Lecture 11

Dynamic Programming

11.1 Overview

Dynamic Programming is a powerful technique that allows one to solve many different types of problems in time $O(n^2)$ or $O(n^3)$ for which a naive approach would take exponential time. In this lecture, we discuss this technique, and present a few key examples. Topics in these lecture notes include:

- The basic idea of Dynamic Programming.
- Example: Longest Common Subsequence.
- Example: Knapsack.
- Example: Matrix-chain multiplication.
- Example: Single-source shortest paths (Bellman-Ford).
- Example: All-pairs shortest paths (Matrix product, Floyd-Warshall).

(In lecture we will do Knapsack, Single-source shortest paths, and All-pairs shortest paths, but you should look at the others as well. Matrix-chain may help on your homework – hint, hint).

11.2 Introduction

Dynamic Programming is a powerful technique that can be used to solve many problems in time $O(n^2)$ or $O(n^3)$ for which a naive approach would take exponential time. (Usually to get running time below that—if it is possible—one would need to add other ideas as well.) Dynamic Programming is a general approach to solving problems, much like "divide-and-conquer" is a general method, except that unlike divide-and-conquer, the subproblems will typically overlap. This lecture we will present two ways of thinking about Dynamic Programming as well as a few examples.

There are several ways of thinking about the basic idea.

Basic Idea (version 1): What we want to do is take our problem and somehow break it down into a reasonable number of subproblems (where "reasonable" might be something like n^2) in such a way

that we can use optimal solutions to the smaller subproblems to give us optimal solutions to the larger ones. Unlike divide-and-conquer (as in mergesort or quicksort) it is OK if our subproblems overlap, so long as there are not too many of them.

11.3 Example 1: Longest Common Subsequence

Definition 11.1 The **Longest Common Subsequence (LCS)** problem is as follows. We are given two strings: string S of length n, and string T of length m. Our goal is to produce their longest common subsequence: the longest sequence of characters that appear left-to-right (but not necessarily in a contiguous block) in both strings.

For example, consider:

 $S = \mathtt{ABAZDC}$

 $T = \mathtt{BACBAD}$

In this case, the LCS has length 4 and is the string ABAD. Another way to look at it is we are finding a 1-1 matching between some of the letters in S and some of the letters in T such that none of the edges in the matching cross each other.

For instance, this type of problem comes up all the time in genomics: given two DNA fragments, the LCS gives information about what they have in common and the best way to line them up.

Let's now solve the LCS problem using Dynamic Programming. As subproblems we will look at the LCS of a prefix of S and a prefix of T, running over all pairs of prefixes. For simplicity, let's worry first about finding the length of the LCS and then we can modify the algorithm to produce the actual sequence itself.

So, here is the question: say LCS[i,j] is the length of the LCS of S[1..i] with T[1..j]. How can we solve for LCS[i,j] in terms of the LCS's of the smaller problems?

Case 1: what if $S[i] \neq T[j]$? Then, the desired subsequence has to ignore one of S[i] or T[j] so we have:

$$LCS[i, j] = max(LCS[i-1, j], LCS[i, j-1]).$$

Case 2: what if S[i] = T[j]? Then the LCS of S[1..i] and T[1..j] might as well match them up. For instance, if I gave you a common subsequence that matched S[i] to an earlier location in T, for instance, you could always match it to T[j] instead. So, in this case we have:

$$LCS[i, j] = 1 + LCS[i - 1, j - 1].$$

So, we can just do two loops (over values of i and j), filling in the LCS using these rules. Here's what it looks like pictorially for the example above, with S along the leftmost column and T along the top row.

	В	Α	С	В	Α	D
Α	0	1	1	1	1	1
В	1	1	1	2	2	2
Α	1	2	2	2	3	3
Z	1	2	2	2	3	3
D	1	2	2	2	3	4
C	1	1 1 2 2 2 2	3	3	3	4

We just fill out this matrix row by row, doing constant amount of work per entry, so this takes O(mn) time overall. The final answer (the length of the LCS of S and T) is in the lower-right corner.

How can we now find the sequence? To find the sequence, we just walk backwards through matrix starting the lower-right corner. If either the cell directly above or directly to the right contains a value equal to the value in the current cell, then move to that cell (if both to, then chose either one). If both such cells have values strictly less than the value in the current cell, then move diagonally up-left (this corresponts to applying Case 2), and output the associated character. This will output the characters in the LCS in reverse order. For instance, running on the matrix above, this outputs DABA.

11.4 More on the basic idea, and Example 1 revisited

We have been looking at what is called "bottom-up Dynamic Programming". Here is another way of thinking about Dynamic Programming, that also leads to basically the same algorithm, but viewed from the other direction. Sometimes this is called "top-down Dynamic Programming".

Basic Idea (version 2): Suppose you have a recursive algorithm for some problem that gives you a really bad recurrence like T(n) = 2T(n-1) + n. However, suppose that many of the subproblems you reach as you go down the recursion tree are the *same*. Then you can hope to get a big savings if you store your computations so that you only compute each *different* subproblem once. You can store these solutions in an array or hash table. This view of Dynamic Programming is often called *memoizing*.

For example, for the LCS problem, using our analysis we had at the beginning we might have produced the following exponential-time recursive program (arrays start at 1):

```
LCS(S,n,T,m)
{
  if (n==0 || m==0) return 0;
  if (S[n] == T[m]) result = 1 + LCS(S,n-1,T,m-1); // no harm in matching up
  else result = max( LCS(S,n-1,T,m), LCS(S,n,T,m-1) );
  return result;
}
```

This algorithm runs in exponential time. In fact, if S and T use completely disjoint sets of characters (so that we never have S[n]==T[m]) then the number of times that LCS(S,1,T,1) is recursively called equals $\binom{n+m-2}{m-1}$. In the memoized version, we store results in a matrix so that any given set of arguments to LCS only produces new work (new recursive calls) once. The memoized version begins by initializing arr[i][j] to unknown for all i,j, and then proceeds as follows:

```
LCS(S,n,T,m)
{
  if (n==0 || m==0) return 0;
```

¹This is the number of different "monotone walks" between the upper-left and lower-right corners of an n by m grid.

```
if (arr[n][m] != unknown) return arr[n][m]; // <- added this line (*)
if (S[n] == T[m]) result = 1 + LCS(S,n-1,T,m-1);
else result = max( LCS(S,n-1,T,m), LCS(S,n,T,m-1) );
arr[n][m] = result; // <- and this line (**)
return result;
}</pre>
```

All we have done is saved our work in line (**) and made sure that we only embark on new recursive calls if we haven't already computed the answer in line (*).

In this memoized version, our running time is now just O(mn). One easy way to see this is as follows. First, notice that we reach line (**) at most mn times (at most once for any given value of the parameters). This means we make at most 2mn recursive calls total (at most two calls for each time we reach that line). Any given call of LCS involves only O(1) work (performing some equality checks and taking a max or adding 1), so overall the total running time is O(mn).

Comparing bottom-up and top-down dynamic programming, both do almost the same work. The top-down (memoized) version pays a penalty in recursion overhead, but can potentially be faster than the bottom-up version in situations where some of the subproblems never get examined at all. These differences, however, are minor: you should use whichever version is easiest and most intuitive for you for the given problem at hand.

More about LCS: Discussion and Extensions. An equivalent problem to LCS is the "minimum edit distance" problem, where the legal operations are insert and delete. (E.g., the unix "diff" command, where S and T are files, and the elements of S and T are lines of text). The minimum edit distance to transform S into T is achieved by doing |S| - LCS(S, T) deletes and |T| - LCS(S, T) inserts.

In computational biology applications, often one has a more general notion of sequence alignment. Many of these different problems all allow for basically the same kind of Dynamic Programming solution.

11.5 Example #2: The Knapsack Problem

Imagine you have a homework assignment with different parts labeled A through G. Each part has a "value" (in points) and a "size" (time in hours to complete). For example, say the values and times for our assignment are:

	Α	В	С	D	\mathbf{E}	\mathbf{F}	G
value	7	9	5	12	14	6	12
$_{ m time}$	3	4	2	6	7	3	5

Say you have a total of 15 hours: which parts should you do? If there was partial credit that was proportional to the amount of work done (e.g., one hour spent on problem C earns you 2.5 points) then the best approach is to work on problems in order of points/hour (a greedy strategy). But, what if there is no partial credit? In that case, which parts should you do, and what is the best

total value possible?²

The above is an instance of the *knapsack problem*, formally defined as follows:

Definition 11.2 In the **knapsack problem** we are given a set of n items, where each item i is specified by a size s_i and a value v_i . We are also given a size bound S (the size of our knapsack). The goal is to find the subset of items of maximum total value such that sum of their sizes is at most S (they all fit into the knapsack).

We can solve the knapsack problem in exponential time by trying all possible subsets. With Dynamic Programming, we can reduce this to time O(nS).

Let's do this top down by starting with a simple recursive solution and then trying to memoize it. Let's start by just computing the best possible *total value*, and we afterwards can see how to actually extract the items needed.

Right now, this takes exponential time. But, notice that there are only O(nS) different pairs of values the arguments can possibly take on, so this is perfect for memoizing. As with the LCS problem, let us initialize a 2-d array arr[i][j] to "unknown" for all i,j.

```
Value(n,S)
{
  if (n == 0) return 0;
  if (arr[n][S] != unknown) return arr[n][S]; // <- added this
  if (s_n > S) result = Value(n-1,S);
  else result = max{v_n + Value(n-1, S-s_n), Value(n-1, S)};
  arr[n][S] = result; // <- and this
  return result;
}</pre>
```

Since any given pair of arguments to Value can pass through the array check only once, and in doing so produces at most two recursive calls, we have at most 2n(S+1) recursive calls total, and the total time is O(nS).

So far we have only discussed computing the *value* of the optimal solution. How can we get the items? As usual for Dynamic Programming, we can do this by just working backwards: if arr[n][S] = arr[n-1][S] then we *didn't* use the *n*th item so we just recursively work backwards from arr[n-1][S]. Otherwise, we *did* use that item, so we just output the *n*th item and recursively work backwards from $arr[n-1][S-s_n]$. One can also do bottom-up Dynamic Programming.

²Answer: In this case, the optimal strategy is to do parts A, B, F, and G for a total of 34 points. Notice that this doesn't include doing part C which has the most points/hour!

11.6 Example #3: Matrix product parenthesization

Our final example for Dynamic Programming is the matrix product parenthesization problem.

Say we want to multiply three matrices X, Y, and Z. We could do it like (XY)Z or like X(YZ). Which way we do the multiplication doesn't affect the final outcome but it can affect the running time to compute it. For example, say X is 100×20 , Y is 20×100 , and Z is 100×20 . So, the end result will be a 100×20 matrix. If we multiply using the usual algorithm, then to multiply an $\ell \times m$ matrix by an $m \times n$ matrix takes time $O(\ell m n)$. So in this case, which is better, doing (XY)Z or X(YZ)?

Answer: X(YZ) is better because computing YZ takes 20x100x20 steps, producing a 20x20 matrix, and then multiplying this by X takes another 20x100x20 steps, for a total of 2x20x100x20. But, doing it the other way takes 100x20x100 steps to compute XY, and then multiplying this with Z takes another 100x20x100 steps, so overall this way takes 5 times longer. More generally, what if we want to multiply a series of n matrices?

Definition 11.3 The Matrix Product Parenthesization problem is as follows. Suppose we need to multiply a series of matrices: $A_1 \times A_2 \times A_3 \times ... \times A_n$. Given the dimensions of these matrices, what is the best way to parenthesize them, assuming for simplicity that standard matrix multiplication is to be used (e.g., not Strassen)?

There are an exponential number of different possible parenthesizations, in fact $\binom{2(n-1)}{n-1}/n$, so we don't want to search through all of them. Dynamic Programming gives us a better way.

As before, let's first think: how might we do this recursively? One way is that for each possible split for the final multiplication, recursively solve for the optimal parenthesization of the left and right sides, and calculate the total cost (the sum of the costs returned by the two recursive calls plus the ℓmn cost of the final multiplication, where "m" depends on the location of that split). Then take the overall best top-level split.

For Dynamic Programming, the key question is now: in the above procedure, as you go through the recursion, what do the subproblems look like and how many are there? Answer: each subproblem looks like "what is the best way to multiply some sub-interval of the matrices $A_i \times ... \times A_j$?" So, there are only $O(n^2)$ different subproblems.

The second question is now: how long does it take to solve a given subproblem assuming you've already solved all the smaller subproblems (i.e., how much time is spent inside any *given* recursive call)? Answer: to figure out how to best multiply $A_i \times \ldots \times A_j$, we just consider all possible middle points k and select the one that minimizes:

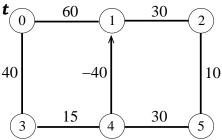
```
optimal cost to multiply A_i \dots A_k \leftarrow already computed + optimal cost to multiply A_{k+1} \dots A_j \leftarrow already computed + cost to multiply the results. \leftarrow get this from the dimensions
```

This just takes O(1) work for any given k, and there are at most n different values k to consider, so overall we just spend O(n) time per subproblem. So, if we use Dynamic Programming to save our results in a lookup table, then since there are only $O(n^2)$ subproblems we will spend only $O(n^3)$ time overall.

If you want to do this using bottom-up Dynamic Programming, you would first solve for all subproblems with j - i = 1, then solve for all with j - i = 2, and so on, storing your results in an n by n matrix. The main difference between this problem and the two previous ones we have seen is that any given subproblem takes time O(n) to solve rather than O(1), which is why we get $O(n^3)$ total running time. It turns out that by being very clever you can actually reduce this to O(1) amortized time per subproblem, producing an $O(n^2)$ -time algorithm, but we won't get into that here.³

11.7 Single-Source Shortest Paths: the Bellman-Ford Algorithm

We will now look at a Dynamic Programming algorithm called the Bellman-Ford Algorithm for the single-sink (or single-source) shortest path problem. Let us develop the algorithm using the following example:



How can we use Dyanamic Programming to find the shortest path from all nodes to t? First of all, as usual for Dynamic Programming, let's just compute the *lengths* of the shortest paths first, and afterwards we can easily reconstruct the paths themselves. The idea for the algorithm is as follows:

1. For each node v, find the length of the shortest path to t that uses at most 1 edge, or write down ∞ if there is no such path.

This is easy: if v = t we get 0; if $(v, t) \in E$ then we get len(v, t); else just put down ∞ .

- 2. Now, suppose for all v we have solved for length of the shortest path to t that uses i-1 or fewer edges. How can we use this to solve for the shortest path that uses i or fewer edges? Answer: the shortest path from v to t that uses i or fewer edges will first go to some neighbor x of v, and then take the shortest path from x to t that uses i-1 or fewer edges, which we've already solved for! So, we just need to take the min over all neighbors x of v.
- 3. How far do we need to go? Answer: at most i = n 1 edges.

Specifically, here is pseudocode for the algorithm. We will use d[v][i] to denote the length of the shortest path from v to t that uses i or fewer edges (if it exists) and infinity otherwise ("d" for "distance"). Also, for convenience we will use a base case of i = 0 rather than i = 1.

Bellman-Ford pseudocode:

³For details, see Knuth (insert ref).

Try it on the above graph!

We already argued for correctness of the algorithm. What about running time? The min operation takes time proportional to the out-degree of v. So, the inner for-loop takes time proportional to the sum of the out-degrees of all the nodes, which is O(m). Therefore, the total time is O(mn).

So far we have only calculated the *lengths* of the shortest paths; how can we reconstruct the paths themselves? One easy way is (as usual for DP) to work backwards: if you're at vertex v at distance d[v] from t, move to the neighbor x such that d[v] = d[x] + len(v, x). This allows us to reconstruct the path in time O(m+n) which is just a low-order term in the overall running time.

11.8 All-pairs Shortest Paths

Say we want to compute the length of the shortest path between *every* pair of vertices. This is called the **all-pairs** shortest path problem. If we use Bellman-Ford for all n possible destinations t, this would take time $O(mn^2)$. We will now see two alternative Dynamic-Programming algorithms for this problem: the first uses the matrix representation of graphs and runs in time $O(n^3 \log n)$; the second, called the *Floyd-Warshall* algorithm uses a different way of breaking into subproblems and runs in time $O(n^3)$.

11.8.1 All-pairs Shortest Paths via Matrix Products

Given a weighted graph G, define the matrix A = A(G) as follows:

- A[i, i] = 0 for all i.
- If there is an edge from i to j, then A[i,j] = len(i,j).
- Otherwise, $A[i, j] = \infty$.

I.e., A[i, j] is the length of the shortest path from i to j using 1 or fewer edges. Now, following the basic Dynamic Programming idea, can we use this to produce a new matrix B where B[i, j] is the length of the shortest path from i to j using 2 or fewer edges?

Answer: yes. $B[i,j] = \min_k (A[i,k] + A[k,j])$. Think about why this is true!

I.e., what we want to do is compute a matrix product $B = A \times A$ except we change "*" to "+" and we change "+" to "min" in the definition. In other words, instead of computing the sum of products, we compute the min of sums.

What if we now want to get the shortest paths that use 4 or fewer edges? To do this, we just need to compute $C = B \times B$ (using our new definition of matrix product). I.e., to get from i to j using 4 or fewer edges, we need to go from i to some intermediate node k using 2 or fewer edges, and then from k to j using 2 or fewer edges.

So, to solve for all-pairs shortest paths we just need to keep squaring $O(\log n)$ times. Each matrix multiplication takes time $O(n^3)$ so the overall running time is $O(n^3 \log n)$.

11.8.2 All-pairs shortest paths via Floyd-Warshall

Here is an algorithm that shaves off the $O(\log n)$ and runs in time $O(n^3)$. The idea is that instead of increasing the number of edges in the path, we'll increase the set of vertices we allow as intermediate nodes in the path. In other words, starting from the same base case (the shortest path that uses no intermediate nodes), we'll then go on to considering the shortest path that's allowed to use node 1 as an intermediate node, the shortest path that's allowed to use $\{1,2\}$ as intermediate nodes, and so on.

```
// After each iteration of the outside loop, A[i][j] = length of the
// shortest i->j path that's allowed to use vertices in the set 1..k
for k = 1 to n do:
   for each i,j do:
    A[i][j] = min( A[i][j], (A[i][k] + A[k][j]);
```

I.e., you either go through node k or you don't. The total time for this algorithm is $O(n^3)$. What's amazing here is how compact and simple the code is!

11.9 High-level discussion of Dynamic Programming

What kinds of problems can be solved using Dynamic Programming? One property these problems have is that if the optimal solution involves solving a subproblem, then it uses the *optimal* solution to that subproblem. For instance, say we want to find the shortest path from A to B in a graph, and say this shortest path goes through C. Then it must be using the shortest path from C to B. Or, in the knapsack example, if the optimal solution does not use item n, then it is the optimal solution for the problem in which item n does not exist. The other key property is that there should be only a polynomial number of different subproblems. These two properties together allow us to build the optimal solution to the final problem from optimal solutions to subproblems.

In the top-down view of dynamic programming, the first property above corresponds to being able to write down a recursive procedure for the problem we want to solve. The second property corresponds to making sure that this recursive procedure makes only a polynomial number of different recursive calls. In particular, one can often notice this second property by examining the arguments to the recursive procedure: e.g., if there are only two integer arguments that range between 1 and n, then there can be at most n^2 different recursive calls.

Sometimes you need to do a little work on the problem to get the optimal-subproblem-solution property. For instance, suppose we are trying to find paths between locations in a city, and some intersections have no-left-turn rules (this is particulatly bad in San Francisco). Then, just because the fastest way from A to B goes through intersection C, it doesn't necessarily use the fastest way to C because you might need to be coming into C in the correct direction. In fact, the right way to model that problem as a graph is not to have one node per intersection, but rather to have one node per $\langle intersection, direction \rangle$ pair. That way you recover the property you need.