From: Combinatorial Algorithms by Reingold, Nievengelt & Deo

8.2.3 Biconnectivity

Sometimes it is not enough to know that a graph is connected; we may need to know how "well connected" a connected graph is. A connected graph, for example, may contain a vertex whose removal, along with its incident edges, disconnects the remaining vertices. Such a vertex is called an articulation point or a cut-vertex. A graph that contains an articulation point is called separable. Vertices b, f, and i in Figure 8.7(a), for example, are articulation points, and they are the only ones in the graph. A graph with no articulation points is called biconnected or nonseparable. A maximal biconnected subgraph of a graph is called a biconnected component or a block. Identification of the articulation points and biconnected components of a given graph is important in the study of the vulnerability of communication and transportation networks. It is also important in determining other properties, like planarity, of a graph G, since it is often advantageous to separate G into its biconnected components and examine each one individually (see Section 8.6).

A vertex v in an undirected connected graph is an articulation point if and only if there exist two other vertices x and y such that every path between x and y passes through v; in this case and only in this case does the deletion of v from G destroy all paths between x and y (i.e., disconnect G). This observation allows us to use depth-first search to find the articulation points and biconnected components of a graph in O(|V| + |E|) operations.

The central idea can be understood by studying the example in Figure 8.8, which shows schematically a connected graph consisting of biconnected components G_i , $1 \le i \le 9$, and articulation points v_j , $1 \le j \le 5$. If we start the depth-first search at, say, the vertex s in G_9 , we might, perhaps, leave G_9 to go into G_4 by

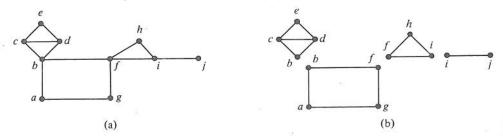


Figure 8.7 A separable graph (a) and its biconnected components (b). The articulation points are b, f, and i.

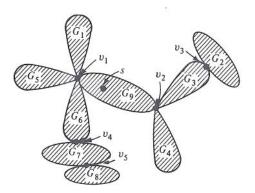


Figure 8.8 A schematic drawing of a graph with nine biconnected components and five articulation points.

passing through v_2 . But by the depth-first nature of the search, all the edges in G_4 must be traversed before we back up to v_2 ; thus G_4 consists of exactly the edges traversed between visits to v_2 . Matters are actually a little more complicated for the other biconnected components, since, for example, if we leave G_4 and go into G_3 and from there into G_2 through v_3 , we would find ourselves in G_2 , having traversed edges from G_9 , G_3 , and G_2 . Fortunately, however, if we store the edges in a stack, by the time we pass through v_3 back into G_3 all the edges of G_2 will be on top of the stack. When they are removed, the edges on top of the stack will be from G_3 , and we will once again be traversing G_3 . Thus if we can recognize the articulation points, we can determine the biconnected components by applying depth-first search and storing the edges on a stack as they are traversed; the edges on top of the stack as we back up through an articulation point form a biconnected component.

In order to recognize an articulation point we need to compute, during the depth-first search, a new function lowpt(v) for every vertex v in the graph. We define lowpt(v) as the smallest value of num(x), where x is a vertex of the graph that can be reached from v by following a sequence of zero or more tree edges followed by at most one back edge. The function lowpt(v) is useful because of the following theorem.

Theorem 8.1

Let G = (V, E) be a connected graph with a DFS-tree T and with back edges B. Then $a \in V$ is an articulation point if and only if there exist vertices $v, w \in V$ such that $(a, v) \in T$, w is not a descendant of v in T and $lowpt(v) \ge num(a)$.

Proof: Suppose that such vertices v and w exist. Since $(a, v) \in T$ and $lowpt(v) \ge num(a)$, any path starting at v that does not go through a must remain in the subtree with root v. Since w is not a descendant of v in T, such a path cannot contain w. Thus the only paths from v to w contain a and so a is an articulation point.

Conversely, suppose that a is an articulation point. If a is the root of T, then at least two edges of T start at a; otherwise there would be a path in G between every pair of vertices in $V - \{a\}$ that did not contain a. Let (a, v) and (a, w) be two of these edges; clearly, v and w satisfy the theorem. If a is not the root of T, then it has an ancestor w. One of the biconnected components containing a has all its nodes as descendants of a in T; in fact, they are all (except a) descendants of a vertex v; where (a, v) is an edge in T (why?). Clearly, v and w satisfy the theorem.

This theorem tells how to recognize articulation points if we have the values of num and lowpt: if we find a vertex v such that $(a, v) \in T$ and $lowpt(v) \ge num(a)$, then a is either an articulation point or the root of T. This result follows from Theorem 8.1 by observing that a suitable w can be chosen among the ancestors of a if a is not the root. Furthermore, computing the lowpt values during depth-first search is simple because

 $lowpt(v) = \min(\{num(v)\} \cup \{lowpt(x)|(v,x) \in T\} \cup \{num(x)|(v,x) \in B\}).$

Thus Algorithm 8.5 determines the biconnected components of a graph G = (V, E). Since the algorithm is a depth-first search with a constant amount of extra work done as each edge is traversed, the time required is clearly O(|V| + |E|). A proof that the algorithm works correctly is left as Exercise 20.

```
i \leftarrow 0
S \leftarrow \text{empty stack}
for x \in V do num(x) \leftarrow 0
for x \in V do if num(x) = 0 then BICON(x, 0)
procedure BICON (v, u)
    i \leftarrow i + 1
    num(v) \leftarrow i
    lowpt(v) \leftarrow i
                                                   [(v, w) \text{ is a tree edge}]
                                                    S \Leftarrow (v, w)
                                                   BICON(w, v)
                                                    lowpt(v) \leftarrow min(lowpt(v), lowpt(w))
    for w \in Adj(v) do if num(w) = 0 then
                                                                                     At this point v is either
                                                                                     the root of the tree or it
                                                                                     is an articulation point.
                                                   if lowpt(w) \ge num(v) then
                                                                                     Form a new biconnected
                                                                                     component consisting of all
                                                                                     the edges on the stack above
                                                                                     and including (v, w). Remove
                                                                                     these edges from the stack.
                                                                                              [(v, w) \text{ is a back edge}]
                                           else if num(w) < num(v) and w \neq u then
                                                                                              S \Leftarrow (v, w)
                                                                                              lowpt(v) \leftarrow min(lowpt(v), num(w))
    return
```

Algorithm 8.5 Determining the biconnected components of G = (V, E).