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1515--859(B) Machine Learning 859(B) Machine Learning 
TheoryTheory

Lecture 11: More on why large margins 
are good for learning.  Kernels and  
general similarity functions.  L1 – L2

connection.
AvrimAvrim BlumBlum
02/24/1002/24/10

Basic settingBasic setting
� Examples are points x in instance space, like Rn. 

Assume drawn from some probability distrib:
� Distribution D over x, labeled by target function c.
� Or distribution P over (x, l)
� Will call P (or (c,D)) our “learning problem”.

� Given labeled training data, want algorithm to do 
well on new data.
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MarginsMargins

If data is separable by large margin γ, then that’s 
a good thing.  Need sample size only Õ(1/γ2).

Some ways to see it:
1. The perceptron algorithm does well: makes only 

1/γ2 mistakes.
2. Margin bounds: whp all consistent large-margin 

separators have low true error.
3. Really-Simple-Learning + boosting…
4. Random projection…

|w⋅x|/|x| ≥ γ,  |w|=1
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Will do 3 then 4 then 2.

A really simple learning algorithmA really simple learning algorithm
Suppose our problem has the property that whp a 

sufficiently large sample S would be separable 
by margin γ.  Here is another way to see why 
this is good for learning.

Consider the following simple algorithm…
1. Pick a random linear separator.
2. See if it is any good.  
3. If it is a weak-learner (error rate ≤ ½ - γ/4), 

plug into boosting.   Else don’t.  Repeat.

Claim: if data has a large margin separator, Claim: if data has a large margin separator, 
there’s a reasonable chance a random there’s a reasonable chance a random linear linear 
separator separator will be a weakwill be a weak--learner.learner.

Proof: Consider random h s.t. h·w* ≥ 0: 
� Pick a (positive) example x.  Consider the 2-d 

plane defined by x and target w*.

� Prh(h⋅x ≤ 0 | h⋅w* ≥ 0)
≤ (π/2 - γ)/π = ½ - γ/π.

� So, Eh[err(h) | h⋅w* ≥ 0] ≤ ½ - γ/π.

� Since err(h) is bounded between 0 and 1, there 
must be a reasonable chance of success.

A really simple learning algorithmA really simple learning algorithm
Claim: if data has a separator of margin γ, there’s 

a reasonable chance a random linear separator 
will have error ≤ ½ - γ/4. [all hyperplanes through origin]

w*
x

QED

Another way to see why large margin is goodAnother way to see why large margin is good
Johnson-Lindenstrauss Lemma:
Given n points in Rn, if project randomly to Rk, for 

k = O(ε-2 log n), then whp all pairwise distances 
preserved up to 1 ± ε (after scaling by (n/k)1/2).

Cleanest proofs: IM98, DG99
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JL Lemma, contJL Lemma, cont
Proof easiest for slightly different projection:
� Pick k vectors u1, …, uk iid from n-diml gaussian.
� Map p →→→→ (p ···· u1, …, p ···· uk).
� What happens to vij = pi – pj?

� Becomes (vij ···· u1, … , vij ···· uk)
� Each component is iid from 1-diml gaussian, scaled by 

|vij|.
� For concentration on sum of squares, plug in version 

of Hoeffding for RVs that are squares of gaussians.

� So, whp all lengths apx preserved, and in fact 
not hard to see that whp all angles are apx 
preserved too.

Random projection and marginsRandom projection and margins
Natural connection [AV99]:
� Suppose we have a set S of points in Rn, separable by 

margin γ.
� JL lemma says if project to random k-dimensional space 

for k=O(γ-2 log |S|), whp still separable (by margin γ/2).
� Think of projecting points and target vector w.
� Angles between pi and w change by at most ±γ/2.

� Could have picked projection before sampling data. 
� So, it’s really just a k-dimensional problem after all.  Do 

all your learning in this k-diml space.

So, random projections can help us 
think about why margins are good for 
learning. [note: this argument does NOT imply 

uniform convergence in original space]

Uniform convergence bounds for large marginsUniform convergence bounds for large margins
Claim: Whp, any linear separator that gets training data 

correct by margin γ has true error ≤ ε so long as |S| >> 
(1/ε)[(1/γ2)log2(1/(γε)) + log(1/δ)]

Proof in two steps:
1. What is the maximum number of points that can be 

shattered by separators of margin at least γ? (aka “fat-
shattering dimension”) 

� Ans: O(1/γ2).
� Proof: corollary to Perceptron mistake bound (why?) 

(if dimension is d, can force Perceptron to make ≥ d mistakes)

2. Now want to use like in VC-dim analysis.  Sauer’s lemma 
analog still applies, but there’s a complication we’ll need 
to address…

Uniform convergence bounds for large marginsUniform convergence bounds for large margins
Claim: Whp, any linear separator that gets training data 

correct by margin γ has true error ≤ ε so long as |S| >> 
(1/ε)[(1/γ2)log2(1/(γε)) + log(1/δ)]

Proof in two steps:
2. Now want to use like in VC-dim analysis.  Sauer’s lemma 

analog still applies, but there’s a complication we’ll need 
to address…
� Draw 2m pts S1,S2 from D,  $ to get T1,T2 as before.
� Argue whp no separator gets T1 correct by margin γ, 

but makes ≥ εm mistakes on T2.
� To do this, tempting to do union bound over all 

separators that have no points in S=S1 ∪ S2 within 
margin γ (which we can count using Sauer)

� But this is undercounting…

Uniform convergence bounds for large marginsUniform convergence bounds for large margins
Claim: Whp, any linear separator that gets training data 

correct by margin γ has true error ≤ ε so long as |S| >> 
(1/ε)[(1/γ2)log2(1/(γε)) + log(1/δ)]

Proof in two steps:
2. Now want to use like in VC-dim analysis.  Sauer’s lemma 

analog still applies, but there’s a complication we’ll need 
to address…
� Let h(x) = h⋅x, but truncated at ± γ.
� Define dist(h1,h2)=maxx∈S|h1(x)-h2(x)|.
� Define H to be a “γ/2 cover”: for all separators, 

exists h∈H within distance γ/2.
� For h∈H, define “correct” as “correct by margin at 

least γ/2”, else call it a “mistake”.  Now, run usual 
union-bound argument on these.

� Finally, apply bound of [Alon et al] on cover-sizes…

OK, now OK, now to another way to to another way to 
view view kernels…kernels…
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Kernel Kernel function recapfunction recap
� We have a lot of great algorithms for learning 

linear separators (perceptron, SVM, …).  But, a lot 
of time, data is not linearly separable.
� “Old” answer: use a multi-layer neural network.
� “New” answer: use a kernel function!

� Many algorithms only interact with the data via 
dot-products.
� So, let’s just re-define dot-product.
� E.g., K(x,y) = (1 + x·y)d.

- K(x,y) = φ(x) · φ(y), where φ() is implicit mapping into 
an nd-dimensional space.

� Algorithm acts as if data is in “φ-space”. Allows it to 
produce non-linear curve in original space.  

� Don’t have to pay for high dimension if data is linearly 
separable there by a large margin.
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+
+

- --

-

Question: do we need the 
notion of an implicit space to 

understand what makes a 
kernel helpful for learning?

Can we develop a more intuitive theory?

� Match intuition that you are looking for a 
good measure of similarity for the problem 
at hand?

� Get the power of the standard theory with 
less of “something for nothing” feel to it?

And remove even need for existence of Φ?

Can we develop a more intuitive theory?

What would we intuitively want in a 
good measure of similarity?

A reasonable idea:A reasonable idea:
� Say have a learning problem P (distribution D

over examples labeled by unknown target f).
� Sim fn K:(    ,     )→[-1,1] is good for P if:

most x are on average more similar to random 
pts of their own label than to random pts of 
the other label, by some gap γγγγ.

E.g., most images of men are on average γ-more 
similar to random images of men than random 
images of women, and vice-versa.

(Scaling so all values in [-1,1])

A reasonable idea:A reasonable idea:
� Say have a learning problem P (distribution D

over examples labeled by unknown target f).
� Sim fn K:(x,y)→[-1,1] is (ε,γ)-good for P if at 

least a 1-ε fraction of examples x satisfy:

Ey~D[K(x,y)|l(y)=l(x)] ≥ Ey~D[K(x,y)|l(y)≠l(x)]+γ

E.g., most images of men are on average γ-more 
similar to random images of men than random 
images of women, and vice-versa.

(Scaling so all values in [-1,1])
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A reasonable idea:A reasonable idea:
� Say have a learning problem P (distribution D

over examples labeled by unknown target f).
� Sim fn K:(x,y)→[-1,1] is (ε,γ)-good for P if at 

least a 1-ε fraction of examples x satisfy:

Ey~D[K(x,y)|l(y)=l(x)] ≥ Ey~D[K(x,y)|l(y)≠l(x)]+γ

How can we use it?

Just do “average nearestJust do “average nearest--nbr”nbr”
At least a 1-ε fraction of x satisfy:

Ey~D[K(x,y)|l(y)=l(x)] ≥ Ey~D[K(x,y)|l(y)≠l(x)]+γ

� Draw S+ of O((1/γ2)ln1/δ2) positive examples.
� Draw S- of O((1/γ2)ln1/δ2) negative examples
� Classify x based on which gives better score.

� Hoeffding: for any given “good x”, prob of error over 
draw of S+,S− at most δ2.

� So, at most δ chance our draw is bad on more than δ
fraction of “good x”.  

� With prob ≥ 1-δ, error rate ≤ ε + δ.

But not broad enoughBut not broad enough

� K(x,y)=x·y has good separator but doesn’t 
satisfy defn. (half of positives are more similar to 
negs that to typical pos)

+ +

_

30o

30o

These have avg 
similarity 0.5 to -, 

0.25 to +

But not broad enoughBut not broad enough

� Idea: would work if we didn’t pick y’s from top-left.  
� Broaden to say: OK if ∃ large region R s.t. most x are on 

average more similar to y∈R of same label than to y∈R of 
other label. (even if don’t know R in advance)

+ +

_

30o

30o

Broader defn…Broader defn…
� Ask that exists a set R of “reasonable” y

(allow probabilistic) s.t. almost all x satisfy

� Formally, say K is (ε’,γ,τ)-good if have hinge-
loss ε’, and Pr(R+), Pr(R-) ≥ τ.

� Thm 1: this is a legitimate way to think 
about good kernels:
�� If kernel has margin If kernel has margin γγ in implicit space, in implicit space, 

then for any then for any ττ is (is (ττ,,γγ22,,ττ))--good in this sense.good in this sense.
[BBS’08][BBS’08]

Ey[K(x,y)|l(x)=l(y), y∈R] ≥Ey[K(x,y)|l(x)≠l(y), y∈R]+γ

Broader defn…Broader defn…
� Ask that exists a set R of “reasonable” y

(allow probabilistic) s.t. almost all x satisfy

� Formally, say K is (ε’,γ,τ)-good if have hinge-
loss ε’, and Pr(R+), Pr(R-) ≥ τ.

� Thm 2: even if not a legal kernel, this is 
nonetheless sufficient for learning.
�� If K is If K is ((εε’,’,γγ,,ττ))--good,good, εε’<<’<<εε, can learn to error , can learn to error εε

with O((1/with O((1/εγεγ22)log(1/)log(1/εγτεγτ)) labeled examples.)) labeled examples.
[and Õ(1/(γ2τ)) unlabeled examples]

Ey[K(x,y)|l(x)=l(y), y∈R] ≥Ey[K(x,y)|l(x)≠l(y), y∈R]+γ
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How to use such a sim fn?How to use such a sim fn?
� Assume ∃ R s.t. Pry[R+,R-] ≥τ and almost all x

satisfy

� Draw S = {y1,…,yn},  n≈1/(γ2τ).

� View as “landmarks”, use to map new data:
F(x) = [K(x,y1), …,K(x,yn)].

� Whp, exists separator of good L1 margin in 
this space: w=[w=[0,0,1/n0,0,1/n++,1/n,1/n++,,0,0,0,0,0,0,--1/n1/n--,,0]0]

((nn++ = # = # yyii ∈∈ RR++, , nn-- = #y = #y ∈∈ RR--))

� So, take new set of examples, project to 
this space, and run good L1 alg (Winnow).

could be unlabeled

Ey[K(x,y)|l(x)=l(y), y∈R] ≥Ey[K(x,y)|l(x)≠l(y), y∈R]+γ

Other notesOther notes
� So, large margin in implicit space ⇒ satisfy this 

defn (with potentially quadratic penalty in margin).
� This def is really an L1 style margin, so can also 

potentially get improvement too.  
� Much like Winnow versus Perceptron.

� Can apply to similarity functions that are not legal 
kernels.  E.g.,
� K(x,y)=1 if x,y within distance d, else 0.
� K(s1, s2) = output of arbitrary dynamic-programming alg

applied to s1, s2, scaled to [-1,1].

� Interesting to consider other natural properties of 
similarity functions that motivate other algs.


