15-859(B) Machine Learning Theory

Lecture 11: More on why large margins are good for learning. Kernels and general similarity functions. $L_1 - L_2$ connection.

> Avrim Blum 02/24/10

Basic setting

- Examples are points x in instance space, like Rⁿ. Assume drawn from some probability distrib:
 - Distribution D over x, labeled by target function c.
 - Or distribution P over (x, l)
 - Will call P (or (c,D)) our "learning problem".
- Given labeled training data, want algorithm to do well on new data.

Margins

If data is separable by large margin γ , then that's a good thing. Need sample size only $\tilde{O}(1/\gamma^2)$.

$$|\mathbf{w}\cdot\mathbf{x}|/|\mathbf{x}| \geq \gamma$$
, $|\mathbf{w}|=1$

Some ways to see it:

- 1. The perceptron algorithm does well: makes only $1/\gamma^2$ mistakes.
- 2. Margin bounds: whp all consistent large-margin separators have low true error.
- 3. Really-Simple-Learning + boosting...

4. Random projection... Will do 3 then 4 then 2.

A really simple learning algorithm

Suppose our problem has the property that whp a sufficiently large sample S would be separable by margin $\dot{\gamma}$. Here is another way to see why this is good for learning.

Consider the following simple algorithm...

- 1. Pick a random linear separator.
- 2. See if it is any good.
- 3. If it is a weak-learner (error rate $\leq \frac{1}{2} \gamma/4$), plug into boosting. Else don't. Repeat.

Claim: if data has a large margin separator, there's a reasonable chance a random linear separator will be a weak-learner.

A really simple learning algorithm

Claim: if data has a separator of margin γ , there's a reasonable chance a random linear separator will have error $\leq \frac{1}{2} - \gamma/4$. [all hyperplanes through origin]

Proof: Consider random h s.t. $h \cdot w^* \ge 0$:

- Pick a (positive) example x. Consider the 2-d plane defined by x and target w*.
- $Pr_h(h \cdot x \leq 0 \mid h \cdot w^* \geq 0)$ $\leq (\pi/2 - \gamma)/\pi = \frac{1}{2} - \gamma/\pi$.
- So, $E_h[err(h) | h \cdot w^* \ge 0] \le \frac{1}{2} \gamma / \pi$.
- Since err(h) is bounded between 0 and 1, there must be a reasonable chance of success. **QED**

Johnson-Lindenstrauss Lemma:

Given n points in Rⁿ, if project randomly to R^k, for $k = O(\epsilon^{-2} \log n)$, then whp all pairwise distances preserved up to $1 \pm \varepsilon$ (after scaling by $(n/k)^{1/2}$).

Another way to see why large margin is good

Cleanest proofs: IM98, DG99

JL Lemma, cont

Proof easiest for slightly different projection:

- Pick k vectors $u_1, ..., u_k$ iid from n-diml gaussian.
- Map $p \rightarrow (p \cdot u_1, ..., p \cdot u_k)$.
- What happens to v_{ii} = p_i p_i?
 - Becomes $(v_{ij} \cdot u_1, ..., v_{ij} \cdot u_k)$
 - Each component is iid from 1-diml gaussian, scaled by $|\mathbf{v}_{ij}|$.
 - For concentration on sum of squares, plug in version of Hoeffding for RVs that are squares of gaussians.
- So, whp all lengths apx preserved, and in fact not hard to see that whp all <u>angles</u> are apx preserved too.

Random projection and margins

Natural connection [AV99]:

- + Suppose we have a set S of points in $R^{n},$ separable by margin $\gamma.$
- JL lemma says if project to random k-dimensional space for k=O(γ² log |S|), whp still separable (by margin γ/2).
 - Think of projecting points and target vector w.
 - \blacksquare Angles between p_i and w change by at most $\pm \gamma/2.$
- Could have picked projection before sampling data.
- So, it's really just a k-dimensional problem after all. Do all your learning in this k-diml space.

So, random projections can help us think about why margins are good for learning. [note: this argument does NOT imply uniform convergence in original space]

Uniform convergence bounds for large margins

Claim: Whp, any linear separator that gets training data correct by margin γ has true error $\leq \epsilon$ so long as $|S| \gg (1/\epsilon)[(1/\gamma^2)\log^2(1/(\gamma\epsilon)) + \log(1/\delta)]$

Proof in two steps:

- 1. What is the maximum number of points that can be shattered by separators of margin at least $\gamma ?$ (aka "fatshattering dimension")
 - Ans: $O(1/\gamma^2)$.
 - Proof: corollary to Perceptron mistake bound (why?) (if dimension is d, can force Perceptron to make ≥ d mistakes)
- Now want to use like in VC-dim analysis. Sauer's lemma analog still applies, but there's a complication we'll need to address...

Uniform convergence bounds for large margins

Claim: Whp, any linear separator that gets training data correct by margin γ has true error $\leq \epsilon$ so long as $|S| \gg (1/\epsilon)[(1/\gamma^2)\log^2(1/(\gamma\epsilon)) + \log(1/\delta)]$

Proof in two steps:

- 2. Now want to use like in VC-dim analysis. Sauer's lemma analog still applies, but there's a complication we'll need to address...
 - Draw 2m pts S₁,S₂ from D, \$ to get T₁,T₂ as before.
 - Argue whp no separator gets T_1 correct by margin γ , but makes $\geq \epsilon m$ mistakes on T_2 .
 - \blacksquare To do this, tempting to do union bound over all separators that have no points in S=S_1 \cup S_2 within margin γ (which we can count using Sauer)
 - But this is undercounting...

Uniform convergence bounds for large margins

Claim: Whp, any linear separator that gets training data correct by margin γ has true error $\leq \epsilon$ so long as $|S| \gg (1/\epsilon)[(1/\gamma^2)\log^2(1/(\gamma\epsilon)) + \log(1/\delta)]$

Proof in two steps:

- Now want to use like in VC-dim analysis. Sauer's lemma analog still applies, but there's a complication we'll need to address...
 - Let $h(x) = h \cdot x$, but truncated at $\pm \gamma$.
 - Define dist $(h_1,h_2)=\max_{x\in S}|h_1(x)-h_2(x)|$.
 - Define H to be a "γ/2 cover": for all separators, exists h∈ H within distance γ/2.
 - For h∈H, define "correct" as "correct by margin at least γ/2", else call it a "mistake". Now, run usual union-bound argument on these.
 - Finally, apply bound of [Alon et al] on cover-sizes

OK, now to another way to view kernels...

Kernel function recap

- We have a lot of great algorithms for learning linear separators (perceptron, SVM, ...). But, a lot of time, data is not linearly separable.
 - "Old" answer: use a multi-layer neural network.
 - "New" answer: use a kernel function!
- Many algorithms only interact with the data via dot-products.
 - So, let's just re-define dot-product.
 - E.g., $K(x,y) = (1 + x \cdot y)^d$.
 - K(x,y) = $\phi(x)$ · $\phi(y)$, where $\phi()$ is implicit mapping into an n^d -dimensional space.
 - Algorithm acts as if data is in "\$\phi\$-space". Allows it to produce non-linear curve in original space.
 - Don't have to pay for high dimension if data is linearly separable there by a large margin.

Question: do we need the notion of an implicit space to understand what makes a kernel helpful for learning?

Can we develop a more intuitive theory?

- Match intuition that you are looking for a good measure of similarity for the problem at hand?
- Get the power of the standard theory with less of "something for nothing" feel to it?

And remove even need for existence of Φ ?

Can we develop a more intuitive theory?

What would we intuitively want in a good measure of similarity?

A reasonable idea:

- Say have a learning problem P (distribution D over examples labeled by unknown target f).
- Sim fn K:($(,) \rightarrow [-1,1]$) is good for P if: most x are on average more similar to random pts of their own label than to random pts of the other label, by some gap γ .

E.g., most images of men are on average γ-more similar to random images of men than random images of women, and vice-versa.

(Scaling so all values in [-1,1])

A reasonable idea:

- Say have a learning problem P (distribution D over examples labeled by unknown target f).
- Sim fn K: $(x,y) \rightarrow [-1,1]$ is (ϵ,γ) -good for P if at least a 1- ϵ fraction of examples x satisfy:

 $\mathsf{E}_{\mathsf{y} \sim \mathsf{D}}[\mathsf{K}(\mathsf{x}, \mathsf{y}) | \ell(\mathsf{y}) \text{=} \ell(\mathsf{x})] \geq \mathsf{E}_{\mathsf{y} \sim \mathsf{D}}[\mathsf{K}(\mathsf{x}, \mathsf{y}) | \ell(\mathsf{y}) \text{\neq} \ell(\mathsf{x})] \text{+} \gamma$

E.g., most images of men are on average γ-more similar to random images of men than random images of women, and vice-versa.

(Scaling so all values in [-1,1])

A reasonable idea:

- Say have a learning problem P (distribution D over examples labeled by unknown target f).
- ♦ Sim fn K:(x,y) \rightarrow [-1,1] is (ε,γ)-good for P if at least a 1-ε fraction of examples x satisfy:

 $\mathsf{E}_{\mathsf{y} \sim \mathsf{D}}[\mathsf{K}(\mathsf{x}, \mathsf{y}) | \ell(\mathsf{y}) \text{=} \ell(\mathsf{x})] \geq \mathsf{E}_{\mathsf{y} \sim \mathsf{D}}[\mathsf{K}(\mathsf{x}, \mathsf{y}) | \ell(\mathsf{y}) \text{\neq} \ell(\mathsf{x})] \text{+} \gamma$

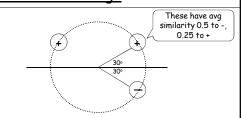
How can we use it?

Just do "average nearest-nbr"

At least a 1- ϵ fraction of x satisfy: $\mathsf{E}_{\mathsf{y}\sim\mathsf{D}}[\mathsf{K}(\mathsf{x},\mathsf{y})|\ell(\mathsf{y})=\ell(\mathsf{x})] \geq \mathsf{E}_{\mathsf{y}\sim\mathsf{D}}[\mathsf{K}(\mathsf{x},\mathsf{y})|\ell(\mathsf{y})\neq\ell(\mathsf{x})]+\gamma$

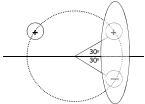
- Draw S+ of $O((1/\gamma^2)\ln 1/\delta^2)$ positive examples.
- Draw 5- of $O((1/\gamma^2)\ln 1/\delta^2)$ negative examples
- Classify x based on which gives better score.
 - Hoeffding: for any given "good x", prob of error over draw of S⁺.S⁻ at most δ².
 - = So, at most δ chance our draw is bad on more than δ fraction of "good x".
- With prob \geq 1-3, error rate $\leq \epsilon$ + 3.

But not broad enough



 K(x,y)=x·y has good separator but doesn't satisfy defn. (half of positives are more similar to negs that to typical pos)

But not broad enough



- Idea: would work if we didn't pick y's from top-left.
- Broaden to say: OK if ∃ large region R s.t. most x are on average more similar to y∈R of same label than to y∈R of other label. (even if don't know R in advance)

Broader defn...

Ask that exists a set R of "reasonable" y
 (allow probabilistic) s.t. almost all x satisfy

 $\mathsf{E}_{\mathsf{y}}[\mathsf{K}(\mathsf{x},\mathsf{y})|\ell(\mathsf{x})\text{=}\ell(\mathsf{y}),\mathsf{y}\text{\in}\mathsf{R}] \geq \mathsf{E}_{\mathsf{y}}[\mathsf{K}(\mathsf{x},\mathsf{y})|\ell(\mathsf{x})\text{\neq}\ell(\mathsf{y}),\mathsf{y}\text{\in}\mathsf{R}]\text{+}\gamma$

- Formally, say K is $(\epsilon', \gamma, \tau)$ -good if have hingeloss ϵ' , and $Pr(R_+)$, $Pr(R_-) \geq \tau$.
- Thm 1: this is a legitimate way to think about good kernels:
 - If kernel has margin γ in implicit space, then for any τ is (τ, γ^2, τ) -good in this sense. [BBS'08]

Broader defn...

Ask that exists a set R of "reasonable" y
 (allow probabilistic) s.t. almost all x satisfy

 $\left| \mathsf{E}_{\mathsf{y}} [\mathsf{K}(\mathsf{x}, \mathsf{y}) | \ell(\mathsf{x}) = \ell(\mathsf{y}), \, \mathsf{y} \in \mathsf{R} \right] \ge \mathsf{E}_{\mathsf{y}} [\mathsf{K}(\mathsf{x}, \mathsf{y}) | \ell(\mathsf{x}) \neq \ell(\mathsf{y}), \, \mathsf{y} \in \mathsf{R}] + \gamma$

- Formally, say K is $(\epsilon', \gamma, \tau)$ -good if have hingeloss ϵ' , and $Pr(R_+)$, $Pr(R_-) \geq \tau$.
- Thm 2: even if not a legal kernel, this is nonetheless sufficient for learning.
 - If K is $(\epsilon', \gamma, \tau)$ -good, $\epsilon' < \epsilon$, can learn to error ϵ with $O((1/\epsilon \gamma^2) \log(1/\epsilon \gamma \tau))$ labeled examples. [and $\tilde{O}(1/(\gamma^2 \tau))$ unlabeled examples]

How to use such a sim fn?

- - Draw S = $\{y_1,...,y_n\}$, $n\approx 1/(\gamma^2\tau)$. could be unlabeled
 - View as "landmarks", use to map new data: $F(x) = [K(x,y_1), ..., K(x,y_n)].$
 - Whp, exists separator of good L₁ margin in this space: w=[0,0,1/n,1/n,0,0,0,-1/n,0] (n, = #y₁ ∈ R, n = #y ∈ R.)
 - So, take new set of examples, project to this space, and run good L₁ alg (Winnow).

Other notes

- So, large margin in implicit space ⇒ satisfy this defn (with potentially quadratic penalty in margin).
- This def is really an L₁ style margin, so can also potentially get improvement too.
 - Much like Winnow versus Perceptron.
- Can apply to similarity functions that are not legal kernels. E.g.,
 - K(x,y)=1 if x,y within distance d, else 0.
 - K(s₁, s₂) = output of arbitrary dynamic-programming alg applied to s₁, s₂, scaled to [-1,1].
- Interesting to consider other natural properties of similarity functions that motivate other algs.