15-451 Algorithms, Fall 2012

Homework # 1 Due: September 11, 2012

Please hand in each problem on a separate sheet and put your name and recitation (time
or letter) at the top of each page. You will be handing each problem into a separate box in
lecture, and we will then give homeworks back in recitation.

Remember: written homeworks are to be done individually. Group work is only for the
oral-presentation assignments.

Problems:

(25 pts) 1. Recurrences. Solve the following recurrences, giving your answer in © notation. For
each of them, assume the base case T'(x) = 1 for x < 10. Show your work.

(n)=T(n—2)+nd.

(n) = T(n/2) +1g(n).

(n) =7T(n —2).

(n) = V/nT(/n) +n. (E.g., we might get this from a divide-and-conquer

procedure that uses linear time to break the problem into y/n pieces of size /n

each. Hint: write out the recursion tree.)

(25 pts) 2. Recurrences, part 2. Consider the following algorithm to sort an array of size n:

If (n < 2) then sort with at most 1 comparison. Else:

1. Recursively sort the first [2n/3] elements of the array.
2. Recursively sort the last [2n/3] elements of the array.
3. Recursively sort the first [2n/3] elements of the array.

For this question, you will be analyzing its runtime. Unlike other examples in this
course, in this problem we will specifically tackle the problem of how to deal with the
pesky [ceilings].!

(a) Given that the runtime of this algorithm follows the recurrence T'(n) = 37'(2n/3)
for n > 2 (with 7'(2) = 1), what is the running time of this algorithm in ©/()
notation? Don’t worry about rounding yet.

(b) Now, we tackle the issue with rounding. Suppose we have a sequence of numbers
xp and y, for k =0,1,2,... defined recursively as follows:
L. Zo = Yo
. xp = (2/3)xp_ forall k >0
ii. v = [(2/3)yk—1] for all k >0
Prove that there exists a constant ¢ such that y, — z, < ¢ for all £ > 0. (Note:
This constant should be independent of xy and yq.)

'Tn most examples we see in this course, we can just increase the size of the input so that the division
stays integral all the way down. But you can’t just assume n is a power of 3/2, since that is not an integer.



(10 pts) 3.

(40 pts) 4.

(c) Use (b) to analyze the actual recurrence of T'(n) = 3T([2n/3]) for n > 2, giving
your answer in ©() notation.

Hint: to do this, analyze the depth of the algorithm’s recursion tree. Specifically,
give an upper bound u and lower bound ¢ (with u — ¢ < ¢ for some constant )
on the number of iterations of performing “n — [2n/3]” that are needed to bring
n down to 2. Once you have computed these quantities u and ¢, the solution to
the recurrence should be immediate.

Probability and expectation. An inversion in an array A = [a1,as,...,a,] is a
pair (a;,a;) such that i < j but a; > a;. For example, in the array [4,2, 5, 3] there are
three inversions. A sorted array has no inversions, and more generally, the number of
inversions is a measure of how “well-sorted” an array is.

(a) What is the ezpected number of inversions in a random array of n elements? By
“random array” we mean a random permutation of n distinct elements ay, ..., a,.
Show your work. Hint: use linearity of expectation.

(b) It turns out that the number of comparisons made by the Insertion-Sort sorting
algorithm is between I and n + I — 1, where I is the number of inversions in
the array. Given this fact, what does your answer to part (a) say about the
average-case running time of Insertion Sort (in © notation)?

Matrix games.

The Algo Rhythms music company is expanding its business in the United States, and
is going to open a new store in Atlanta, Baltimore, or Chicago (Al, the CEO, wants
to keep the location secret for now). Because of the associated spike in ticket sales,
the Logger Rhythms rock band is thinking about doing a concert in one of those cities
right after the grand opening. Since sales have been down this year, they can’t wait
until after the location is announced to plan their concert.?

In order to precisely describe what is going on, Bob, the lead guitarist, writes down a
matrix with the rows corresponding to different cities to hold their concert, the columns
corresponding to different possible locations for the store, and filling in the matrix with
the total amount of anticipated ticket sales. Specifically, the matrix is as follows:

Store Location

A B C
A5 1 1

Concert Location B | 1 5 1| « anticipated sales (100s of tickets)
c|i1 1 5

(a) Suppose that Bob has a sister named Alice who works at Algo Rhythms, and
overheard some execs talking about the new location. From what she heard,
Alice believes that there is a 35% chance the store will be in Atlanta, a 20%
chance it will be in Baltimore, and a 45% chance it will be in Chicago. In that
case, what is the best place for Bob to choose for his concert, and what is the
expected amount in sales for that location?

2 Any relation to actual companies or bands of these names is purely coincidental.



(b) Suppose instead Bob suspects that Al is secretly trying to make his band go
bankrupt. Because of this, Bob decides to randomize in making his decision.

i. With what probabilities should Bob choose a location so that no matter what
city Al selects, Bob’s expected ticket sales are as good as possible? (I.e., Bob
wants

MINAYs choices EBobss choices|ticket sales]
to be as high as possible).

ii. What is the expected sales under this distribution?

(c¢) Suppose that because of a recent music festival, the anticipated ticket sales result
in the following improved matrix (the only change is the upper-left-corner):

Store Location

A B C
Al7 1 1

Concert Location B | 1 5 1| « anticipated sales (100s of tickets)
cC|1 15

i. Now what probabilities should Bob use for his locations so that the worst-case
expected sales (Minays choices EBobrs choices|ticket sales]) are as high as possible?
Hint: by symmetry, you can assume Bob’s probabilities on B and C' are equal.
So, for some value p, Bob has probability p on B, p on C, and 1 — 2p on A.

ii. And what is the value of Bob’s expected sales when using those probabilities?
iii. Was there anything unexpected about the probabilities you came up with in

part (c¢)i? [There is no right or wrong answer here - but was your intuition
that A should have higher or lower probability than B and C'7]

(d) Considering the matrix in part (c¢) above, suppose now Al is going to probabilis-
tically decide where to open the new store.

i. What probabilities should Al use so that no matter which city Bob picks,
Bob’s expected sales are as low as possible? (Formally,

IMaXBob's choices EAI’S choices [thket sales]

is as low as possible?)

ii. And what is the value of Bob’s expected sales in this case?

The above is an example of something called a “matrix game” or a “2-player zero-
sum game” between players Al and Bob. If you did this correctly, the values you
computed in parts c(ii) and d(ii) should be identical. The fact that they are identical is
a case of von Neumann’s minimax theorem (which we will discuss later in the course),
and this value is called the value of the game. In class, when we talk about giving
“upper bounds” and “lower bounds” for a problem like sorting, we are really talking
about upper and lower bounds on the value of the associated game. A randomized
upper bound of O(nlogn) means we have an algorithm that guarantees expected cost
O(nlogn) no matter what input it is given. A lower bound of Q(nlogn) means that
no algorithm can do better, which we typically will show by giving an adversarial
probability distribution on inputs (an “algorithm for Al”) that is bad for all algorithms.



