
15-451 Algorithms, Fall 2012

Homework # 3 Due: October 9, 2012

Please hand in each problem on a separate sheet and put your name and recitation (time
or letter) at the top of each page. You will be handing each problem into a separate box in
lecture, and we will then give homeworks back in recitation.

Remember: written homeworks are to be done individually. Group work is only for the
oral-presentation assignments.

1. Dequeue. [25 pts]

A dequeue is data structure that represents an ordered list of items. It allows access to both
ends of the list. (The ends are called the front and back of the list.) Specifically it supports
the following operations:

d.isempty(): return true if the dequeue is empty

d.push(x): add x to the front of the dequeue

d.pop(): remove and return the element at the front of the dequeue

d.inject(x): add x to the back of the dequeue

d.eject(): remove and return the element at the back of the dequeue

A stack is a similar data structure that just allows the s.isempty() s.push() and s.pop()
operations.

Describe how to implement a dequeue using two stacks. (Your data structure can maintain
additional bookkeeping information, such as the number of elements in the dequeue. But it
should not make use of an array or other data structures to store the data in the dequeue.)

Your algorithm should be constant amortized time per operation. To be concrete, measure
the cost of an operation in terms of the number of stack pushes and pops that it does. Find
small constants c1 and c2 such that the amortized costs of d.push() and d.inject() are at
most c1 and the amortized costs of d.pop() and d.eject() are at most c2. Prove your result
using a potential function.

2. The List-Update Problem. [25 pts]

Suppose we have n data items x1, x2, . . . , xn that we wish to store in a linked list in some
order. Let’s say the cost for performing a lookup(x) operation is $1 if x is in the head of the
list, $2 if x is the second element in the list, and so on.

For instance, say there are 4 items and it turns out that we end up accessing x1 3 times, x2

5 times, x3 once, and x4 twice. In this case, in hindsight, the best ordering for a linked list
would have been (x2, x1, x4, x3) with a total cost of $21.

The Move-to-Front (MTF) strategy is the following algorithm for organizing the list if we
don’t know in advance how many times we will access each element. We begin with the
elements in their initial order (x1, x2, . . . , xn). Then, whenever we perform a lookup(x)

1

operation, we move the item accessed to the front of the list. Let us say that performing the
movement is free. For instance, if the first operation was lookup(x3), then we pay $3, and
afterwards the list will look like (x3, x1, x2, x4 . . .).

1. Suppose n = 4 and we use MTF starting from the order (x1, x2, x3, x4). If we perform
the following 4 operations:

lookup(x4), lookup(x2), lookup(x4), lookup(x2).

What does the list look like in the end and what was the total cost?

2. Your job is to prove that the total cost of the MTF algorithm on a sequence of m
operations (think of m as much larger than n) is at most 2Cstatic + n2 where Cstatic

is the cost of the best static list in hindsight for those m operations (like in our first
example). We will prove this in two steps.

(a) First prove the somewhat easier statement that the cost of Move-to-Front is at
most 2Cinitial where Cinitial is the cost of the original ordering (x1, x2, . . . , xn).

Hint: If i < j but xj is in front of xi in the MTF list, let’s say that xj has “cut in
line” in front of xi. Now, imagine that each element xi has a bank account with
$1 for everyone that is currently cutting in line in front of it.

(b) Now prove the 2Cstatic + n2 bound.

Note: one nice use of this is for data compression. You store each ascii character in a list in
this way, and then when reading a string of text, for each character you output its index i
in the list before moving the character to the front (this requires only O(log i) bits, which
will be small if the item was close to the front of the list).

3. Road trip! [25 pts]

You and your friends decide to go on a road trip to San Francisco immediately after midterms.
To plan the trip, you have laid out a map of the U.S., and marked all the places you think
might be interesting to visit along the way. However, the requirements are:

1. Each stop on the trip must be strictly closer to SF than the previous stop.

2. The total length of the trip can be no longer than D.

You and your friends want to visit the most places subject to these conditions. As a first
step, you create a directed graph with n nodes (one for each location of interest) and an
edge from i to j if there is a road from i to j and j is closer to SF than i. Let dij be the
length of edge (i, j) in this graph.

Give an O(mn)-time algorithm to solve your optimization problem. Specifically, given a
directed acyclic graph (DAG) G with n nodes, m edges and with lengths on the edges, and
given a start node s, a destination node t, and a distance bound D, your algorithm should
find the path in G from s to t that visits the most intermediate nodes, subject to having
total length ≤ D.

2

(Note that in general graphs, this problem is NP-complete: in particular, a solution to this
problem would allow one to solve the traveling salesman problem. However, the case that G
is a DAG is much easier.)

4. Optimal BSTs. [25 pts]

Consider a binary search tree storing a set of keys x1 < x2 < x3 < . . . < xn. Let’s define the
cost of handling a request for some key to be the number of comparisions made in searching
for it (1 plus the distance of the node from the root of the tree). For example, if the root is
requested, the cost is 1.

Given a particular sequence of requests, one can calculate the cost that would be incurred
on that sequence by different possible binary search trees. (We are thinking of the trees as
static, not self-adjusting as in Splay Trees.) Out of all possible BSTs, the one that attains
the minimum cost is called the optimal binary search tree for that sequence.1

1. For a fixed tree, the cost of a given sequence of requests clearly only depends on the
number of times each key is requested, not on their order. Suppose that n = 4 and that
x1 is accessed twice, x2 is accessed 4 times, x3 is accessed 3 times, and x4 is accessed
6 times. It turns out there are multiple different optimal binary trees for this set of
requests. Find two of them.

2. In general, suppose the optimal binary search tree for a given set of requests has xi at
the root, with L as its left subtree and R as its right subtree. Prove that L must be
an optimal binary search tree for the requests to elements x1, . . . , xi−1 and R must be
an optimal binary search tree for the requests to elements xi+1, . . . , xn.

3. Give a general algorithm for constructing the optimal binary tree given a sequence of
counts c1, c2, . . . , cn (ci is the number of times xi is accessed). The running time of
your algorithm should be O(n3). Hint: use dynamic programming.

Note #1: the notion of an optimal binary search tree is a lot like the notion of a Huffman
tree, except that we also require the keys to be in search-tree order. This requirement is the
reason that the greedy Huffman-tree algorithm doesn’t work for finding optimal BSTs.

Note #2: it’s actually possible to improve the running time to O(n2) by a simple modification
to this dynamic-programming solution. But proving correctness for this faster version is very
tricky.

1This is the exactly analogous to the “best static list in hindsight” in the previous problem. The big
difference is that for lists, the best static list in hindsight is very simple: you just put the most-requested
item in the front, then the next-most-requested, etc. For trees, computing the optimal binary search tree
will be more complicated, requiring dynamic programming, which is what this whole problem is about.

3

