ordered tasks

have ended.

These constraints are shown by the blocking boundaries in snapshot 1.

In snapshot 2, the completion of task 1 allows ordered task 2 to become Enabled. Since the initial constraints on tasks
3, 4 and 5 are still in effect, these tasks must remain Dormant. As shown in snapshot 3, the completion of task 2 triggers
two state changes: -- namely, the transitions of task 3 and task 4 to the Enabled state. Task 5 must be held in the Dormant
state until these tasks end.

7.7.4 ACA Task

Figure 28 shows the effects of an ACA condition on the task set. This example assumes the QErr flag is set to zero in the
control mode page (see the SPC standard). Consequently, clearing an ACA condition will not cause tasks to be aborted.

Task Set

Simple Task 4

Simple Task 1

4

Simple Task 4

Task Set

Ordered Task 3

Simple Task 5

Simple Task 1

ACA Task 5

3

Task Set

Simple Task 1

Simple Task 4

2

Ordered Task 3

Simple Task 4

Task Set

Simple Task 1

Simple Task 2

1

Ordered Task 3

Blocking boundary
tasks 1 and 2, task 3

Blocking boundary
task 3

X3T10/994D revision 18 November 27, 1995

72 working draft SCSI-3 Architecture Model

Figure 28 : ACA Task Example

The completion of task 2 with CHECK CONDITION status causes task 1 to enter the Blocked state shown in snapshot
2. In snapshot 3, Ordered task 3 is aborted and ACA task 5 is created to handle the exception. Once the ACA condition
is cleared, (snapshot 4) Simple task 1 can reenter the Enabled state. Since there are no Head of Queue or Ordered tasks
older than task 4, it too can be placed in the Enabled state.

7.7.5 Deferred Task Completion

In the example of figure 29, the logical unit must defer task completion in response to an exception condition until the task
enters the Enabled state. In this case, completion is caused by a TERMINATE TASK task management function directed
to a dormant task. The example would also apply to other cases, such as a task to be completed with CHECK
CONDITION status because of an error in a CDB parameter.

Task SetTask Set

Simple Task 3

ORDERED Task 1

Simple Task 2

21

Simple Task 3

Simple Task 2

3

Task Set

Simple Task 2

Blocking boundary
task 1

November 27, 1995 X3T10/994D revision 18

working draft SCSI-3 Architecture Model 73

Figure 29 : Example of Deferred Task Completion

In snapshot 1, a TERMINATE TASK task management request has been directed to Dormant task 3. Because of Ordered
task 1, task 3 cannot enter the Enabled state and therefore cannot complete. The eventual completion of task 1 allows
tasks 2 and 3 to become enabled as shown in snapshot 2. The pending TERMINATE TASK request can now be
executed. The resulting auto contingent allegiance condition causes task 2 to enter the Blocked state shown in snapshot
3.

Because tasks in the Enabled state may complete in any order Simple task 2 may complete before task 3. In that case,
the following alternate outcomes are possible:

a) Simple task 2 may complete with GOOD status, followed by the completion of task 3 with CHECK CONDITION
status;

b) Simple task 2 may complete with CHECK CONDITION status; task 3 is placed in the Blocked state.

Begin annexes after this comment

