Lecture 11

Dynamic Programming

11.1 Overview

Dynamic Programming is a powerful technique that allows one to solve many different types of
problems in time O(n?) or O(n3) for which a naive approach would take exponential time. In this
lecture, we discuss this technique, and present a few key examples. Topics in these lecture notes
include:

e The basic idea of Dynamic Programming.

e Example: Longest Common Subsequence.

Example: Knapsack.

Example: Matrix-chain multiplication.

Example: Single-source shortest paths (Bellman-Ford).

Example: All-pairs shortest paths (Matrix product, Floyd-Warshall).

(In lecture we will do Knapsack, Single-source shortest paths, and All-pairs shortest paths, but you
should look at the others as well. Matrix-chain may help on your homework — hint, hint).

11.2 Introduction

Dynamic Programming is a powerful technique that can be used to solve many problems in time
O(n?) or O(n?) for which a naive approach would take exponential time. (Usually to get running
time below that—if it is possible—one would need to add other ideas as well.) Dynamic Pro-
gramming is a general approach to solving problems, much like “divide-and-conquer” is a general
method, except that unlike divide-and-conquer, the subproblems will typically overlap. This lecture
we will present two ways of thinking about Dynamic Programming as well as a few examples.

There are several ways of thinking about the basic idea.

Basic Idea (version 1): What we want to do is take our problem and somehow break it down into
a reasonable number of subproblems (where “reasonable” might be something like n?) in such a way
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that we can use optimal solutions to the smaller subproblems to give us optimal solutions to the
larger ones. Unlike divide-and-conquer (as in mergesort or quicksort) it is OK if our subproblems
overlap, so long as there are not too many of them.

11.3 Example 1: Longest Common Subsequence

Definition 11.1 The Longest Common Subsequence (LCS) problem is as follows. We are
given two strings: string S of length n, and string T of length m. Qur goal is to produce their
longest common subsequence: the longest sequence of characters that appear left-to-right (but not
necessarily in a contiguous block) in both strings.

For example, consider:

S = ABAZDC
T = BACBAD

In this case, the LCS has length 4 and is the string ABAD. Another way to look at it is we are finding
a 1-1 matching between some of the letters in .S and some of the letters in 7" such that none of the
edges in the matching cross each other.

For instance, this type of problem comes up all the time in genomics: given two DNA fragments,
the LCS gives information about what they have in common and the best way to line them up.

Let’s now solve the LCS problem using Dynamic Programming. As subproblems we will look at
the LCS of a prefix of S and a prefix of T, running over all pairs of prefixes. For simplicity, let’s
worry first about finding the length of the LCS and then we can modify the algorithm to produce
the actual sequence itself.

So, here is the question: say LCS[i,j] is the length of the LCS of S[1..i] with T'[1..j]. How
can we solve for LCS[i,j] in terms of the LCS’s of the smaller problems?

Case 1: what if S[i] # T[j]? Then, the desired subsequence has to ignore one of S[i] or T[j] so
we have:
LCS[4, j] = max(LCS[i — 1, j],LCS[4, § — 1]).

Case 2: what if S[i] = T[j]? Then the LCS of S[1..i] and T'[1..j] might as well match them up.
For instance, if I gave you a common subsequence that matched S[i] to an earlier location in
T, for instance, you could always match it to T'[j] instead. So, in this case we have:

LCS[i,j]=1+LCS[i—1,j —1].
So, we can just do two loops (over values of 7 and j) , filling in the LCS using these rules. Here’s

what it looks like pictorially for the example above, with S along the leftmost column and 7" along
the top row.
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We just fill out this matrix row by row, doing constant amount of work per entry, so this takes
O(mn) time overall. The final answer (the length of the LCS of S and T') is in the lower-right
corner.

How can we now find the sequence? To find the sequence, we just walk backwards through
matrix starting the lower-right corner. If either the cell directly above or directly to the right
contains a value equal to the value in the current cell, then move to that cell (if both to, then chose
either one). If both such cells have values strictly less than the value in the current cell, then move
diagonally up-left (this corresponts to applying Case 2), and output the associated character. This
will output the characters in the LCS in reverse order. For instance, running on the matrix above,
this outputs DABA.

11.4 More on the basic idea, and Example 1 revisited

We have been looking at what is called “bottom-up Dynamic Programming”. Here is another way
of thinking about Dynamic Programming, that also leads to basically the same algorithm, but
viewed from the other direction. Sometimes this is called “top-down Dynamic Programming”.

Basic Idea (version 2): Suppose you have a recursive algorithm for some problem that gives you
a really bad recurrence like T'(n) = 2T (n— 1) +n. However, suppose that many of the subproblems
you reach as you go down the recursion tree are the same. Then you can hope to get a big savings
if you store your computations so that you only compute each different subproblem once. You can
store these solutions in an array or hash table. This view of Dynamic Programming is often called
Mmemoizing.

For example, for the LCS problem, using our analysis we had at the beginning we might have
produced the following exponential-time recursive program (arrays start at 1):

LCS(S,n,T,m)
{
if (n==0 || m==0) return 0;
if (S[n] == T[m]) result = 1 + LCS(S,n-1,T,m-1); // no harm in matching up
else result = max( LCS(S,n-1,T,m), LCS(S,n,T,m-1) );
return result;

This algorithm runs in exponential time. In fact, if S and T use completely disjoint sets of characters
(so that we never have S[n]==T[m]) then the number of times that LCS(S,1,T,1) is recursively
called equals ("jn"_lf)l In the memoized version, we store results in a matrix so that any given
set of arguments to LCS only produces new work (new recursive calls) once. The memoized version

begins by initializing arr[i] [j] to unknown for all i, j, and then proceeds as follows:

LCS(S,n,T,m)
{

if (n==0 || m==0) return 0;

LThis is the number of different “monotone walks” between the upper-left and lower-right corners of an n by m
grid.
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if (arr[n] [m] '= unknown) return arr[n][m]; // <- added this line (%)
if (S[n] == TIm]) result = 1 + LCS(S,n-1,T,m-1);

else result = max( LCS(S,n-1,T,m), LCS(S,n,T,m-1) );

arr[n] [m] = result; // <- and this line (*x)
return result;

All we have done is saved our work in line (**) and made sure that we only embark on new recursive
calls if we haven’t already computed the answer in line (*).

In this memoized version, our running time is now just O(mn). One easy way to see this is as
follows. First, notice that we reach line (**) at most mn times (at most once for any given value
of the parameters). This means we make at most 2mn recursive calls total (at most two calls for
each time we reach that line). Any given call of LCS involves only O(1) work (performing some
equality checks and taking a max or adding 1), so overall the total running time is O(mn).

Comparing bottom-up and top-down dynamic programming, both do almost the same work. The
top-down (memoized) version pays a penalty in recursion overhead, but can potentially be faster
than the bottom-up version in situations where some of the subproblems never get examined at
all. These differences, however, are minor: you should use whichever version is easiest and most
intuitive for you for the given problem at hand.

More about LCS: Discussion and Extensions. An equivalent problem to LCS is the “mini-
mum edit distance” problem, where the legal operations are insert and delete. (E.g., the unix “diff”
command, where S and T are files, and the elements of S and T are lines of text). The minimum
edit distance to transform S into 7" is achieved by doing |S| —LCS(S,T') deletes and |T'| —LCS(S,T)
inserts.

In computational biology applications, often one has a more general notion of sequence alignment.
Many of these different problems all allow for basically the same kind of Dynamic Programming
solution.

11.5 Example #2: The Knapsack Problem

Imagine you have a homework assignment with different parts labeled A through G. Each part has
a “value” (in points) and a “size” (time in hours to complete). For example, say the values and
times for our assignment are:

/A B C D EF G
value| 7 9 5 12 14 6 12
time | 3 4 2 6 7 3 5

Say you have a total of 15 hours: which parts should you do? If there was partial credit that was
proportional to the amount of work done (e.g., one hour spent on problem C earns you 2.5 points)
then the best approach is to work on problems in order of points/hour (a greedy strategy). But,
what if there is no partial credit? In that case, which parts should you do, and what is the best
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total value possible??

The above is an instance of the knapsack problem, formally defined as follows:

Definition 11.2 In the knapsack problem we are given a set of n items, where each item i is
specified by a size s; and a value v;. We are also given a size bound S (the size of our knapsack).
The goal is to find the subset of items of mazximum total value such that sum of their sizes is at
most S (they all fit into the knapsack).

We can solve the knapsack problem in exponential time by trying all possible subsets. With
Dynamic Programming, we can reduce this to time O(nS).

Let’s do this top down by starting with a simple recursive solution and then trying to memoize
it. Let’s start by just computing the best possible total value, and we afterwards can see how to
actually extract the items needed.

// Recursive algorithm: either we use the last element or we don’t.
Value(n,S) // S = space left, n = # items still to choose from
{

if (n == 0) return 0;

if (s_n > S) result = Value(n-1,S); // can’t use nth item

else result = max{v_n + Value(n-1, S-s_n), Value(n-1, S)};

return result;

}

Right now, this takes exponential time. But, notice that there are only O(nS) different pairs of
values the arguments can possibly take on, so this is perfect for memoizing. As with the LCS
problem, let us initialize a 2-d array arr[i] [j] to “unknown” for all 1, j.

Value(n,S)
{
if (n == 0) return 0;
if (arr[n] [S] !'= unknown) return arr[n][S]; // <- added this

if (s_n > 8) result = Value(n-1,8);

else result = max{v_n + Value(n-1, S-s_n), Value(n-1, S)};
arr[n] [S] = result; // <- and this
return result;

}

Since any given pair of arguments to Value can pass through the array check only once, and in
doing so produces at most two recursive calls, we have at most 2n(S + 1) recursive calls total, and
the total time is O(n.S).

So far we have only discussed computing the walue of the optimal solution. How can we get
the items? As usual for Dynamic Programming, we can do this by just working backwards: if
arr[n] [S] = arr[n-1] [S] then we didn’t use the nth item so we just recursively work backwards
from arr [n-1] [S]. Otherwise, we did use that item, so we just output the nth item and recursively
work backwards from arr[n-1] [S-sn]. One can also do bottom-up Dynamic Programming.

2Answer: In this case, the optimal strategy is to do parts A, B, F, and G for a total of 34 points. Notice that this
doesn’t include doing part C which has the most points/hour!
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11.6 Example #3: Matrix product parenthesization

Our final example for Dynamic Programming is the matriz product parenthesization problem.

Say we want to multiply three matrices X, Y, and Z. We could do it like (XY)Z or like X(Y Z).
Which way we do the multiplication doesn’t affect the final outcome but it can affect the running
time to compute it. For example, say X is 100x20, Y is 20x100, and Z is 100x20. So, the end
result will be a 100x20 matrix. If we multiply using the usual algorithm, then to multiply an fxm
matrix by an mxn matrix takes time O(¢mn). So in this case, which is better, doing (XY)Z or

X(YZ2)?

Answer: X (Y Z) is better because computing Y Z takes 20x100x20 steps, producing a 20x20 matrix,
and then multiplying this by X takes another 20x100x20 steps, for a total of 2x20x100x20. But,
doing it the other way takes 100x20x100 steps to compute XY, and then multplying this with Z
takes another 100x20x100 steps, so overall this way takes 5 times longer. More generally, what if
we want to multiply a series of n matrices?

Definition 11.3 The Matrix Product Parenthesization problem is as follows. Suppose we
need to multiply a series of matrices: Ay X Ay X Ag X ... X A,. Given the dimensions of these
matrices, what is the best way to parenthesize them, assuming for simplicity that standard matriz
multiplication is to be used (e.g., not Strassen)?

There are an exponential number of different possible parenthesizations, in fact (2(:__11)) /m, S0 we
don’t want to search through all of them. Dynamic Programming gives us a better way.

As before, let’s first think: how might we do this recursively? One way is that for each possible
split for the final multiplication, recursively solve for the optimal parenthesization of the left and
right sides, and calculate the total cost (the sum of the costs returned by the two recursive calls
plus the ¢mn cost of the final multiplication, where “m” depends on the location of that split).
Then take the overall best top-level split.

For Dynamic Programming, the key question is now: in the above procedure, as you go through the
recursion, what do the subproblems look like and how many are there? Answer: each subproblem
looks like “what is the best way to multiply some sub-interval of the matrices A; x ... x A;7” So,
there are only O(n?) different subproblems.

The second question is now: how long does it take to solve a given subproblem assuming you’ve
already solved all the smaller subproblems (i.e., how much time is spent inside any given recursive
call)? Answer: to figure out how to best multiply A; x ... x A;, we just consider all possible middle
points k£ and select the one that minimizes:

optimal cost to multiply A4; ... Ag «— already computed
+ optimal cost to multiply Ap4;...A; <« already computed
+ cost to multiply the results. «— get this from the dimensions

This just takes O(1) work for any given k, and there are at most n different values k to consider, so
overall we just spend O(n) time per subproblem. So, if we use Dynamic Programming to save our
results in a lookup table, then since there are only O(n?) subproblems we will spend only O(n?3)
time overall.

If you want to do this using bottom-up Dynamic Programming, you would first solve for all sub-
problems with j — ¢ = 1, then solve for all with j — 7 = 2, and so on, storing your results in an n
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by n matrix. The main difference between this problem and the two previous ones we have seen is
that any given subproblem takes time O(n) to solve rather than O(1), which is why we get O(n?3)
total running time. It turns out that by being very clever you can actually reduce this to O(1)
amortized time per subproblem, producing an O(n?)-time algorithm, but we won’t get into that

here.?

11.7 Single-Source Shortest Paths: the Bellman-Ford Algorithm

We will now look at a Dynamic Programming algorithm called the Bellman-Ford Algorithm for
the single-sink (or single-source) shortest path problem. Let us develop the algorithm using the
following example:

t 60 ,—~ 30
0 \Jy 2

40 —-40 10

15 30
\2) >

How can we use Dyanamic Programming to find the shortest path from all nodes to t? First of all,
as usual for Dynamic Programming, let’s just compute the lengths of the shortest paths first, and
afterwards we can easily reconstruct the paths themselves. The idea for the algorithm is as follows:

1. For each node v, find the length of the shortest path to ¢ that uses at most 1 edge, or write
down oo if there is no such path.

This is easy: if v =t we get 0; if (v,t) € E then we get len(v,t); else just put down oc.

2. Now, suppose for all v we have solved for length of the shortest path to t that uses ¢ — 1 or
fewer edges. How can we use this to solve for the shortest path that uses i or fewer edges?

Answer: the shortest path from v to ¢ that uses i or fewer edges will first go to some neighbor
x of v, and then take the shortest path from x to ¢ that uses i — 1 or fewer edges, which we’ve
already solved for! So, we just need to take the min over all neighbors x of v.

3. How far do we need to go? Answer: at most i = n — 1 edges.

Specifically, here is pseudocode for the algorithm. We will use d[v] [i] to denote the length of the
shortest path from v to ¢ that uses i or fewer edges (if it exists) and infinity otherwise (“d” for
“distance”). Also, for convenience we will use a base case of i = 0 rather than i = 1.

Bellman-Ford pseudocode:
initialize d[v] [0] = infinity for v != t. d[t][i]=0 for all i.
for i=1 to n-1:

for each v != t:
d[v][i] = HﬂnE (len(v,x) + d[x][i-11)
v,T)E

For each v, output d[v][n-1].

3For details, see Knuth (insert ref).
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Try it on the above graph!

We already argued for correctness of the algorithm. What about running time? The min operation
takes time proportional to the out-degree of v. So, the inner for-loop takes time proportional to
the sum of the out-degrees of all the nodes, which is O(m). Therefore, the total time is O(mn).

So far we have only calculated the lengths of the shortest paths; how can we reconstruct the paths
themselves? One easy way is (as usual for DP) to work backwards: if you're at vertex v at distance
d[v] from ¢, move to the neighbor x such that d[v] = d[x] + len(v,z). This allows us to reconstruct
the path in time O(m + n) which is just a low-order term in the overall running time.

11.8 All-pairs Shortest Paths

Say we want to compute the length of the shortest path between every pair of vertices. This is
called the all-pairs shortest path problem. If we use Bellman-Ford for all n possible destinations t,
this would take time O(mn?). We will now see two alternative Dynamic-Programming algorithms
for this problem: the first uses the matrix representation of graphs and runs in time O(n>logn);
the second, called the Floyd-Warshall algorithm uses a different way of breaking into subproblems
and runs in time O(n?).

11.8.1 All-pairs Shortest Paths via Matrix Products

Given a weighted graph G, define the matrix A = A(G) as follows:
e Ali,i] =0 for all i.
e If there is an edge from i to j, then A[i, j| = len(i, j).
e Otherwise, Afi, j] = oco.

Le., Ali, j] is the length of the shortest path from i to j using 1 or fewer edges. Now, following the
basic Dynamic Programming idea, can we use this to produce a new matrix B where B[i, j| is the
length of the shortest path from 7 to j using 2 or fewer edges?

Answer: yes. Bli,j] = ming(A[i, k] + A[k, j]). Think about why this is true!

Ie., what we want to do is compute a matrix product B = A x A except we change “*” to “+”
and we change “+” to “min” in the definition. In other words, instead of computing the sum of
products, we compute the min of sums.

What if we now want to get the shortest paths that use 4 or fewer edges? To do this, we just need
to compute C' = B x B (using our new definition of matrix product). Le., to get from i to j using
4 or fewer edges, we need to go from ¢ to some intermediate node k using 2 or fewer edges, and
then from k to j using 2 or fewer edges.

So, to solve for all-pairs shortest paths we just need to keep squaring O(logn) times. Each matrix
multiplication takes time O(n?) so the overall running time is O(n3logn).
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11.8.2 All-pairs shortest paths via Floyd-Warshall

Here is an algorithm that shaves off the O(logn) and runs in time O(n3). The idea is that instead of
increasing the number of edges in the path, we’ll increase the set of vertices we allow as intermediate
nodes in the path. In other words, starting from the same base case (the shortest path that uses no
intermediate nodes), we’ll then go on to considering the shortest path that’s allowed to use node 1
as an intermediate node, the shortest path that’s allowed to use {1,2} as intermediate nodes, and
SO on.

// After each iteration of the outside loop, A[i][j] = length of the
// shortest i->j path that’s allowed to use vertices in the set 1..k
for k = 1 to n do:
for each i,j do:
A[il[j] = minC A[i1 (3], (A[i][k] + A[k]I[j1D;

Le., you either go through node k or you don’t. The total time for this algorithm is O(n3). What’s
amazing here is how compact and simple the code is!

11.9 High-level discussion of Dynamic Programming

What kinds of problems can be solved using Dynamic Programming? One property these problems
have is that if the optimal solution involves solving a subproblem, then it uses the optimal solution
to that subproblem. For instance, say we want to find the shortest path from A to B in a graph,
and say this shortest path goes through C. Then it must be using the shortest path from C to B.
Or, in the knapsack example, if the optimal solution does not use item n, then it is the optimal
solution for the problem in which item n does not exist. The other key property is that there
should be only a polynomial number of different subproblems. These two properties together allow
us to build the optimal solution to the final problem from optimal solutions to subproblems.

In the top-down view of dynamic programming, the first property above corresponds to being
able to write down a recursive procedure for the problem we want to solve. The second property
corresponds to making sure that this recursive procedure makes only a polynomial number of
different recursive calls. In particular, one can often notice this second property by examining
the arguments to the recursive procedure: e.g., if there are only two integer arguments that range
between 1 and n, then there can be at most n? different recursive calls.

Sometimes you need to do a little work on the problem to get the optimal-subproblem-solution
property. For instance, suppose we are trying to find paths between locations in a city, and some
intersections have no-left-turn rules (this is particulatly bad in San Francisco). Then, just because
the fastest way from A to B goes through intersection C, it doesn’t necessarily use the fastest way
to C because you might need to be coming into C' in the correct direction. In fact, the right way
to model that problem as a graph is not to have one node per intersection, but rather to have one
node per (intersection, direction) pair. That way you recover the property you need.



