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Abstract. We explore several methods utilizing system-wide shared
memory to improve the performance of MPI-IO, particularly for non-
contiguous file access. We introduce an abstraction called the datatype
iterator that permits efficient, dynamic generation of (offset, length) pairs
for a given MPI derived datatype. Combining datatype iterators with
overlapped I/O and computation, we demonstrate how a shared mem-
ory MPI implementation can utilize more than 90% of the available disk
bandwidth (in some cases representing a 5× performance improvement
over existing methods) even for extreme cases of non-contiguous data-
types. We generalize our results to suggest possible parallel I/O perfor-
mance improvements on systems without global shared memory.

Keywords: Parallel I/O, shared memory, datatype iterator, non-contig-
uous access, MPI-IO.

1 Introduction

The rich MPI derived datatype facility can describe arbitrary regions of in-
memory and in-file data. Via this facility, an application using MPI-IO may
issue I/O operations that are non-contiguous in memory and/or in a file[1].
Previous work has explored optimizing these operations via data sieving[2], the
two-phase collective optimization[2], list I/O[3], and datatype I/O[4], primarily
in the context of commodity clusters. The first two optimizations are broadly
available through the open source ROMIO implementation distributed as part
of MPICH2[5].

In a data sieving read, each process repeats this cycle: read the next large
contiguous chunk of file data into a working buffer and extract the pieces needed
by the MPI read operation. Each cycle typically transfers a subset of the data
covered by the associated datatypes. Writes are similar, except locks serialize
access to each chunk, and a read-modify-write may be necessary for each chunk.
(ROMIO uses data sieving for non-interleaved collective I/O operations.)

In the two-phase collective optimization, a subset of processes are designated
aggregators. All processes construct lists of (offset, length) pairs (flattening their
memory and file datatypes), and send flattened file datatypes to the aggregators.
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For each chunk all processes use flattened memory datatypes to transfer an
appropriate subset of their data to or from the aggregators via MPI messages,
and the aggregrators use the flattened file datatypes to transfer the data to
or from the working buffer. The messages serve not only to transfer the data,
but also to synchronize the processes and ensure that I/O is complete before
accessing the working buffer.

In list I/O, the MPI-IO implementation flattens the memory and file datatypes
to lists of (offset, length) pairs. These lists are then communicated (concurrently
with the data on a write) to a new list I/O interface in the filesystem, where it
may apply techniques such as data sieving to optimize the operation.

Since the memory and file lists can be quite long for non-contiguous datatypes,
datatype I/O replaces the lists with two compact datatype representations ex-
tracted from the MPI derived datatypes specified by the MPI-IO call. As in list
I/O, these compact representations are communicated (concurrently with the
data on a write) to a new datatype I/O filesystem interface.

In this work we investigate algorithms for optimizing MPI-IO in the context
of a shared memory computer. As participants in the DARPA High Productivity
Computer Systems initiative[6], researchers at Sun Microsystems, Inc., have been
exploring the use of shared memory in petascale computer systems[7]. Exploiting
shared memory in the MPI-IO implementation offers an opportunity to improve
I/O performance without altering how applications express I/O operations.

2 Exploiting Shared Memory

In a global shared memory system the filesystem typically has direct access to both
user memory and I/O devices, and it is efficient to transfer data independently
from control information. Further, the data transfer step in the two-phase collec-
tive optimization can be performed via shared memory, bypassing the packing,
copying, and unpacking operations usually required to implement MPI messages.
We extended ROMIO with new I/O methods that exploit shared memory.

mmap. In a shared memory system it is relatively efficient to use the POSIX
mmap operation to map a file directly into the address space of several processes.
In contrast, mmap on a cluster might require additional bookkeeping and data
transfer overhead to provide distributed shared memory. In the mmap I/O
method, processes must synchronize initially to compute and set the new file
length, but then can proceed independently using a data sieving-like algorithm:
map a file chunk, then use the flattened datatypes to copy data into or out of
the mapped chunk. The advantage over data sieving is that pages of the file are
shared in memory; thus I/O transfers happen only once. The disadvantage is
that memory management hardware limitations require existing file contents to
be read before each write operation, even when overwriting an entire page.

Collective shared data. In the ROMIO two-phase collective, processes ex-
change data with aggregators via MPI messages. In the collective shared data
method, we arrange for aggregators to have direct access to every process’s
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address space.1 Each aggregator copies data between its working buffer and ap-
propriate application memory locations in other processes without costly MPI
messages. The locations in application memory and the working buffer are iden-
tified via the flattened datatypes. In contrast to the message-based collective,
the processes need only synchronize at the very start and very end of the MPI-IO
operation, no matter how many cycles through the working buffer are needed to
complete the operation.

Collective shared buffer with flattened datatypes. In the collective shared
buffer methods, we arrange for each process to have direct access to every ag-
gregator’s working buffer. Each process uses the flattened datatypes to copy its
own application data to or from working buffers in the appropriate aggregators.
With a single working buffer per aggregator it is necessary for all processes to
synchronize before beginning their copy operations (to wait for the read or write
of the previous chunk to complete) and after their copy completes (to notify the
aggregators of copy completion and that it is safe to initiate the read or write
of the next chunk). We eliminated one synchronization step by splitting each
working buffer into multiple sub-buffers and performing I/O asynchronously.
On each cycle of a write operation, for example, the aggregators: (1) wait for
I/O to complete on the next sub-buffer, (2) synchronize with all processes, and
(3) initiate I/O on the just-completed sub-buffer. We measured a 40-90% perfor-
mance improvement for our collective shared buffer algorithms on the FLASH
I/O benchmark (Section 3.3) by enabling sub-buffering.

Collective shared buffer with dynamic offset/length generation. This
method replaces the flattened datatypes with dynamic (offset, length) genera-
tion. A problem with flattening is that the entire list must be generated before
any actual I/O can begin. Also, the flattened list may be large and thus compete
for space in the processor cache with the application data being transferred.

We introduced a new abstract data type called a datatype iterator, represent-
ing a cursor into a specific MPI datatype. The function dtc next advances the
cursor to the next contiguous block in the associated datatype and returns the
(offset, length) for that block. dtc extent tell and dtc size tell return the
extent or size within the datatype corresponding to the current cursor position.
dtc extent seek and dtc size seek position the cursor to a specific extent or
size within the datatype.

The datatype iterator concept is similar in some ways to the segments used to
transfer a datatype subset (partial processing) in MPICH2’s dataloops, although
segments seem not to have been applied to MPI-IO[8]. Datatype iterators are
also similar to the flattening-on-the-fly technique (like dataloops but with added
optimizations useful for vector processors) of listless I/O, which specializes the
MPI pack/unpack interfaces to perform partial processing[9]. However, our da-
tatype iterator interface appears to be unique: it allows a data transfer where

1 Our experimental implementation uses shmget/shmat to attach a single shared mem-
ory region to every process. Each process (or aggregator, for collective shared buffer)
allocates its application data (or working buffer) in a contiguous subset of the region.
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both source and destination buffers are non-contiguous, and factors out separate
seek and tell operations while still supporting partial processing.

The key data structure in the datatype iterator implementation is a stack
with depth equal to the maximum nesting level of the derived datatype. Each
stack element tracks the current position within the corresponding nested derived
datatype. The basic algorithm for advancing the cursor descends the derived da-
tatype tree to look ahead to the next contiguous block of bytes. If the lookahead
is contiguous to the current accumulated block, add it and continue; otherwise,
remember the lookahead for the next call and return the accumulated block.

The main processing loop for the collective shared buffer with dynamic off-
set/length generation algorithm is similar to that with flattened datatypes (in-
cluding use of asynchronous I/O). However, no flattening is necessary before
starting the main loop; instead, each process constructs datatype iterators for
its own file and memory datatypes. The core of the “copy data” step for a write
operation (the pseudocode below) demonstrates the power of datatype iterators.
The code copies data directly from the (possibly non-contiguous) application
buffer to the (possibly non-contiguous) destination locations in the shared work-
ing buffer without the need to pack and/or unpack data in an intermediate
buffer (in contrast to the direct pack ff technique of [10]). Further, a contiguous
datatype is not a special case: the code works efficiently for both contiguous and
non-contiguous datatypes.

while (file_off + file_len <= end_off) {
// Entire file block still fits in current chunk

while (file_len >= mem_len) { // Mem block fits in file block
src = app_buf + mem_off;
memcpy(dest, src, mem_len); // Copy remaining mem block
file_off += mem_len;
file_len -= mem_len;
dest += mem_len;
(mem_off, mem_len) = dtc_next(mem_dtc); // Next mem block

}
while (mem_len >= file_len) { // File block fits in mem block
dest = temp_buf + file_off - start_off;
memcpy(dest, src, file_len); // Copy remaining file block
mem_off += file_len;
mem_len -= file_len;
src += file_len;
(file_off, file_len) = dtc_next(file_dtc); // Next file block
if (file_off + file_len > end_off)
break;

}
} // Elided: post-loop handling of tail end of file block

Another illustrative paradigm is the pseudocode to position the memory and file
datatype cursors to match the start of the current file chunk:
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dtc_extent_seek(file_dtc, start_off);
file_size = dtc_size_tell(file_dtc);
dtc_size_seek(mem_dtc, file_size);

The use of datatype iterators considerably simplifies the implementation of the
two-phase collective I/O method. Using lines of code as a proxy for complexity,
we compared our two collective shared-buffer implementations. The list-based
routine required 952 lines (with 1210 lines of supporting functions), while the
datatype iterator-based routine required 358 lines (with 617 lines of supporting
functions, including the datatype iterator implementation), an overall savings of
62% for datatype iterators. It seems reasonable to expect similar savings for a
non-shared-memory-based two-phase collective algorithm.

3 Performance Evaluation

To evaluate the performance of our new shared memory-based I/O methods
against other existing methods, we ran three MPI-IO benchmarks. Our bench-
mark hardware is a Sun FireTM 6800 server with 24 processors at 1.2 GHz and
96 GBytes of RAM. Four Sun StorEdgeTM T3 disk arrays are connected via four
dedicated 1 Gbit Fibrechannel host adapters. We used the Sun StorageTekTM

QFS 4.5 filesystem[11] and the SolarisTM 9 operating system. The filesystem
is configured with metadata on one disk array and data striped across the re-
maining three disk arrays using a 512 MByte disk allocation unit per array.
Aggregate peak read or write bandwidth to the three data arrays does not ex-
ceed 300 MBytes/second. Some of the benchmark problem sizes are small enough
to fit within the RAM cache of the disk arrays, so we explicitly disabled this
cache for a fairer comparison to larger problems that do not fit in cache.

QFS offers both buffered I/O (caches file blocks in system memory, then copies
or maps them to/from user memory) and direct I/O (host adapter copies file
blocks directly between user space and disk array). Direct I/O usually delivers
higher performance than buffered for writes and for reads of data not already
present in buffer cache (lower bookkeeping overhead and one fewer copy oper-
ation) but requires user code to align file offsets. List I/O, datatype I/O, and
mmap are by their nature restricted to buffered I/O. As a baseline, we measured
both buffered and direct I/O results for data sieving and the ROMIO two-phase
collective I/O methods, but only direct I/O for the remaining, higher-performing
methods. QFS does not support datatype I/O; results for other buffered I/O
methods suggest datatype I/O would have similar performance to those methods.
In some cases we omit list I/O or data sieving results because their performance
was so poor that the corresponding runs took too long to complete.

We required an MPI implementation that included ROMIO’s implementa-
tion of MPI-IO and supported a shared memory transport on our test plat-
form. LAM 7.1.1[12] seemed to be the only available implementation meeting
both requirements at the time of our experiments. We implemented datatype
iterators directly inside LAM, avoiding the public MPI interfaces for inspecting
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datatypes. We upgraded ROMIO to version 1.2.4 with additional flattening code
from version 2005-06-09[5]. All code was compiled for a 64-bit execution model.

For each method, we picked one set of tuning parameters (primarily working
buffer size, number of sub-buffers, and number of aggregators), chosen to ob-
tain the best results across the selected range of problem types and sizes. The
collective shared buffer with dynamic generation method required the least ag-
gregate working buffer space of the collective methods and seemed least sensitive
to parameter changes.

Each reported result is the average over three runs. Time constraints prevented
us from flushing the filesystem buffer cache between runs, and one benchmark
pre-reads file contents into the buffer cache before beginning measurements.
Therefore, the results for I/O methods utilizing buffered reads include time to
access the buffer cache but not time to transfer data from disk.

3.1 ROMIO 3D Block Test

The ROMIO 3D block test (coll perf.c), included in the ROMIO test suite, mea-
sures bandwidth to a 600×600×600 array of integers stored in an 824 MByte file.
Each process uses a contiguous memory datatype, but the portion of the array
file accessed by each process is determined by a block distribution (MPI DIS-
TRIBUTE BLOCK).

Figure 1 shows our results. When the number of processes is not an integer’s
cube, data is distributed unevenly among the processes, accounting for several
zig-zags in the graphs. As expected, buffered methods outperform direct on
reads, but suffer from cache management overhead and extra copying on writes.
Among direct methods, the collective shared buffer with dynamic generation
method achieves the best read and write performance with little sensitivity to the
uneven data distribution. Data sieving has the poorest direct I/O performance;
repeated access to the same disk block causes extra disk seeks and must be
serialized for writes.

3.2 Tile Reader Benchmark

The tile reader benchmark[13] implements tiled access to a two-dimensional
dense dataset. A tile represents an individual display unit; displays are arranged
in an array to collectively present a large image to a human viewer. Each tile
is 1024×768 pixels with 24 bits per pixel; the tiles overlap by 128 pixels verti-
cally and 270 pixels horizontally to improve edge merging. Each process reads
its corresponding tile from the file to a contiguous memory buffer.

Figure 2 presents results for array sizes from 2×2 to 6×4 with correspond-
ing file sizes 7 to 37 MBytes. (The number of processes is the product of the
two dimensions.) Buffered methods again benefit from a warm filesystem buffer
cache to outperform direct methods. Among direct methods, the collective shared
buffer with dynamic generation method consistently outperforms the other di-
rect methods (even on small problems), and on larger problems achieves over
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Fig. 1. ROMIO 3D block test performance results

100% of the available bandwidth.2 Data sieving lags in performance due to re-
peated reads of the same disk block.

3.3 FLASH I/O Benchmark

The Argonne/Northwestern FLASH I/O benchmark (derived from the FLASH
adaptive mesh refinement application[14]) substitutes synthetic data for the
original computation, but makes the identical sequence of MPI-IO calls. Each
2 How is this possible? The collective I/O methods read the overlapping data regions

from the file only once, yet the benchmark counts the overlapping regions multiple
times: aggregate bytes read = number of processes × data per process.
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Fig. 2. Tile reader performance results

process contains 80 blocks. Each block is a three-dimensional array of data ele-
ments with each surface extended by four ghost cells. Each data element contains
24 variables. Data elements (but not ghost cells) are checkpointed to a file. In the
file, data is rearranged so all values of variable 0 are stored first, then variable
1, and so on. Both file and memory datatypes are non-contiguous; each value
is 8 bytes and is not contiguous in memory with other values of the same vari-
able. (For our largest problem size the list-based I/O methods use an aggregate
O(109) list entries requiring twice the memory of the data they describe.)

We explored scalability along two dimensions. The top graph in Figure 3 re-
ports results for a fixed number of processes (22) but a varying block size; file
sizes range from 165 MBytes to 15 GBytes. The bottom graph reports results for
a fixed block size (20×20×20) but a varying number of processes; file sizes range
from 469 MBytes to 2.8 GBytes. The graphs show the collective shared buffer
with dynamic generation method scaling well on both dimensions and provid-
ing the best performance. For the larger process counts it achieves over 90% of
the available disk bandwidth, reflecting a 5× improvement over the best exist-
ing method (two-phase collective). The buffered methods are limited by cache
management overhead and extra copying and have the poorest performance.

4 Conclusion

We explored several new methods to improve MPI-IO in a shared memory com-
puter system. A method that utilizes a shared working buffer, a single aggregator,
overlaps I/O and computation via a generalized double-buffering scheme, and
reduces startup cost to generate (offset, length) pairs dynamically offered the
best aggregate performance for several application I/O patterns.
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Fig. 3. FLASH I/O performance results: 22 processes (top), 20×20×20 block (bottom)

More generally, we rediscovered two important principles for obtaining good
streaming I/O performance: (1) Reduce startup overhead and begin I/O early.
(2) Overlap I/O and computation whenever possible. Our new abstraction, the
datatype iterator, follows (1): initialization is cheap in contrast to the potentially
high cost to generate (offset, length) lists. The sub-buffering mechanism we used
in our collective shared buffer I/O methods follows (2).

We utilized the datatype iterator only in a shared memory system. Since
the ROMIO two-phase collective uses lists extensively, and our research shows
that datatype iterators in conjunction with overlapped I/O and computation can
produce better performance with fewer lines of code than lists, an interesting area
for future work would be the use of datatype iterators in traditional clusters.
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