?:Y“EVV(:

Com/é?nm%“:# 14(70:“2\%»44:
(97 RQ}V\jd/(} /wierenﬁt?/‘f Q3Z/>()(3;

8.2.3 Biconnectivity

Sometimes it is not enough to know that a graph is connected; we may need to
know how “well connected” a connected graph is. A connected graph, for
example, may contain a vertex whose removal, along with its incident edges,
disconnects the remaining vertices. Such a vertex is called an articulation point or
a cut-vertex. A graph that contains an articulation point is called
separable. Vertices b, f, and i in Figure 8.7(a), for example, are articulation
points, and they are the only ones in the graph. A graph with no articulation
points is called biconnected or nonseparable. A maximal biconnected subgraph of
a graph is called a biconnected component or a block. ldentification of the
articulation points and biconnected components of a given graph is important in
the study of the vulnerability of communication and transportation networks. It is
also important in determining other properties, like planarity, of a graph G, since
it is often advantageous to separate G into its biconnected components and
examine each one individually (see Section 8.6).

A vertex v in an undirected connected graph is an articulation point if and
only if there exist two other vertices x and y such that every path between x andy
passes through v; in this case and only in this case does the deletion of v from G
destrov all paths between x and v (i.e.. disconnect G). This observation allows us

to use depth-first search to find the articulation points and biconnected compo-
nents of a graph in O(| V] + |E|) operations.

The central idea can be understood by studying the example in Figure 8.8,
which shows schematically a connected graph consisting of biconnected compo-
nents G;, 1 =i = 9, and articulation points v;, 1 = j = 5. If we start the depth-
first search at, say, the vertex s in Go, we might, perhaps, leave Go to gointo G, by

e e
h h
d ¢ d
/.\3_ ® b f —a
b f i j b i i
a g
a g

(a) (b)

Figure 8.7 A separable graph (a) and its biconnected components
{b). The articulation points are b, f, and /.

Figure 8.8 A schematic drawing of a graph with nine biconnected
components and five articulation points.

passing through v,. But by the depth-first nature of the search, all the edges in G4
must be traversed before we back up to v,; thus G, consists of exactly the edges
traversed between visits to v,. Matters are actually a little more complicated for
the other biconnected components, since, for example, if we leave G4 and go into
G- and from there into G, through vs;, we would find ourselves in G, having
traversed edges from Gs, Gs, and G,. Fortunately, however, if we store the edges
in a stack, by the time we pass through vs back into G; all the edges of G, will be
on top of the stack. When they are removed, the edges on top of the stack will be
from G3, and we will once again be traversing Gs. Thus if we can recognize the
articulation points, we can determine the biconnected components by applying
depth-first search and storing the edges on a stack as they are traversed; the edges
on top of the stack as we back up through an articulation point form a biconnected
component.

In order to recognize an articulation point we need to compute, during the
depth-first search, a new function lowpt (v) for every vertex v in the graph. We
define lowpt (v) as the smallest value of num (x), where x is a vertex of the graph
that can be reached from v by following a sequence of zero or more tree edges
followed by at most one back edge. The function lowpt (v) is useful because of the
following theorem.

Theorem 8.1

Let G = (V, E) be aconnected graph with a DFS-tree T and with back edges B. Then
a € V is an articulation point if and only if there exist vertices v, w € V such that
(a,v) € T, w is not a descendant of v in T and lowpt (v) = num (a).

Proof: Suppose that such vertices v and w exist. Since (a,v) € T and lowpt (v) =
num (a), any path starting at v that does not go through a must remain in the subtree with
root v. Since w is not a descendant of v in T, such a path cannot contain w. Thus the only
paths from v to w contain a and so a is an articulation point. <

Conversely, suppose that a is an articulation point. If a is the root of T, then at least
two edges of T start at a; otherwisé there would be a path in G between every pair of
vertices in V — {a} that did not c¢oitain a. Let (a, v) and (a, w) be two of these edges;
clearly, v and w satisfy the theorem. If a is not the root of T, then it has an ancestor w. One
of the biconnected components containing a has all its nodes as descendants of @ in T’ in
fact, théy are all (except a) descendants of a vertex v; where (a,v) is an edge in T
(why?). Clearly, v and w satisfy the theorem.

This theorem tells how to recognize articulation points if we have the values
of niim and lowpt: if we find a vertex v such that (a,v) € T and lowpt (v) =
num (a), then a is either an articulation point or the root of T. This result follows
from Theorem 8.1 by observing that a suitable w can be chosen among the
ancestors of 4 if a is not the root. Furthermore, computing the lowpt values
during depth-first search is simple because

lowpt (v) = min ({num (v)} U {lowpt (x)|(v, x) € T} U {num (x)|Cv, x) € B}).

Thus Algorithm 8.5 determines the biconnected components of a graph
G = (V, E). Since the algorithm is a depth-first search with a constant amount
of extra work done as each edge is traversed, the time required is clearly
O(|V| + |E|). A proof that the algorithm works correctly is left as Exercise 20.

i«<0
S < empty stack
for x € V do num (x) < 0
for x € V do if num (x) = 0 then BICON (x, 0)
procedure BICON (v, u)

i<i+1

num w)<i

lowpt (v) < i
([(v, w) is a tree edge]
S<(vw)
BICON (w, v)
lowpt (v) < min (lowpt (v), lowpt (w))

for w € Adj(v) doif num (w) = 0 then { : [At this point v is either

' the root of the tree or it

is an articulation point.

if lowpt (w) = num (v) then< Form a new biconnected
component consisting of all
the edges on the stack above
and including (v, w). Remove
these edges from the stack.

[(v, w) is a back edge]
else if num (w) < num (v) and w # u then{ § & (v, w)

| lowpt (v) « min({lowpt (v), num (w))

Algorithm 8.5 Determining the biconnected componentsof G = (V, E).

