15-859(B) Machine Learning Theory

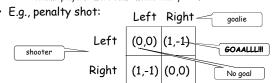
Game Theory
Avrim Blum

Plan for Today

- · 2-player zero-sum games
- · 2-player general-sum games
- Many-player games with structure: congestion games / exact potential games
 - Best-response dynamics
 - Price of anarchy, Price of stability

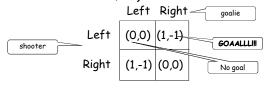
2-Player Zero-Sum games

- Two players R and C. Zero-sum means that what's good for one is bad for the other.
- Game defined by matrix with a row for each of R's options and a column for each of C's options.
 Matrix tells who wins how much.
 - an entry (x,y) means: x = payoff to row player, y = payoff to column player. "Zero sum" means that y = -x.



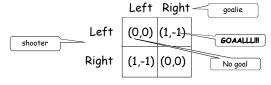
Game Theory terminolgy

- Rows and columns are called pure strategies.
- · Randomized algs called mixed strategies.
- "Zero sum" means that game is purely competitive. (x,y) satisfies x+y=0. (Game doesn't have to be fair).



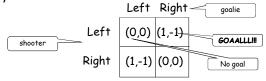
Minimax-optimal strategies

- Minimax optimal strategy is a (randomized) strategy that has the best guarantee on its expected gain, over choices of the opponent. [maximizes the minimum]
- I.e., the thing to play if your opponent knows you well.



Minimax-optimal strategies

- Can solve for minimax-optimal strategies using Linear programming
- No-regret strategies will do nearly as well or better.
- I.e., the thing to play if your opponent knows you well.



Minimax Theorem (von Neumann 1928)

- Every 2-player zero-sum game has a unique value V.
- Minimax optimal strategy for R guarantees R's expected gain at least V.
- Minimax optimal strategy for C guarantees C's expected loss at most V.

Existence of no-regret strategies gives one way of proving the theorem.

Can use notion of minimax optimality to explain bluffing in poker

Simplified Poker (Kuhn 1950)

- Two players A and B.
- Deck of 3 cards: 1,2,3.
- · Players ante \$1.
- · Each player gets one card.
- · A goes first. Can bet \$1 or pass.
 - If A bets, B can call or fold.
 - If A passes, B can bet \$1 or pass.
 - If B bets, A can call or fold.
- · High card wins (if no folding). Max pot \$2.

- Two players A and B. 3 cards: 1,2,3.
- Players ante \$1. Each player gets one card.
- · A goes first. Can bet \$1 or pass.
 - If A bets, B can call or fold.
 - If A passes, B can bet \$1 or pass.
 - If B bets, A can call or fold.

Writing as a Matrix Game

- · For a given card, A can decide to
 - Pass but fold if B bets. [PassFold]
 - Pass but call if B bets. [PassCall]
 - Bet. [Bet]
- · Similar set of choices for B.

Can look at all strategies as a big matrix...

[FP,FP,CB] [FP,CP,CB] [FB,FP,CB] [FB,CP,CB]

1	[1 . , . , . ,]	[1 1 ,01 ,00]		. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
[PF,PF,PC]	0	0	-1/6	-1/6
[PF,PF,B]	0	1/6	-1/3	-1/6
[PF,PC,PC]	1 //	0	0	1/6
F ' ' -	_1/6	-1/6	1/6	1/6
[PF,PC,B]	-1/0	0	0	1/6
[B,PF,PC]	1,0	-1/3	0	-1/2
[B,PF,B]	1/6	-1/6	-1/6	-1/2
[B,PC,PC]	0	-1/2	1/3	-1/6
[B,PC,B]	0	-1/3	1/6	-1/6

And the minimax optimal strategies are...

- If hold 1, then 5/6 PassFold and 1/6 Bet.
- If hold 2, then $\frac{1}{2}$ PassFold and $\frac{1}{2}$ PassCall.
- If hold 3, then $\frac{1}{2}$ PassCall and $\frac{1}{2}$ Bet. Has both bluffing and underbidding...

• R:

A:

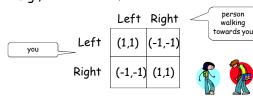
- If hold 1, then 2/3 FoldPass and 1/3 FoldBet.
- If hold 2, then 2/3 FoldPass and 1/3 CallPass.
- If hold 3, then CallBet

Minimax value of game is -1/18 to A.

Now, to General-Sum games...

General-sum games

- In general-sum games, can get win-win and lose-lose situations.
- E.g., "what side of sidewalk to walk on?":



<u>General-sum games</u>

- In general-sum games, can get win-win and lose-lose situations.
- E.g., "which movie should we go to?":

Т	itans	Date nigh	
Titans	(8,2)	(0,0)	
Date night	(0,0)	(2,8)	

١t

No longer a unique "value" to the game.

Nash Equilibrium

- A Nash Equilibrium is a stable pair of strategies (could be randomized).
- Stable means that neither player has incentive to deviate on their own.
- · E.g., "what side of sidewalk to walk on":

	Lett	Right
Left	(1,1)	(-1,-1)
Right	(-1,-1)	(1,1)

NE are: both left, both right, or both 50/50.

Uses

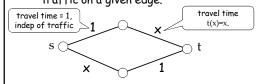
- Economists use games and equilibria as models of interaction.
- E.g., pollution / prisoner's dilemma:
 - (imagine pollution controls cost \$4 but improve everyone's environment by \$3)

don't pollute pollute don't pollute (2,2) (-1,3) pollute (3,-1) (0,0)

Need to add extra incentives to get good overall behavior.

NE can do strange things

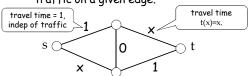
- · Braess paradox:
 - Road network, traffic going from s to t.
 - travel time as function of fraction x of traffic on a given edge.



Fine. NE is 50/50. Travel time = 1.5

NE can do strange things

- · Braess paradox:
 - Road network, traffic going from s to t.
 - travel time as function of fraction x of traffic on a given edge.



Add new superhighway. NE: everyone uses zig-zag path. Travel time = 2.

Existence of NE

- Nash (1950) proved: any general-sum game must have at least one such equilibrium.
 - Might require mixed strategies.
- · This also yields minimax thm as a corollary.
 - Pick some NE and let V = value to row player in that equilibrium.
 - Since it's a NE, neither player can do better even knowing the (randomized) strategy their opponent is playing.
 - So, they're each playing minimax optimal.

Existence of NE in 2-player games

- · Proof will be non-constructive.
- Unlike case of zero-sum games, we do not know any polynomial-time algorithm for finding Nash Equilibria in n × n general-sum games. [known to be "PPAD-hard"]
- Notation:
 - Assume an nxn matrix.
 - Use $(p_1,...,p_n)$ to denote mixed strategy for row player, and $(q_1,...,q_n)$ to denote mixed strategy for column player.

Proof

- We'll start with Brouwer's fixed point theorem.
 - Let S be a compact convex region in R^n and let $f\!:\!S\to S$ be a continuous function.
 - Then there must exist $x \in S$ such that f(x)=x.
 - x is called a "fixed point" of f.
- · Simple case: S is the interval [0,1].
- · We will care about:
 - S = {(p,q): p,q are legal probability distributions on 1,...,n}. I.e., S = $simplex_n \times simplex_n$

Proof (cont)

- $S = \{(p,q): p,q \text{ are mixed strategies}\}.$
- Want to define f(p,q) = (p',q') such that:
 - f is continuous. This means that changing p or q a little bit shouldn't cause p' or q' to change a lot.
 - Any fixed point of f is a Nash Equilibrium.
- Then Brouwer will imply existence of NE.

Try #1

- What about f(p,q) = (p',q') where p' is best response to q, and q' is best response to p?
- · Problem: not necessarily well-defined:
 - E.g., penalty shot: if p = (0.5,0.5) then q' could be anything.

	Left	Right
Left	(0,0)	(1,-1)
Right	(1,-1)	(0,0)

<u>Try #1</u>

- What about f(p,q) = (p',q') where p' is best response to q, and q' is best response to p?
- · Problem: also not continuous:
 - E.g., if p = (0.51, 0.49) then q' = (1,0). If p = (0.49, 0.51) then q' = (0,1).

	Left	Right
Left	(0,0)	(1,-1)
Right	(1,-1)	(0,0)

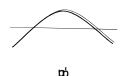
Instead we will use...

- f(p,q) = (p',q') such that:
 - q' maximizes [(expected gain wrt p) $||q-q'||^2$]
 - p' maximizes [(expected gain wrt q) $||p-p'||^2$]

Note: quadratic + linear = quadratic.

Instead we will use...

- f(p,q) = (p',q') such that:
 - q' maximizes [(expected gain wrt p) $||q-q'||^2$]
 - p' maximizes [(expected gain wrt q) $||p-p'||^2$]



Note: quadratic + linear = quadratic.

Instead we will use...

- f(p,q) = (p',q') such that:
 - q' maximizes [(expected gain wrt p) $||q-q'||^2$]
 - p' maximizes [(expected gain wrt q) $||p-p'||^2$]
- f is well-defined and continuous since quadratic has unique maximum and small change to p,q only moves this a little.
- Also fixed point = NE. (even if tiny incentive to move, will move little bit).
- · So, that's it!

Internal regret and correlated equilibria

What if all players minimize regret?

- In zero-sum games, empirical frequencies quickly approaches minimax optimal.
- In general-sum games, does behavior quickly (or at all) approach a Nash equilibrium? (after all, a Nash Eq is exactly a set of distributions that are no-regret wrt each other).
- Well, unfortunately, no.
- (Even if it did, as we saw last time, you might not want to minimize regret in order to get other players to do what you want - e.g., ultimatum game)

A bad example for general-sum games

- Augmented Shapley game from [Z04]: "RPSF"
 - First 3 rows/cols are Shapley game (rock / paper / scissors but if both do same action then both lose).
 - 4th action "play foosball" has slight negative if other player is still doing r/p/s but positive if other player does 4th action too.
 - NR algs will cycle among first 3 and have no regret, but do worse than only Nash Equilibrium of both playing foosball.
- We didn't really expect this to work given how hard NE can be to find...

What can we say?

- If algorithms minimize "internal" or "swap" regret, then empirical distribution of play approaches correlated equilibrium.
 - Foster & Vohra, Hart & Mas-Colell,...
 - Though doesn't imply play is stabilizing.

What are internal regret and correlated equilibria?

More general forms of regret

- "best expert" or "external" regret:
 - Given n strategies. Compete with best of them in hindsight.
- 2. "sleeping expert" or "regret with time-intervals":
 - Given n strategies, k properties. Let S_i be set of days satisfying property i (might overlap). Want to simultaneously achieve low regret over each S_i.
- "internal" or "swap" regret: like (2), except that S_i = set of days in which we chose strategy i.

Internal/swap-regret

- E.g., each day we pick one stock to buy shares in.
 - Don't want to have regret of the form "every time I bought IBM, I should have bought Microsoft instead".
- Formally, regret is wrt optimal function f:{1,...,N}→{1,...,N} such that every time you played action j, it plays f(j).
- Motivation: connection to correlated equilibria.

Internal/swap-regret

"Correlated equilibrium"

- Distribution over entries in matrix, such that if a trusted party chooses one at random and tells you your part, you have no incentive to deviate.
- E.g., Shapley game

iic.	R	Р	5
R	-1,-1	-1,1	1,-1
Р	1,-1	-1,-1	-1,1
5	-1,1	1,-1	-1,-1

<u>Internal/swap-regret</u>

- If all parties run a low internal/swap regret algorithm, then empirical distribution of play is an apx correlated equilibrium.
 - Correlator chooses random time t ∈ {1,2,...,T}.
 Tells each player to play the action j they played in time t (but does not reveal value of t).
 - Expected incentive to deviate:∑_jPr(j)(Regret|j)
 = swap-regret of algorithm
 - So, this says that correlated equilibria are a natural thing to see in multi-agent systems where individuals are optimizing for themselves

Internal/swap-regret, contd

Algorithms for achieving low regret of this form:

- Foster & Vohra, Hart & Mas-Colell, Fudenberg & Levine.
- Can also convert any "best expert" algorithm into one achieving low swap regret.
- Unfortunately, time to achieve low regret is linear in n rather than log(n)....

Internal/swap-regret, contd

Can convert any "best expert" algorithm A into one achieving low swap regret. Idea:

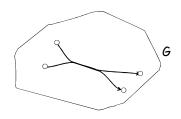
- Instantiate one copy A_i responsible for expected regret over times we play i.
- Each time step, if we play $p=(p_1,...,p_n)$ and get cost vector $c=(c_1,...,c_n)$, then A_i gets cost-vector p_ic .
- If each A_i proposed to play q_i, so all together we have matrix Q, then define p = pQ.
- Allows us to view p_i as prob we chose action i or prob we chose algorithm A_i.

Congestion games

- Many multi-agent interactions have structure. One nice class: Congestion Games
- · Always have a pure-strategy equilibrium.
- Have a potential function s.t. whenever a player switches, potential drops by exactly that player's improvement.
 - So, best-response dynamics always gives an equilibrium.
- Let's start with an example.

Fair cost-sharing

Fair cost-sharing: n players in weighted directed graph G. Player i wants to get from \mathbf{s}_i to \mathbf{t}_i , and they share cost of edges they use with others.



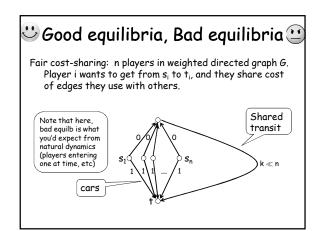
[∪]Good equilibria, Bad equilibria <u>∪</u>

Fair cost-sharing: n players in weighted directed graph G. Player i wants to get from \mathbf{s}_i to \mathbf{t}_i , and they share cost of edges they use with others.

Good equilibrium: all use edge of cost 1. (cost 1/n per player)

Bad equilibrium: all use edge of cost n. (cost 1 per player)

Cost(bad equilib) = n Cost(good equilib)



Price of Anarchy and Price of Stability

- Price of Anarchy: ratio of worst equilibrium to social optimum. (worst-case over games in class)
 - We saw for cost-sharing PoA = $\Omega(n)$. Also O(n).
- Price of Stability: ratio of best equilibrium to social optimum. (worst-case over games in class)
 - For cost-sharing, PoS = $\Theta(\log n)$.
- Guarantees that best-response dynamics will reach Nash equilibrium

Potential functions and PoS For cost-sharing, PoS = $O(\log n)$: • Given state S, let n_e = # players on edge e. Cost(S) = • Define potential $\Phi(S)$ = • So, $cost(S) \le \Phi(S) \le \log(n) \times cost(S)$. • Now consider best-response dynamics starting from OPT. Φ can only decrease. So, if could tell people to play OPT, and everyone went along, then BR dynamics would lead to good state.

Congestion games more generally

Game defined by n players and m resources.

- Each player i choses a set of resources (e.g., a path) from collection S_i of allowable sets of resources (e.g., paths from s_i to t_i).
- Cost of a resource j is a function $f_j(n_j)$ of the number n_j of players using it.
- Cost incurred by player i is the sum, over all resources being used, of the cost of the resource.
- · Generic potential function:
- Best-response dynamics may take a long time to reach equil, but if gap between ⊕ and cost is small, can get to apx-equilib fast.