
15-451 Algorithms, Fall 2012

Homework # 5 due: Tuesday November 6, 2012

Please hand in each problem on a separate sheet and put your name and recitation (time
or letter) at the top of each sheet. You will be handing each problem into a separate box,
and we will then give homeworks back in recitation.

Remember: written homeworks are to be done individually. Group work is only for the
oral-presentation assignments.

Problems:

(25 pts) 1. [Realizing degree sequences] You are the chief engineer for Graphs-R-Us, a company
that makes graphs to meet all sorts of specifications.

(a) A client comes in and says he needs a 4-node directed graph in which the nodes
have the following in-degrees and out-degrees:

d1,in = 0, d2,in = 1, d3,in = 2, d4,in = 3
d1,out = 2, d2,out = 2, d3,out = 1, d4,out = 1

Is there a directed graph, with no multi-edges or self loops, that meets this spec-
ification? If so, what is it?

(b) What about a 3-node graph (again with no multi-edges or self loops) with these
in-degrees and out-degrees?

d1,in = 2, d2,in = 2, d3,in = 1
d1,out = 2, d2,out = 2, d3,out = 1

(c) This type of specification, in which the in-degrees and out-degrees of each node are
given, is called a degree sequence. The question above is asking whether a given
degree sequence is realizable — that is, whether there exists a directed graph
having those degrees.

Find an efficient algorithm that, given a degree sequence, will determine whether
this sequence is realizable, and if so will produce a directed graph with those
degrees. The graph should not have any self-loops, and should not have any
multi-edges (i.e., for each directed pair (i, j) there can be at most one edge from
i to j, though it is fine if there is also an edge from j to i). Hint: think network
flow.

(25 pts) 2. [Multicommodity Flow] The multicommodity flow problem is just like the standard
network flow problem except we have p sources s1, . . . , sp and p sinks t1, . . . , tp. The
stuff flowing from s1 has to go to t1, the stuff from s2 has to go to t2, and so on. For
each sink ti we have a demand di. (E.g., we need to get d1 trucks from s1 to t1, d2

trucks from s2 to t2, and so on.) Our goal is to solve for a feasible solution — a solution
satisfying the demands — if one exists. (Just like with standard network flow, the total



amount of stuff going on some edge (u, v) cannot exceed its capacity cuv. However, our
“flow-in = flow-out” constraints must hold separately for each commodity. That is, for
every commodity i, and every vertex v 6∈ {si, ti}, the amount of type-i stuff going into
v must equal the amount of type-i stuff going out from v.

(a) Show how to solve this using linear programming.

(b) The above problem assumes all edges are directed. E.g., if you had a highway with
3 lanes going one way and two lanes going the other, that would be a directed
edge of capacity 3 in one direction and a directed edge of capacity 2 in the other.
Suppose we wanted to also allow undirected edges e with capacities ce (like a
highway with 5 lanes where part of your job is to decide how many will go one
way and how many will go the other). How can you modify your LP formulation
to handle this as well?

(25 pts) 3. [Graduation revisited] Cranberry-Melon University has switched to a less draconian
policy for graduation requirements than that used on Homework 4. As in Homework
4, there is a list of requirements r1, r2, . . . , rm, where each requirement ri is of the form:
“you must take at least ki courses from set Si”. However, unlike the case in Homework
4, a student may use the same course to fulfill several requirements. For example, if
one requirement stated that a student must take at least one course from {A, B, C},
another required at least one course from {C, D,E}, and a third required at least one
course from {A, F,G}, then a student would only have to take A and C to graduate.

Now, consider an incoming freshman interested in finding the minimum number of
courses that he/she needs to take in order to graduate.

(a) Prove that the problem faced by this freshman is NP-hard, even if each ki is equal
to 1. Specifically, consider the following decision problem: given n items labeled
1, 2, . . . , n, given m subsets of these items S1, S2, . . . , Sm, and given an integer k,
does there exist a set S of at most k items such that |S ⋂

Si| ≥ 1 for all Si. Prove
that this problem is NP-complete (also say why it is in NP).

(b) Show how you could use a polynomial-time algorithm for the above decision prob-
lem to also solve the search-version of the problem (i.e., actually find a minimum-
sized set of courses to take).

(c) We could define a fractional version of the graduation problem by imagining that
in each course taken, a student can elect to do a fraction of the work between
0.00 and 1.00, and that requirement ri now states “the sum of your fractions of
work in courses taken from set Si must be at least ki” (courses not taken count
as 0). The student now wants to know the least total work needed to satisfy all
requirements and graduate.

Show how this problem can be solved using linear programming. Be sure to
specify what the variables are, what the constraints are, and what you are trying
to minimize or maximize.

(25 pts) 4. [Adversarial Shortest Paths] You’re given an undirected graph with non-negative edge
lengths. You also have a start vertex and a collection of goal vertices. You’re interested

2



in finding the shortest path from the start vertex to a goal vertex, with one catch.
(If there were no catch you could use Dijkstra’s or the Bellman-Ford shortest path
algorithm, which you should review because they will be useful in solving this problem.)

The catch is that there’s an adversary watching your progress through this graph.
And when you’re at a vertex, the adversary can decide to temporarily block one of
the exiting edges from your vertex. When you move along an unblocked edge, the
adversary then removes the previous block and sets up a new block on one of the edges
from your new vertex.

Give an algorithm that takes such a graph and determines if you can make it to a
goal or not, and if so, it tells you how long it will take you to get there (assuming
the adversary makes it take as long as he can.) Your algorithm should run in time
polynomial in n and m on a graph of n vertices and m edges.

3


