CMU 15-451/651 lecture 11/14/13

An Algorithms-based
Intro to Machine
Learning, part IT

Avrim Blum

Last time / today

Last time: looked at model where data is
coming from some probability distribution.

- Take a sample S, find h with low err;(h).

- Ask: when can we be confident that errp (h) is
low too? (Or more generally, that the gap
|erry (h) — errg(h)| is low.)

- Gives us confidence in our predictions.

Today: what if we don't assume the future
looks like the past. What can we say then?

Online learning

* What if we don't want to make assumption
that data is coming from some fixed
distribution? Or any assumptions on data?

* Can no longer talk about past performance
predicting future results.
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Using "expert" advice
Say we want to predict the stock market.

+ We solicit n “experts” for their advice. (Will the
market go up or down?)

- We then want to use their advice somehow to
make our prediction. E.g.,

Expt 1 Expt 2 Expt 3 neighbor's dog | truth
down up up up up
down up up down down

Basic question: Is there a strategy that allows us to do
nearly as well as best of these in hindsight?

["expert” = someone with an opinion. Not necessarily
someone who knows anything.]

Simpler question

+ We have n “experts".

* One of these is perfect (never makes a mistake).
We just don't know which one.

* Can we find a strategy that makes no more than
Ig(n) mistakes?

Answer: sure. Just take majority vote over all
experts that have been correct so far.

>Each mistake cuts # available by factor of 2.

>Note: this means ok for n to be very large.

What if no expert is perfect?

Intuition: Making a mistake doesn't completely

disqualify an expert. So, instead of crossing
off, just lower its weight.

Weighted Majority Alg:

- Start with all experts having weight 1.
- Predict based on weighted majority vote.
- Penalize mistakes by cutting weight in half.
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Analysis: do nearly as well as best
expert in hindsight
* M = # mistakes we've made so far.
m = # mistakes best expert has made so far.
W = total weight (starts at n).

After each mistake, W drops by at least 25%.
So, after M mistakes, W is at most n(3/4)M.
Weight of best expert is (1/2)™. So,
(1/2)™ < n(3/4)M
(4/3)M n2™m
M 2.4(m+1gn)
So, if m is small, then M is pretty small too.

A

IN

Randomized Weighted Majority

2.4(m + lg n) not so good if the best expert makes a
mistake 20% of the time. Can we do better? Yes.

+ Instead of taking majority vote, use weights as
probabilities.
Idea: smooth out the worst case.

- Also, generalize % to 1- ¢.

Solves to: M < —min(1 _7'-) +In(n) v
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Analysis

+ Say at time t we have fraction F, of weight on

experts that made mistake.
+ So, we have probability F, of making a mistake, and

we remove an ¢F, fraction of the total weight.

- Weina = n(1-e F)(1 - e Fy)...
= In(Wing) = In(n) + Z, [In(1 - e F)] - In(n) - ¢ X, F,
(using In(1-x) < -x)
=1In(n) - ¢ M. (2 F, = E[# mistakes])

+ If best expert makes m mistakes, then In(Wgq) > In((1-€)™).
+ Now solve: In(n) - ¢ M > m In(1-¢).

v < miIn(l —¢) + In(n) 1

~ (14+¢e/2)m+ =log(n)

What can we use this for?

* Can use for repeated play of matrix game:
- Consider cost matrix where all entries O or 1.
- Rows are different experts. Start each with

weight 1.
+ Notice that the RWM algorithm is equivalent to “pick
an expert with prob p; = w;/ ¥ ;w;, and go with it".
+ Can apply when experts are actions rather than
predictors.
* F, = fraction of weight on rows that had "1" in
adversary's column.
- Analysis shows do nearly as well as best row in
hindsight!

What can we use this for?
In fact, alg/analysis extends to costs in [0,1], not
just {0,1}.
- We assign weights w;, inducing probabilities
pi = wi/ Zjwj.
- Adversary chooses column. Gives cost vector ¢.
We pay (expected cost) p - C.
- Update: w; « w;(1 — ecy).

RWM

World —life — fate - opponent
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El[cost] < (1 + €)OPT + (g) log(n)
In T steps, E[cost] < OPT + T + () log(n)




RWM Nice proof of minimax thm (sketch)

In fact, gives a proof of the minimax theorem... * Suppose for contradiction it was false.
* This means some game G has V. > Vy:
- If Column player commits first, there exists
a row that gets the Row player at least V..
- But if Row player has to commit first, the
Column player can make him get only V.
+ Scale matrix so payoffs to row are
in[-1,0]. Say Vi = V.- 8.
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Proof sketch, contd

* Now, consider randomized weighted-majority

alg, against Col who plays optimally against

Row's distrib.

* In T steps,

- Alg gets > [best row in hindsight] —eT - log(n)/¢

- BRiH = TV, [Best against opponent's empirical
distribution]

- Alg < TV, [Each time, opponent knows your
randomized strategy]

- Gap is 8T. Contradicts assumption if use ¢ = §/2,
once T > log(n)/e%.




