CMU 15-451/651 lecture 11/12/13

An Algorithms-based
Intro to Machine
Learning, part I

Avrim Blum

[Based on portions of intro lectures in 15-859(B) Machine Learning
Theory, and on a talk given at the National Academy of Sciences
"Frontiers of Science" symposium.]

Plan for today

* Machine Learning intro: basic questions
and issues & models.

* A formal analysis of "Occam’s razor".
* Support-vector machines
* Perceptron algorithm

Machine learning can be used to...

* recognize speech,

+ identify patterns in data,
* steer acar,

* play games,

* adapt programs to users,
* improve web search, ...

From a scientific perspective: can we develop
models to understand learning as a computational
problem, and what types of guarantees might we
hope to achieve?

A typical setting

* Imagine you want a computer program to

help filter which email messages are spam
and which are important.

* Might represent each message by n features.

+ Take sample S of data, labeled according to

whether they were/weren’t spam.

* Goal of algorithm is to use data seen so far

produce good prediction rule
h(x) for future data.

The concept learning setting

Eg money pills Mr. bad spelling known-sender | spam?
! Y NY Y N Y
. N N N Y Y N
a positive
epxample N Y N N N ¥
a negative Y N N N Y N
example (N N Y N Y N)
Y N N Y N Y
N N Y N N N
N Y N Y N Y

Given data, some reasonable rules might be:
*Predict SPAM if —known AND (money OR pills)

*Predict SPAM if money + pills - known > O.

Big questions

(A)How might we automatically generate
rules that do well on observed data?

[algorithm design]
(B)What kind of confidence do we have
that they will do well in the future?
[confidence bound / sample complexity]

for a given learning alg, how much data do we
need, and how can we design alg to need less?

Algorithm design portion

* How about this problem of learning a linear

separator?

- Want to solve for weight vector w such that w-x > 1
for all positive x, and w - x < —1 for all negative x.

* Any ideas?

Use linear programming!

* How about this problem of learning a linear

* Any ideas?
+ Additional issues: no perfect separator, margins.
+ “Support Vector Machine": 77
+) LA /
, e

Algorithm design portion

separator?
- Want to solve for weight vector w such that w-x > 1
for all positive x, and w - x < —1 for all negative x.

- w-x=1 —¢ for positive ex i.
- w-x < —1+¢ for negative ex i. Vs /
- € =0. MinimizeY;¢€; + clw|? t/ L/

Now, for the confidence question, wé’ll need some
connection between future data and past data.

Natural formalization (PAC)

Email msg Spam or not?
* We are given sample S = {ix,y)}.

- View labels y as being produced by some target
function f.

- Alg does optimization over S to produce

some hypothesis (prediction rule) h.

* Assume S is a random sample from some

probability distribution D. Goal is for h to

do well on new examples also from D.

Le., Pr . s[h(x)=f(x)] < e.

Example of analysis: Decision Lists
| u:m ‘—"q xTn |—"4 u:ﬂ? ‘—'"Ln

0 1

Say we suspect there might be a good prediction
rule of this form.

1. Design an efficient algorithm A that will find a
consistent DL if one exists.

2. Show that if S is of reasonable size, then
Pr[exists consistent DL h with err(h) > €] < §.

3. This means that A is a good algorithm to use if
fis, in fact,a DL.
(a bit of a toy example since would want to
extend to "mostly consistent” DL)

How can we find a consistent DL?

1 Tp T3 T4 ITs label
1 0 0 1 1 +
O— 1T —1—0 O =
T T T—0 O +
—06—=0 T © =
1 1 Q 1 1 -+
1 0 0 O 1 -

if (x,=0) then -, else
if (x,=1) then +, else
if (x4=1) then +, else -

Decision List algorithm

+ Start with empty list.
+ Find if-then rule consistent with data.

(and satisfied by at least one example)

+ Put rule at bottom of list so far, and cross of f

examples covered. Repeat until no examples remain.

If this fails, then:
*No rule consistent with remaining data.
S0 no DL consistent with remaining data.
*So, no DL consistent with original data.

OK, fine. Now why should we expect it

to do well on future data?

Confidence/sample-complexity

- Consider some DL h with err(h)>¢, that we're
worried might fool us.

+ Chance that h survives |S| examples is at
most (1-¢)!S.

- Let |H| = humber of DLs over n Boolean
features. |H| < (4”"’2)' (really crude bound)

So, Pr[some DL h with err(h)>c is consistent]
<|H|(1-¢)!s!.

+ This is <0.01 for |S| > (1/e)[In(|H|) + In(100)]

or about (1/g)[n In n + In(100)]

Example of analysis: Decision Lists
| u;w ‘ln-{ xafl? |4"i{ mfm' ‘—"in

[\ 1

Say we suspect there might be a good prediction
rule of this form.
.¢ Design an efficient algorithm A that will find a
9" consistent DL if one exists.
%gshow that if |S| is of reasonable size, then
00" Prexists consistent DL h with err(h) > &] < 8.

3. So,if fisin fact a DL, then whp A's hypothesis
will be approximately correct. "PAC model”

Confidence/sample-complexity

* What's great is there was nothing special
about DLs in our argument.

- All we said was: “if there are not foo many
rules to choose from, then it's unlikely one
will have fooled us just by chance.”

* And in particular, the number of examples
needs to only be proportional to log(|H|).
(big difference between 100 and e!.)

Occam's razor
William of Occam (~1320 AD):

“entities should not be multiplied
unnecessarily” (in Latin)

Which we interpret as: "in general, prefer
simpler explanations”.

Why? Is this a good policy? What if we
have different notions of what's simpler?

Occam'’s razor (contd)
A computer-science-ish way of looking at it:

+ Say “simple” = "short description”.

+ At most 25 explanations can be < s bits long.
+ S0, if the number of examples satisfies:

m > (1/e)[s In(2) + In(100)]

Then it's unlikely a bad simple explanation
will fool you just by chance.

Occam's razor (contd)?

Nice interpretation:

- Even if we have different notions of what's
simpler (e.g., different representation
languages), we can both use Occam's razor.

+ Of course, there's no guarantee there will
be a short explanation for the data. That
depends on your representation.

Reqularization

+ Very important notion in machine learning:
basically a generalization of Occam’s razor.

Errp(h) = Errg(h) + [Errp(h) — Errg(h)]

Minimize [error on training set] + [complexity term]

II:’QCT‘I‘”YSS“';?J:“:Z “Regularizer": bounds the
p u{:ber bound amount of overfitting.

Support-vector machines

+ Issue #1: minimizing error on S is NP-hard.
So, replace with upper bound: “hinge loss".

- Issue #2: what to use as complexity term?

Minimize [error on training set] + [complexity ferm]

z:z:i?;’ys?ur;?nif:ﬂ:g “Regularizer”: bounds the
an uplper bound amount of overfitting.

Support-vector machines

+ An instantiation of this for the case of
linear separators in high dimensions.

- E.g., "bag of words", "bag of phrases”

Minimize [error on fraining set] + [complexity term]

:‘Zgﬁ?“ys:ar:\?n?:\ijz “Regularizer": bounds the
p u{:’per bound amount of overfitting.

Support-vector machines

+ "Hinge loss": 3;¢;, where:
-w-x; =1 —¢; for positive x; € S.
- w-x; < —1+¢; for negative x; € S.
-€=0.

penalty

w - x (for positive x)

/ /
1/|w| = “margin of
separation”

Minimize D o wl

i
Typically hard to do
exactly, so minimize Q: How to connect [wl|? to

an upper bound the amount of overfitting?

Perceptron algorithm

* Suppose there exists a feasible soln
w*st. lw*-x| =1 forall x € S, where
[lxll <1 forall x €5.

+ The Perceptron algorithm is an online
algorithm that will find a feasible w
and make only 0(lw*|?) mistakes.

Perceptron algorithm:

- Start with weight vector w = 0.

* Mistake on positive x: let w « w + x.
* Mistake on negative x: let w < w —x.

Proof: - After each update, w - w* increases by > 1.

+ After each update, w - w increases by < 3.
[Because: (w+x)-(w+x)=w-w+2m

Because: (W +x) - w* =
wew'+x-wh >
w-w* +1.

Perceptron algorithm

* Suppose there exists a feasible soln
w*st. lw*-x| >1forall x €S, where
x|l <1 forall x €S.

+ The Perceptron algorithm is an online
algorithm that will find a feasible w
and make only 0(lw*|?) mistakes.

Perceptron algorithm:
- Start with weight vector w = 0.
+ Mistake on positive x: let w « w + x.

So: M < 3|w*|?
* Mistake on negative x: let w «w —x.

Proof: - After each update, w - w* increases by = 1.
* Affer each update, w - w increases by < 3,

= After M mistakes: M < |w - w*| < |w|lw*| < BM)z|w*|.

Perceptron algorithm

- Note: this doesn't prove why |w|? is a good thing
to minimize in SVM optimization, but gives a feel
for why the existence of such large margin
separators means the world is “nice".

Some Courses

+ 10-601 "Machine Learning”

- Find out about a lot of different practical
algorithms. Some of the theory. Implement
algs and run them on data.

- 15-859(B) "Machine Learning Theory"

- My course ©

- More focused on the kinds of guarantees you
can prove. Algorithms as the answer to a
question. Hwks more like 15-451.

+ 10-701 "Machine Learning”

- Mix of both. Serious commitment.

