
15-859(B) Machine Learning Theory

Homework # 6 Due: April 21, 2010

Groundrules: Same as before. You should work on the exercises by yourself but may work
with others on the problems (just write down who you worked with). Also if you use material
from outside sources, say where you got it.

Exercises:

1. Online resource sharing. Consider a system with n users and m resources. User
i has permissions for some subset Mi of the m resources (if we construct a bipartite
graph with users on the left and resources on the right, then these are the neighbors of
user i). However, user i can only use ki ≤ |Mi| of the Mi resources at a time. Finally,
each resource j has a size sj , and if several users are using a given resource, they have
to split it equally. The goal of a user is to maximize total resource usage.

(E.g., the case where all ki = 1 is like a setting where n animals each choose a location
to graze among the subset Mi of locations nearby to them, and they have to split the
amount sj of food at the location j they chose with all other animals who also chose
the same location.)

Formally, the game proceeds as follows. Each user i simultaneously chooses some
subset Si of ki out of their |Mi| neighbors. Let nj be the total number of users who
choose resource j. Then, user i gets payoff

∑

j∈Si
sj/nj . (This is equivalent to the

market-sharing game of Goemans, Li, Mirrokni and Thottan.)

Suppose we (user i) repeatedly play this game each day. We could place this in the

framework of “combining expert advice”, except the number of experts
(

|Mi|
ki

)

is expo-
nential. Show how you could instead model this in the Kalai-Vempala framework to
get a polynomial-time regret-minimizing algorithm. Make sure to argue how you solve
the offline problem.

Problems:

2. Policy iteration. The goal of this problem is to prove that a method called “policy
iteration” will eventually reach an optimal policy in an MDP. In policy iteration, given
some policy πi (a mapping of states to actions), you solve a linear system to compute
the state values under that policy:

V πi(s) = R(s, πi(s)) + γ
∑

s′

Prs,πi(s)(s
′)V πi(s′).

(Here, “R(s, a)” is the expected reward of executing action a from state s.) Then, we
define policy πi+1 to be the greedy policy with respect to those values. That is,

πi+1(s) = arg max
a

[

R(s, a) + γ
∑

s′

Prs,a(s
′)V πi(s′)

]

,

and so on to πi+2, πi+3, . . ..



(a) As an easy first step, argue that if πi+1 = πi (i.e., πi+1(s) = πi(s) for all states s),
then πi is optimal.

(b) As the harder second step, argue that the values never decrease (i.e., for all s,
V πi+1(s) ≥ V πi(s)). This completes the argument because there are only a finite
number of different policies.

Hint: what about a hybrid policy that uses πi+1 for one step and then πi from
then on? How about πi+1 for two steps?

3. Sample complexity bounds. For some learning algorithms, the hypothesis produced
can be uniquely described by a small subset of k of the training examples. E.g., if you
are learning an interval on the line using the simple algorithm “take the smallest interval
that encloses all the positive examples,” then the hypothesis can be reconstructed from
just the outermost positive examples, so k = 2. For a conservative Mistake-Bound
learning algorithm, you can reconstruct the hypothesis by just looking at the examples
on which a mistake was made, so k ≤ M , where M is the algorithm’s mistake-bound.
(In this case, you may also care about the order in which those examples arrived.)

Prove a PAC guarantee based on k. Specifically, fixing a description language (recon-
struction procedure), so for a given set S ′ of examples we have a well-defined hypothesis
hS′, show that

Pr
S∼Dn

(

∃S ′ ⊆ S, |S ′| = k, such that hS′ has 0 error on S − S ′ but true error > ǫ
)

≤ δ,

so long as

n ≥
1

ǫ

(

k ln n + ǫk + ln
1

δ

)

.

Hint: This problem is not hard, but it requires care, so you should be very clear in
your analysis what events you are taking a union bound over. In particular, there are
potentially an infinite number of possible hypotheses hS′ so you don’t want to do a
union bound over all sets S ′ ∼ Dk. Instead you may want to think about sets of indices
of the examples in S.

Note the similarity of the form of this bound to VC-dimension and other bounds we
have seen. These are often called “compression bounds”.
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