15-859(B) Machine Learning
Theory

Lecture 11: More on why large margins
are good for learning. Kernels and
general similarity functions. L; - L,

connection.

Avrim Blum
02/24/10

Basic setting

+ Examples are points x in instance space, like R
Assume drawn from some probability distrib:
= Distribution D over x, labeled by target function c.
= Or distribution P over (x, 1)
= Will call P (or (c,D)) our “learning problem".

+ Given labeled fraining data, want algorithm to do
well on new data.

Margins

A really simple learning algorithm

If data is separable by large marginy, then that's
a good thing. Need sample size only O(1/y?).
+ +

[Iwixl/[x 2y, [wi=1] \\
Some ways to see it: -

1. The perceptron algorithm does well: makes only
1/y? mistakes.

2. Margin bounds: whp all consistent large-margin
separators have low frue error.

3. Really-Simple-Learning + boosting...
4. Random projection... [will do 3 then 4 then 2]

Suppose our problem has the property that whp a
sufficiently large sample S would be separable
by marginy. Here is another way to see why
this is good for learning.

Consider the following simple algorithm...

1. Pick a random linear separator.

2. See if it is any good.

3. If it is a weak-learner (error rate < 3 - y/4),
plug into boosting. Else don't. Repeat.

Claim: if data has a large margin separator,
there's a reasonable chance a random linear
separator will be a weak-learner.

A really simple learning algorithm

Another way to see why large margin is good

Claim: if data has a separator of marginy, there's
a reasonable chance a random linear separator
will have error < % - y/4. [all hyperplanes through origin]

Proof: Consider random h s.t. h-w* > 0:
* Pick aéposiﬁve) example x. Consider the 2-d
plane defined by x and target w*. .
o Pr(hX <O | hiv* 2 0) S
< (/2 -y)/m=3-y/m
* So,E,[err(h) | h*=0]< % -y/nt
+ Since err(h) is bounded between 0 and 1, there

must be a reasonable chance of success.
QED

Johnson-Lindenstrauss Lemma:

Given n points in R", if project randomly to R, for
k = O(e2 log n), then whp all pairwise distances
preserved up to 1+ € (after scaling by (n/k)2).

Cleanest proofs: IM98, D699

JL Lemma, cont

Random projection and margins

Proof easiest for slightly different projection:
* Pick k vectors uy, ..., uy iid from n-diml gaussian.
* Mapp = (p-uy, .. p- Uy
¢ What happens to v;; = p; - p;?
= Becomes (vj; - uy, ..., Vij - Uy)
. [lfaclh component is iid from 1-diml gaussian, scaled by
Viil.
. FoJr concentration on sum of squares, plug in version
of Hoeffding for RVs that are squares of gaussians.
* So, whp all lengths apx preserved, and in fact
not hard to see that whp all angles are apx
preserved too.

Natural connection [AV99]:

¢ Suppose we have a set S of points in R", separable by
marginy.

* JL lemma says if project to random k-dimensional space
for k=0O(y2 log |S1), whp still separable (by margin y/2).
= Think of projecting points and target vector w.
= Angles between p; and w change by at most +y/2.

+ Could have picked projection before sampling data.

¢ 5o, it's really just a k-dimensional problem after all. Do
all your learning in this k-diml space.

So, random projections can help us
think about why margins are good for

Iearning. [note: this argument does NOT imply
uniform convergence in original space]

Uniform convergence bounds for large margins

Uniform convergence bounds for large margins

Claim: Whp, any linear separator that gets training data
correct by margin y has true error < € so long as |S| >
(1/8)[(1/¥)log?(1/(ye)) + log(1/3)]

Proof in two steps:

1. What is the maximum number of points that can be
shattered by separators of margin at least y? (aka "fat-
shattering dimension”)
= Ans: O(1/y3).
= Proof: corollary to Perceptron mistake bound (why?)

(if dimension is d, can force Perceptron to make > d mistakes)

2. Now want to use like in VC-dim analysis. Sauer's lemma
analog still applies, but there's a complication we'll need
to address...

Claim: Whp, any linear separator that gets training data
correct by margin y has true error < € so long as |S| >
(1/8)[(1/y)log?(1/(ve)) + log(1/3)]
Proof in two steps:
2. Now want to use like in VC-dim analysis. Sauer's lemma
analog still applies, but there's a complication we'll need
to address...
= Draw 2m pts S;,S, from D, $ to get T,,T, as before.
= Argue whp no separator gets T, correct by marginy,
but makes = em mistakes on T,.

= To do this, fempting to do union bound over all
separators that have no points in S=S; U S, within
marginy (which we can count using Sauer)

= Buft this is undercounting...

Uniform convergence bounds for large margins

Claim: Whp, any linear separator that gets training data
correct by margin y has true error < € so long as |S| >
(1/€)[(1/y*)log?(1/(ye)) + log(1/8)]

Proof in two steps:

2. Now want to use like in VC-dim analysis. Sauer's lemma
analog still applies, but there's a complication we'll need
to address...
= Let h(x) = hiX, but truncated at .

» Define dist(hy,hy)=max,cslhy(x)-ho(x)|. __——

= Define H to be a "y/2 cover": for all separators,
exists h{OH within distance y/2.

» For hOH, define “correct” as “correct by margin at
least y/2", else call it a "mistake”. Now, run usual
union-bound argument on these.

= Finallv. apply bound of [Alon et all on cover-sizes

OK, now to another way to
view kernels...

Kernel function recap

+ We have a lot of great algorithms for learning

inear separators (perceptron, SVM, ...). But,a lot

of time, data is not linearly separable.

= "Old" answer: use a multi-layer neural network.

= "New" answer: use a kernel function!

+ Many algorithms only interact with the data via

dot-products. L+

= So, let's just re-define dot-product. o,

« Eg., K(xy) = (1+xy). - /-
- K(x.y) = @(x) - @(y), where () is implicit mapping into

an nd-dimensional space.

= Algorithm acts as if data is in “¢-space”. Allows it to
produce non-linear curve in original space.

= Don't have to pay for high dimension if data is linearly

separable there by a large margin.

Question: do we heed the
notion of an implicit space to
understand what makes a
kernel helpful for learning?

Can we develop a more intuitive theory?

~

¢ Match intuition that you are looking for a
good measure of similarity for the problem
at hand?

+ Get the power of the standard theory with
less of “"something for nothing” feel to it?

And remove even need for existence of &?

Can we develop a more intuitive theory?

What would we intuitively want in a
good measure of similarity?

A reasonable idea:

Say have a learning problem P (distribution D

over examples labeled by unknown target f).

sim fn K:(&§, &4)~ [-11] is good for P if:

most x are on average more similar to random
pts of their own label than to random pts of
the other label, by some gap y.

*

*

E.g., most images of men are oh average y-more
similar o random images of men than random
images of women, and vice-versa.

(Scaling so all values in [-1,1])

A reasonable idea:

Say have a learning problem P (distribution D
over examples labeled by unknown target f).

Sim fn K:(x,y)—[-1,1] is (g,y)-good for P if at
least a 1-€ fraction of examples x satisfy:

*

*

y-pl KX Ey)=t(x)] > E,.p[K(x.y)|ely)#e(x)]+|

m

E.g., most images of men are on average y-more
similar o random images of men than random
images of women, and vice-versa.

(Scaling so all values in [-1,1])

*

*

A reasonable idea:

Say have a learning problem P (distribution D
over examples labeled by unknown target f).

Sim fn K:(x,y)—[-1,1] is (g,y)-good for P if at
least a 1-€ fraction of examples x satisfy:

m

y-plKXEy)=t(x)] > E,.p[K(x.y)|ely)#e(x)]+|

How can we use it?

| Just do “average nearest-nbr"

At least a 1-€ fraction of x satisfy:
E,-o[K(x.y)€(y)=€(x)] > E,.5[K(x.y)|€(y)=e(x)J*y

+ Draw S* of O((1/y?)In &) positive examples.
* Draw S of O((1/y?)In1/3?) negative examples
+ Classify x based on which gives better score.
« Hoeffding: for any given "good x", prob of error over
draw of S*,5™ at most &
= So, at most d chance our draw is bad on more than &
fraction of “good x".

+ With prob > 1-5, error rate < € + d.

But not broad enough

These have avg
similarity 0.5 to -,

025 f0 +

30°
30°

* K(x,y)=x-y has good separator but doesn't
satisfy defn. (half of positives are more similar to
negs that to typical pos)

But not broad enough

¢ Idea: would work if we didn't pick y's from top-left.

¢ Broaden to say: OK if 3 large region R s.t. most x are on
average more similar to yeR of same label than to yeR of
other label. (even if don't know R in advance)

*

Broader defn...

Ask that exists a set R of “reasonable” y
(allow probabilistic) s:t. almost all x satisfy

|E KOy E0=6ly), yeR] = B, [K(xy) €0)2y), yeRI+

*

*

Formally, say K is (€',y,1)-good if have hinge-
loss €, and Pr(R,), Pr(R.) > 1.
Thm 1: this is a legitimate way to think
about good kernels:
= If kernel has margin y in implicit space,
then for any 1 is (1,y2,1)-good in this sense.
[BBS'08]

Broader defn...

*

Ask that exists a set R of “reasonable” y
(allow probabilistic) s:t. almost all x satisfy

|E KOy E0=6(y), yeR] = B, [K(xy) €0)2y), yeRI+y
Formally, say K is (€',y,1)-good if have hinge-

loss €, and Pr(R,), Pr(R.) > 1.

Thm 2: even if not a legal kernel, this is
nonetheless sufficient for learning.

» If K is (¢ y.1)-good, £<<€, can learn to error ¢
with O((1/ey?)log(1/eyt)) labeled examples.
[and &(1/(y21)) unlabeled examples]

*

*

*

How to use such a sim fn?

Assume 3R s.1. Pr[R, R.] >T and almost all x
satisfy

| B K I)=ey), yoR] > B, K(xy) €0x)2Lly). yeRoy

s Draw S = {yy,...Yn}, N=1/(Y?T). — coud be unlabeled)
= View as “landmarks"”, use to map new data:
| FO) = IKGaya), - KOyl

= Whp, exists separator of good L; margin in

this space: w=[0,0,1/n,,1/n,,0,0,0,-1/n_,0]
(n.=#y eR, n=#yecR)

= 50, take new set of examples, project o

this space, and run good L, alg (Winnow).

*

*

*

*

Other notes

So, large margin in implicit space = satisfy this

defn (with potentially quadratic penalty in margin).

This def is really an L; style margin, so can also

potentially get improvement too.

= Much like Winnow versus Perceptron.

Can apply to similarity functions that are not legal

kernels. E.g.,

= K(x,y)=1if x,y within distance d, else 0.

= K(sy, ;) = output of arbitrary dynamic-programming alg
applied to sy, s, scaled to [-1,1].

Interesting to consider other natural properties of

similarity functions that motivate other algs.

