15-451/651: Design & Analysis of Algorithms December 3, 2013
Lecture #28 last changed: November 28, 2013

Last time we started talking about mechanism design: how to allocate an item to the person who
has the maximum value for it, so that we are “incentive compatible”—no one has an incentive
to misreport their valuations (a.k.a. lie). Then we saw the very general VCG mechanism which
extends to arbitrary allocation problems, with the same incentive-compatibility property. But VCG
required as input the valuations of all players for all outcomes. In this lecture, we give a different
kind of mechanism, a more “natural” one, for matching markets, where we want a matching between
buyers and goods/l]

1 Matching Markets

Think of the setting of assigning dorm rooms to students, houses to buyers, etc. Each person wants
one of each item. Each item can be given to at most one person. Formally, consider the setting
where there is a set I of n items on sale, and a set B of n buyers who may buy some of them.
The variables j will refer to a generic buyer and variables ¢ will refer to items. Each buyer wants
to buy at most one item, and has valuation v;(i) € Z for being allocated item i. We assume that
vj(i) > 0. An example with n = 3, items on the left, buyers on the right, buyer a values items
A, B,C at 10,9, 0 respectively.

[tems Buyers

@ @ 10,9,0
@ @ 87,2
@ @ 72,5

If the price for item i is p;, the utility that j gets from being assigned item 7 is

Naturally, the buyer seeks to maximize his utility. Moreover, we want to ensure individual ratio-
nality, that the assignment results in every buyer achieving non-negative utility; hence if item ¢ is
assigned to buyer j at price p;, it must be that v;(i) > p;.

The social welfare achieved by an assignment of items to buyers is the sum of wvaluations of the
buyers for their allocations. Not the sum of the utilities, the actual valuations. (If you sum utilities,
you must include the utility of the sellers in the summation.) In the example above, at prices
pa =6,pp = 5,pc = 3, assigning A — a, B — b, C' — ¢ would achieve social welfare 10 + 7+ 5 = 22.
The utility of the players under this assignment would be 10—6 = 4,7—5 = 2,5—3 = 2 respectively.

We want to find an allocation that maximizes the social welfare. Last time we saw the VGC
mechanism that finds an allocation (and a pricing scheme) which maximizes the social welfare, and
also gives incentive compatibility. That is, no player has any reason to misreport their valuations.
And what would VCG do in this setting of a matching market? It would compute the max-weight
matching in the bipartite graph where the weight of an edge (3, j) is the valuation v;(¢). This would
give us the allocation. Then the payment that buyer j makes is the “externality” that j causes: the

! A gentle and very readable introduction to matching markets (with more examples) can be found in |Chapter 10
of the Easley-Kleinberg book: Networks, Crowds, and Markets: Reasoning About a Highly Connected World.
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difference between the valuations of all the other players when ¢ participates, and when it does not.
In the example above, a max-weight matching is My cqg = {A—a, B—b,C —c}. The corresponding
VCG prices are given below.

(What is the price VCG charges to a? The valuations of the other players under My cq is 7+5 = 12.
Now if a does not bid, then the optimal allocation for the others is B —b, A — ¢ with total valuation
14. Hence the externality caused is 14 — 12 = 2, which is the price p, VCG sets for a.)

But the VCG mechanism required us to submit our valuations to the center, which then finds the
allocation and prices in this centralized way. Today we will give a different, distributed mechanism
that acts more like real markets seem to do: it will gradually raise prices until they “stabilize”, and
each buyer will buy their favorite item (which maximizes their own utility), and that will be the
optimal allocation, maximizing social welfare.

Important note: for all of Section 1, we will assume everyone acts truthfully. It will be
just an algorithm design problem. We come back to incentive-compatibility in Section 2.

1.1 Preferred Items and the Preferred Graph

Given prices p1,p2,...,pn for the items, the preferred items for buyer j are all the items that
maximize his utility (and for which the utility is non-negative). Le., if

uj 1= max(v; (1) — pi) 1)

is the maximum utility that j can achieve at these price, and if u;‘ > 0, the preferred items (at
these prices) are

Sji={i € I'|v;(i) —pi = uj}. (2)

Else if u} < 0 then buyer j has no preferred items (and S; = 0).

Now you can create the preferred graph H by having a node for each item i € I, one for each buyer
Jj € [n], and an edge (i, ) if item ¢ is preferred item for j, i.e., i € S;. (All this is with respect to
the current set of prices, of course.) Here are the preferred graphs with respect to two different
price settings.
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1.2 Market-Clearing Prices
A set of prices p1,pa,...,pn, one for each item, is called market-clearing if
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e There is a matching in the preferred graph H (at these prices) that matches all the buyers
to items, and

e if an item 7 is not matched, then its price p; = 0. (This is irrelevant when the number of
items equals the number of buyers, since if all buyers are matched, so are the items. But if
you had more items, you need this condition.)

This means at these prices, each buyer can come by and pick some item that maximizes her utilityEL
and the market will “clear”. (Of course, items that are not desirable might be left behind, but they
have no value in this market and hence have zero price.) The matching given by the definition of
market-clearing prices gives us the corresponding allocation.

In the previous figure on the right ps = 2,pp = 1,pc = 0 were market-clearing prices, the graph
has a perfect matching.

But pa = 1,pp = 0,pc = 0 are not market-clearing prices. Why not? There is no perfect matching
in the preferred graph H (on the left). How do you prove the absence of a perfect matching? Look
at the set S = {a, b, c}. The neighborhood has size |N(S)| = |{A, B}| = 2 whereas this set has size
|S| = 3. There is no way we can match S to its neighbors. Hall’s theorenﬁ says that a bipartite
graph with equal number of vertices on either side has no perfect matching if and only if there is a
set S C B with neighborhood size |[N(S)| < |S|. The set N(S) is called a constricted set or a Hall
set. Here is another example of a bipartite graph with n = 8 where there is no perfect matching,
as shown by a constricted set, the four red vertices on the right with only three (blue) neighbors
on the left.

Take away message: if there is no perfect matching in a bipartite graph, we can always find a
constricted set. This will be useful later.

1.3 Market-Clearing Prices and Social Welfare Maximization
Why are we interested in market-clearing prices, apart from them seeming “natural”? And do they
always exist? The first answer is short and sweet.

Theorem 1 If there are market-clearing prices, then the corresponding allocation mazximizes social-
welfare.

Proof: Fix any market-clearing prices p;. Let M be the matching from items to buyers. By the
definition, each player is given a preferred item, and hence is (individually) maximizing her utility.
So the maximum utility that can be achieved (by any matching) with respect to these prices is

S owii) =Y (vii) — o)

(4,7)eM (4,9)eM

precisely

2Due to ties, they can’t pick an arbitrary item that maximizes their utility; we might have to give them a utility-
maximizing item breaking ties carefully

3You might have seen this theorem in 15-251. In any case, this is yet another consequence of the maxflow-mincut
theorem, you should prove it for yourself.



Now look at the items. Some of them are matched to buyers and their prices are included in the
sum. Others are not matched, and by the definition again, their prices must be zero. Hence the

above expressions are equal to
> - Yon
i

(i.5)eM
But the latter sum does not depend on the matching, so in finding the matching maximizing this
expression, we have found a matching that maximizes the social welfare. QED. |

Cool: if we have market-clearing prices, they automatically maximize the value to the buyers.

And why should these market-clearing prices exist? Here’s an algorithm that will terminate with
these prices.

1.4 The Ascending-Price Mechanism

We want to find market-clearing prices. The idea will be a natural one: if a set of k items has
more than k people preferring it at the current prices, it seems likely that the prices of these items
should rise. And that is precisely what we will do.

Start with all prices p; = 0. Our prices will always be integers. Recall that the valuations v;() are
all non-negative integers. Now do the following:

1. Check if the current prices are market-clearing. (I.e., build the preferred graph, check if there
is a matching that matches all the buyers to items.) If so, we are done.

2. Else, there must be some set S of buyers such that the set of neighbors of S in the graph
H (denoted by N(S)) have strictly smaller cardinality. Le., |S| > |N(S)|. (Recall we called
N(S) a constricted set). Such a set is “over-subscribed”, the demand for it (i.e., |S]|) is more
than the supply (i.e., |N(S)|). So such a set seems like a natural candidate to see price
increases.

There may be multiple constricted sets NV (.S). So choose a minimal constricted set: i.e., N(S)
does not contain another constricted set N(7'). Then for each item i € N(S), increment the
prices p; < p; + 1. Go back to Step 1.

Here’s a run of the algorithm (with the constricted sets shown in red).
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Easy enough. But does this always give us market-clearing prices? Hmm... what if the prices keep
rising forever? It can’t really be forever, eventually some item will be too expensive for everyone
and would not be allocated. Since we have an equal number of buyers and items, we would then
have people who are not assigned any item at all. Equivalently, we would may eventually get some
set S with N(S) = ), and then Step 2 would not make progress at all. This would violate the
definition of market clearing prices, and would be bad news.

No worries. Here’s the good news about the algorithm. We first show that each person always
has at least one preferred item, and then we show that this means the algorithm decreases some
potential in each step and hence must eventually stop.
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Lemma 2 At most n — 1 items will have strictly positive prices.

Proof: Just for the sake of analysis, let us keep a tentative matching M around, where M contains
a subset of edges in the preferred graph. We maintain the invariant that if an item has non-zero
cost, that item is tentatively matched to some buyer. In math, p; >0 = 3Jj : (i,7) € M. Initally
M is empty, which satisfies the invariant.

Suppose you have prices and a tentative matching, and now you raised prices for items in N(S).
Tentatively match all the items in N(S) to buyers in S. (If either these items, or the buyers they
are matched to, were tentatively matched earlier, drop those tentative matching edges.) Since
|S| > |N(S)| and we chose a minimal N(S), we know that this tentative matching can be done.
(Why? Hall’s theorem again!) So the items in N(S), they have non-zero prices and are tentatively
matched. And the items outside N(S) must be tentatively matched to buyers outside S (since all
neighbors of S are in N(5)), and we did not drop any such edge. Hence, the invariant is maintained.

For sake of contradiction, if we ever want to raise the price for the n** item, we would get a tentative
matching of size n, which would mean we would have had a matching of all buyers to items, and
hence would not want to raise prices at this step. Hence, at most n — 1 items would every have
their prices raised. |

Corollary 3 FEach buyer has degree at least 1 in the preferred graph (at all times).
Proof: By Lemma [2| at least one item stays at price 0. The utility of every buyer for this item
remains non-negative, and hence the preferred set for any buyer can never be empty. |

Now we’re ready to prove the main result. Clearly if the algorithm terminates it will output market-
clearing prices; since every buyer has degree at least 1 in this final preferred graph, all items will
be allocated. So we show that the algorithm terminates.

Theorem 4 The algorithm terminates in finite time.

Proof: We use a potential function. Given prices p1,p2, ..., Pn, define the potential to be
T ®
items ¢ buyers j

where v} is defined as in . Note that all the terms here are non-negative. At the beginning, the
prices are zero, and the u; = max;er v;(i). So ®o = >, max;er v;(i).

It remains to show that every time we execute Step 2 of the algorithm, the potential decreases.
Why? When we execute Step 2, we raise the prices on some constricted set N(S) of items. By
Corollary |3 each buyer has at least one edge out of it, so |[N(S)| > 1. (The following argument
does not say anything if N(S) = (.) Now we raise the prices on |N(S)| nodes. This raises the
potential by [N(S5)|. However, the value of u} decreases for all nodes in S, and hence decreases the
potential by |S|. Since |S| > |N(5)|, the potential decreases by at least 1. So the algorithm stops
in at most ®q steps. |

BTW, this algorithm is not polynomial-time, if the maximum valuation is V' this process could
take (V') time to finish. Anything interesting to say about this?

2 Relationship to Vickery and VCG

The ancending-price auction we just saw is a direct generalization of the Vickery auction from
the previous lecture. In the Vickery auction there was a single item we were auctioning among n
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buyers. To make it fit our model here, just introduce n — 1 dummy items (numbered 2 through n),
and number the real item 1. And if the buyer j had value v; for the real item, define v;(1) = v;
and v;(i) = 0 for ¢ > 2. Assuming that each v; > 0, the preferred graph starts off with edges from
item 1 to all buyers, and no other buyers. So {1} is a minimal constricted set, and we raise its
price until all except one buyer has a preferred edge to at least one item from {2,3,...,n}. This
will happen precisely when p; reaches the second-highest valuation, and the person matched to the
real item will be the one with the highest valuation.

Also, for the case when we have K identical items to sell, the same argument shows that our
algorithm above will sell to the K highest bidders, at a price equal to the valuation of the K + 15%-
highest bidder.

Is this just a coincidence? Or could it be the case that the matching and prices found by our
algorithm above are the VCG allocation and prices? That would be great, because this would say
that the ascending-price mechanism is also incentive compatible, that it is a dominant strategy for
the players to play truthfully. Well, clearly the matching we found is the max-weight matching (by
Theorem , and hence the same as the VCG allocation. But what about the prices? This is a
little more tricky, but it is true: the prices we find are exactly the VCG prices! We’'ll not cover this
here, see |Chapter 15.9 of the Easley-Kleinberg book! for more details.

3 Walrasian equilibrium

The same ideas work for more general markets where the players need not just want one item,
they may be interested in buying multiple items. The valuation functions may have different
characteristics. For instance, you may want a hotel room and a flight ticket and a car rental (and
any strict subset of these might be useless to you). Or you may want multiple computers, but each
additional computer gets less valuable to you the more you have (“diminishing returns”). Or you
may value set A at $50, or set B at $100, but all other sets are worthless to you. One can imagine
very general valuation functions. E|

Formally, suppose you have a set of m items I, a set of n buyers B. Each player j € B now has
valuations v;(.S) for each subset S C I of items. Let us define some useful shorthand: given prices

P1,P25---,Pm,; define
p(S) = Zpi- (4)
i€S
The utility of a set S for buyer j is u;(S) := v;(S) — p(S). We imagine that v;(#) = 0, and hence
u;(0) = 0—p(0) = 0.

Definition 5 (Preferred Set) At prices p1,pa;...,pm, a set S is called preferred for player j if
uj(S) >0, and also for all T C I, u;(T) < u;(S).

Definition 6 (Walrasian Equilibrium) The prices p1,p2,...,pm and allocations Si,Sa, ..., Sy
are at Walrasian equilibrium if (a) for each j the set S; is preferred for player j, and (b) if item i
is not allocated (i.e., i ¢ U;S;), the price p; = 0.

This is the natural way to extend market-clearing prices to the more general setting, and a proof
similar to Theorem [I]shows that if {p; }icr, {S;}jep are a Walrasian equilibrium, then the allocation
{S;} maximizes social welfare.

4For more details on this section’s material, see the survey by Blumrosen and Nisan| from the Algorithmic Game
Theory book, which has loads of other cool topics. (Link to download entire book, 5Mb.)
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3.1 Existence No Longer Guaranteed

Unfortunately, Walrasian equilibria don’t always exist, when the valuation functions are allowed to
be so general.

There are 2 items {A, B} and 2 buyers {a,b}. Buyer a values the entire set at 3, and all
other sets have value 0. b values every non-empty subset at 2. The welfare maximizing
allocation is to give both items to a, with social welfare 3. For this to be a Walrasian
equilibrium, what prices should we choose? The prices of each of the items must be at
least 2 (for b’s preferred set to be empty). But then the price of the entire set is at least
4, so a’s preferred set cannot be {A, B}.

3.2 An Ascending-Price Mechanism for “Nice” Valuations

The problem in the example above comes from “complementarity”. Items A and B “complement”
each other, and the whole {A, B} set is worth more to a than the sum of its parts. For example,
think of A as being a left shoe and B the right shoe. Or a hotel room and a flight ticket. Or bread
and butter.

But if the valuation functions are “nice”, an ascending-price auction find an (approximate) Wal-
rasian equilibrium. What are these “nice” valuations? These are called “substitutes”, and is one
way of ensuring the lack of complements. Loosely, it says that if you raise the price of a set of
items, your preference or demand for some other item does not go down. (This clearly excludes
complements, since if you were to raise the price of left shoes, not only would the demand for
left shoes go down, but the demand for right shoes would also go down despite their prices not
changing.)

Definition 7 (Substitutes) Formally, valuation v; satisfies the substitutes property if the fol-
lowing holds. For any two prices pi1,p2,...,Pm 6nd q1,q2, ..., qm where p; < q;, if P is a preferred
set for buyer j at prices p, and P~ :={i € P | p; = ¢;} is the subset of P containing those items
whose prices did not change, then there exists a preferred set @QQ for j at prices q with P~ C Q.

Start with tentative assignments T; = (), and prices p; = 0.

1. Look at the preferred set P; for buyer j under the following prices: each item i € T} costs p;,
and each item i ¢ T} costs p; + €. (Think of this as saying that acquiring an item not in our
tentative set has some € extra cost, you have to work for it.)

2. If each such preferred set P; = T}, stop and return the prices p;.

3. Else, pick some buyer with P; # T}, who is not satisfied. Set T; = P;, that is, give him his
preferred set.

Now increase the prices of all items newly assiged to j, namely those in P; \ T}, to p; + €.
Finally, remove these items in P; from other tentative sets: Tj < T} \ P;. Go back to Step 1.

Again, a natural ascending-price mechanism. If the valuations satisfy the substitutes property,
this gives us an e-approximate Walrasian equilibrium. The precise definition of this approximate
equilibrium is not important, what is interesting is how this simple algorithm can give market-
clearing prices. (Sadly, now the prices are no longer VCG prices, and players have an incentives to
lie. One can get around this by pricing sets of items, but that is a story for another day.)
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