
15-451/651 Algorithms, Fall 2013

Recitation notes October 23, 2013

• Coding up shortest paths as an LP

• Another example of solving a matrix game

Coding up shortest paths as an LP: Let’s see if we can code up the shortest-path problem
as an LP. So our input is a directed graph G with weights w(e) on all the edges, a start node
s, and a destination t. We want to find a path from s to t of least weight.

There are actually 2 natural ways of doing this.

1. Let’s have a variable xe for each edge e, with 0 ≤ xe ≤ 1. (Think of xe = 1 meaning we
use that edge, and xe = 0 meaning we don’t, but of course the LP might assign fractional
values.)

Our goal is to minimize
∑

ew(e)xe, subject to:

• One unit of “flow” leaves s:
∑

e=(s,v) xsv = 1

• One unit of “flow” enters t:
∑

e=(v,t) xvt = 1.

• For all v 6∈ {s, t}, we have flow-in = flow-out:
∑

e=(u,v) xuv =
∑

e=(v,u) xvu.

OK, so we really coded this problem up as a min-cost flow (send 1 unit of s-t-flow with
the least cost. You can imagine that edges have capacity 1, but since we’re sending at
most 1 unit of flow, it does not make sense to write down the capacity constraints). But
it is interesting to think of it as an LP.

Now, what if the LP solver returns fractional values? The claim is that in that case, all
paths from s to t that you get by following non-zero xe’s are shortest paths (otherwise you
could get a better LP solution by rerouting that flow on the shortest path). We got lucky
here that the fractional values didn’t hurt us. For other problems (e.g., like the ones we
will see in the next lectures like 3SAT and vertex-cover) you can’t necessarily convert a
fractional solution into an integer one.

2. Here is another approach. Let’s solve for distances on all nodes v, representing the distance
from s to v along the shortest path. If we can solve for these, we can then recover the
path just like we did with Bellman-Ford.

Variables: we will have a variable dv for every vertex v, representing its distance from s.

Constraints:

• For any edge e = (u, v) we put the constraint that dv ≤ du + w(e). In other words,
since one way to reach v is to reach u first and then go on edge e to v, the shortest-
path distances must satisfy this property.

• We also add the constraint ds = 0.
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Objective: now, we maximize
∑

v dv subject to those constraints.

This will never produce values dv that are larger than the shortest path from s to v, since
by induction (on nodes in order of their true distance from s) the node u that comes right
before v in the true shortest path from s will never have too large a value, and we have
constrained dv ≤ du + w(u, v). It also will never produce values dv that are smaller than
the shortest path from s to v. We can prove this by contradiction (to make this proof a
bit easier, assume all w(e) are non-negative). Suppose for sake of contradiction there are
some vertices whose distance values are too low, and let v be the vertex with the smallest
incorrect value dv. It cannot be the case that any of the constraints dv ≤ du + w(u, v)
are “tight”, meaning that they are equalities, since otherwise u would be a vertex with
a smaller incorrect value (can you see why du must be too low if dv is too low and
dv = du +w(u, v)?). This means that we haven’t correctly maximized our objective since
this value dv can be raised without breaking any of the constraints.

A matrix game: In the game of evens-odds, two players E (Eve) and O (Odelia) simultane-
ously show one or two fingers. Eve wins if the sum is even and Odelia wins if the sum is odd.
For example, they might do this to decide who has to do some chore. Let’s view winning as
getting a score of +1 and losing as getting a score of −1.

Recall that a strategy is a deterministic or randomized method for picking what to play. The
value of a strategy is the score you get (or the expected score if the strategy is randomized)
against an opponent who plays optimally knowing your strategy (she has spies). For instance,
considering the case of Odelia, the deterministic strategy “play one” has value −1 since Eve
knowing this is Odelia’s strategy would just play one. Similarly, the deterministic strategy
“play two” has value −1 since Eve would just play two. The strategy “flip a coin and with
probability 1/2 play one and with probability 1/2 play two” has value 0 since whatever Eve
chooses, the expected score will be 0.

Here is a variation on evens-odds: suppose that we change the game so that both players playing
two is a draw (both get a score of 0). In other words, we can summarize the game from Odelia’s
point of view by the following payoff matrix:

Odelia plays

Eve plays
one two

one −1 1
two 1 0

1. What is the value to Odelia of the strategy “with probability 1/2 play one and with
probability 1/2 play two”? Remember, to solve this, figure out what Eve would do
knowing that this is her strategy.

2. What is the value to Odelia of the strategy “always play two”?

3. What is the strategy for Odelia that has the highest value, and what is its value?

4. What strategy for Eve has the highest value to Eve, and what is its value? Remember, we
are assuming now that Odelia has spies and will play her best response to this strategy.
Also, a win for Odelia is a loss for Eve and vice-versa.
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