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Theory

Game Theory

Avrim Blum

Plan for Today

+ 2-player zero-sum games

+ 2-player general-sum games

* Many-player games with structure:
congestion games / exact potential games
- Best-response dynamics
- Price of anarchy, Price of stability

2-Player Zero-Sum games

+ Two players R and C. Zero-sum means that what's
good for one is bad for the other.

+ Game defined by matrix with a row for each of R's
options and a column for each of C's options.
Matrix tells who wins how much.

* anentry (x,y) means: x = payoff o row player, y = payoff to
column player. "Zero sum" means thaty = -x.

+ E.g., penalty shot: Left R@ﬁm
et 09 A g
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Game Theory terminolqgy

* Rows and columns are called pure strategies.

+ Randomized algs called mixed strategies.

+ "Zero sum" means that game is purely

competitive. (x,y) satisfies x+y=0. (Game
doesn't have to be fair).

Left Right — " godic |
Left 1 (0.0) (-B—

nghT (1,-1) (0,0) No goal

Minimax-optimal strategies

* Minimax optimal strategy is a (randomized)
strategy that has the best guarantee on its
expected gain, over choices of the opponent.
[maximizes the minimum]

* Le., the thing to play if your opponent knows

you well.
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Minimax-optimal strategies

+ Can solve for minimax-optimal strategies

using Linear programming

* No-regret strategies will do nearly as well or

better.

* Le., the thing to play if your opponent knows

you well.
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Minimax Theorem (von Neumann 1928)

+ Every 2-player zero-sum game has a unique
value V.

* Minimax optimal strategy for R guarantees
R's expected gain at least V.

* Minimax optimal strategy for C guarantees
C's expected loss at most V.

Existence of no-regret strategies gives one

way of proving the theorem.

Can use notion of minimax
optimality to explain bluffing
in poker

Simplified Poker (Kuhn 1950)

* Two players A and B.
- Deck of 3 cards: 1,2,3.
- Players ante $1.
+ Each player gets one card.
- A goes first. Can bet $1 or pass.
- If A bets, B can call or fold.
- If A passes, B can bet $1 or pass.
-If B bets, A can call or fold.
- High card wins (if no folding). Max pot $2.

+ Two players A and B. 3 cards: 1,2,3.
- Players ante $1. Each player gets one card.
- A goes first. Can bet $1 or pass.
+ If A bets, B can call or fold.
- If A passes, B can bet $1 or pass.
- If B bets, A can call or fold.

Writing as a Matrix Game

+ For a given card, A can decide to
* Pass but fold if B bets. [PassFold]
+ Pass but call if B bets. [PassCall]
* Bet. [Bet]

+ Similar set of choices for B.

Can look at all strategies as a

big matrix...
[FP,FP.CB] [FP.CP.CB] [FB,FP,CB] [FB,CP,CB]

[PF PF,PC] 0 0 -1/6 -1/6
[PF PF,B] 0 1/6 -1/3 -1/6
! -1/6 0 0 1/6
[PP.PCPC] 176 -1/6 1/6 1/6
[PFPCBY 1/ 0 0 1/6
[BPFPCT 176 173 0 -1/2
[BPFB] 176 -1/6 -1/6 -1/2
[B,PCPC] 0 -1/2 1/3 -1/6
[B,PC,B] 0 -1/3 1/6 -1/6

. B:

And the minimax optimal

.- A strateqgies are...

- If hold 1, then 5/6 PassFold and 1/6 Bet.
- If hold 2, then ¥ PassFold and % PassCall.
- If hold 3, then ¥ PassCall and % Bet.

Has both bluffing and underbidding...

- If hold 1, then 2/3 FoldPass and 1/3 FoldBet.
- If hold 2, then 2/3 FoldPass and 1/3 CallPass.
- If hold 3, then CallBet

Minimax value of game is -1/18 fo A.




Now, to General-Sum games...

General-sum games

* In general-sum games, can get win-win
and lose-lose situations.

+ E.g., "what side of sidewalk to walk on?":
Left Right person

walking
towards you
Left | (1,1) |(-1-1
b i
Right | (-1-1) (.1 (§

=&

General-sum games

* In general-sum games, can get win-win
and lose-lose situations.

- E.g., "which movie should we go t0?":
Titans  Date night

Titans | (8,2)|(0,0)

Date night | (0,0)|(2,8)

No longer a unique “value” to the game.

Nash Equilibrium

* A Nash Equilibrium is a stable pair of

strategies (could be randomized).

+ Stable means that neither player has

incentive to deviate on their own.

- E.g., "what side of sidewalk to walk on":

Left Right

Left | (1,1) |(-1,-1)

Right | (-1,-1) (1,1)

NE are: both left, both right, or both 50/50.

Uses

+ Economists use games and equilibria as
models of interaction.

+ E.g., pollution / prisoner's dilemma:

- (imagine pollution controls cost $4 but improve
everyone's environment by $3)

don't pollute pollute

don't pollute | (2,2)((-1,3)

pollute |(3,-1)((0,0)

Need to add extra incentives to get good overall behavior.

travel time = 1,
indep of traffic 1

NE can do strange things
* Braess paradox:
- Road network, traffic going from s to t.

- travel time as function of fraction x of
traffic on a given edge.

t(x)=x.
X

Fine. NE is 50/50. Travel time = 1.5




NE can do strange things
* Braess paradox:
- Road network, traffic going from s to t.

- travel time as function of fraction x of
traffic on a given edge.

indep of traffic 1 x t(X)=x.

Add new superhighway. NE: everyone
uses zig-zag path. Travel time = 2.

Existence of NE

* Nash (1950) proved: any general-sum game
must have at least one such equilibrium.

- Might require mixed strategies.

* This also yields minimax thm as a corollary.

- Pick some NE and let V = value to row player in
that equilibrium.

- Since it's a NE, neither player can do better
even knowing the (randomized) strategy their
opponent is playing.

- S0, they're each playing minimax optimal.

Existence of NE in 2-player games

* Proof will be non-constructive.

+ Unlike case of zero-sum games, we do not
know any polynomial-time algorithm for
finding Nash Equilibria in n x n general-sum
games. [known to be "PPAD-hard"]

* Notation:

- Assume an nxn matrix.
- Use (py,...,p) To denote mixed strategy for row

player, and (g;.....g,) to denote mixed strategy
for column player.

Proof

+ We'll start with Brouwer's fixed point

theorem.

- Let S be a compact convex region in R" and let
f:S — S be a continuous function.

- Then there must exist x € S such that f(x)=x.

- x is called a “fixed point" of f.

+ Simple case: S is the interval [0,1].
+ We will care about:

- 5={(p.9): p.q are legal probability distributions
onl,.n}. ILe, S= simplex, x simplex,

Proof (cont)

* S ={(p.q): p.g are mixed strategies}.
+ Want to define f(p,q) = (p'.q") such that:

- f is continuous. This means that changing p
or q alittle bit shouldn't cause p’ or q' to
change a lot.

- Any fixed point of f is a Nash Equilibrium.
+ Then Brouwer will imply existence of NE.

Try #1

+ What about f(p,q) = (p'.q") where p' is best

response to q, and q' is best response to p?

* Problem: not necessarily well-defined:

- E.g., penalty shot: if p = (0.5,0.5) then q' could
be anything.

Left Right
Left | (0,0) (1-1)

Right | (1,-1)|(0,0)




Try #1

+ What about f(p,q) = (p'.q") where p' is best
response to q, and q' is best response to p?
* Problem: also not continuous:

-Eg., ifp=(051,0.49)thenq =(10). Ifp=
(0.49,0.51) then q' = (0,1).
Left Right

Left | (0,0)|(1.-1)

Right | (1,-1)|(0,0)

Instead we will use...

* f(p.q) = (p'.q) such that:
- q maximizes [(expected gain wrt p) - [1g-q'| |2]
- p' maximizes [(expected gain wrt q) - |[p-p'l |2]

AN

p_p

Note: quadratic + linear = quadratic.

Instead we will use...

* f(p.9) = (p'.q') such that:
- ¢ maximizes [(expected gain wrt p) - ||g-q'[ 2]
- p' maximizes [(expected gain wrt q) - ||p-p'l 2]

N

2]

Note: quadratic + linear = quadratic.

Instead we will use...

* f(p.9) = (p'.q") such that:
- ¢ maximizes [(expected gainwrt p) - |19-q'| 2]
- p' maximizes [(expected gain wrt q) - ||p-p'l 2]

+ f is well-defined and continuous since
quadratic has unique maximum and small
change to p,q only moves this a little.

+ Also fixed point = NE. (even if tiny
incentive to move, will move little bit).

+ So, that's it!

Internal regret and
correlated equilibria

What if all players minimize regret?

+ Well, unfortunately, no.
+ (Evenif it did, as we saw last time, you might not

+ In zero-sum games, empirical frequencies quickly
approaches minimax optimal.

+ In general-sum games, does behavior quickly (or
at all) approach a Nash equilibrium? (after all, a
Nash Eq is exactly a set of distributions that
are no-regret wrt each other).

want to minimize regret in order to get other
players to do what you want - e.g., ultimatum
game)




A bad example for general-sum games

+ Augmented Shapley game from [Z04]: "RPSF"

= First 3 rows/cols are Shapley game (rock / paper /
scissors but if both do same action then both lose).

= 4t action "play foosball” has slight negative if other
player is still doing r/p/s but positive if other player
does 4th action too.

= NR algs will cycle among first 3 and have no regret,
but do worse than only Nash Equilibrium of both
playing foosball.

+ We didn't really expect this to work given how
hard NE can be to find...

What canwe say?

* If algorithms minimize “internal” or “swap”
regret, then empirical distribution of play
approaches correlated equilibrium.

» Foster & Vohra, Hart & Mas-Colell,...
= Though doesn't imply play is stabilizing.

What are internal regret and
correlated equilibria?

More general forms of regret

1. "best expert” or “external” regret:
- Givenn strategies. Compete with best of them in
hindsight.
2. "sleeping expert” or "regret with time-intervals":
- Givenn strategies, k properties. Let S; be set of days
satisfying property i (might overlap). Want to
simultaneously achieve low regret over each S;.
3. ‘internal” or "swap” regret: like (2), except that
S, = set of days in which we chose strategy i.

Internal/swap-regret

- E.g., each day we pick one stock to buy
shares in.

- Don't want to have regret of the form “every
time I bought IBM, I should have bought
Microsoft instead"”.

+  Formally, regret is wrt optimal function
f{1,..N}—={1,.. N} such that every time you
played action j, it plays f(j).

+  Motivation: connection fo correlated
equilibria.

Internal/swap-regret

"“Correlated equilibrium”

- Distribution over entries in matrix, such that if
a trusted party chooses one at random and tells
you your part, you have no incentive to deviate.

- E.g., Shapley game.

R P S

R [-1-1-11|1-1
1-1-1-1-11

’

s [-11(1-1-1,-1

Internal/swap-regret

+ If all parties run a low internal/swap regret
algorithm, then empirical distribution of
play is an apx correlated equilibrium.

- Correlator chooses random time t € {1,2,...,T}.
Tells each player to play the action j they
played in time t (but does not reveal value of t).

- Expected incentive fo deviate:Pr(j)(Regret|;)
= swap-regret of algorithm

- So, this says that correlated equilibria are a
natural thing to see in multi-agent systems
where individuals are optimizing for themselves




Internal/swap-regret, contd

Algorithms for achieving low regret of this
form:
- Foster & Vohra, Hart & Mas-Colell, Fudenberg
& Levine.
- Can also convert any "best expert” algorithm
into one achieving low swap regreft.

- Unfortunately, time to achieve low regret is
linear in n rather than log(n)....

Internal/swap-regret, contd

Can convert any "best expert” algorithm A into one
achieving low swap regret. Idea:

- Instantiate one copy A, responsible for
expected regret over times we play i.

- Each time step, if we play p=(p;.....p,) and get
cost vector c=(cy,...,c,), then A, gets cost-vector
pic.

- If each A, proposed to play g;, so all fogether
we have matrix Q, then define p = pQ.

- Allows us to view p; as prob we chose action i or
prob we chose algorithm A;.

Congestion games

* Many multi-agent interactions have
structure. One nice class: Congestion Games

+ Always have a pure-strategy equilibrium.

* Have a potential function s.t. whenever a
player switches, potential drops by exactly
that player's improvement.

- S0, best-response dynamics always gives an
equilibrium.

* Let's start with an example.

Fair cost-sharing

Fair cost-sharing: n players in weighted directed graph 6.
Player i wants to get from s; to t;, and they share cost
of edges they use with others.

> Good equilibria, Bad equilibria &)

Fair cost-sharing: n players in weighted directed graph 6.
Player i wants to get from s; to t;, and they share cost
of edges they use with others.

s Good equilibrium: all use edge of cost 1.
(cost 1/n per player)

Bad equilibrium: all use edge of cost n.
(cost 1 per player)

n 1

Cost(bad equilib) = n-Cost(good equilib)

¥ Good equilibria, Bad equilibria &)

Fair cost-sharing: n players in weighted directed graph 6.
Player i wants to get from s; to t;, and they share cost
of edges they use with others.

Note that here, Shargd
bad equilb is what transit
you'd expect from

natural dynamics
(players entering
onhe at time, efc) k<n




Price of Anarchy and Price of Stability

* Price of Anarchy: ratio of worst equilibrium to
social optimum. (worst-case over games in class)
- We saw for cost-sharing PoA = Q(n). Also O(n).

* Price of Stability: ratio of best equilibrium to
social optimum. (worst-case over games in class)
- For cost-sharing, PoS = ©(log n).

+ Exact Potential function: Function @ s.t. if player
moves, potential changes by exactly as much as
cost of player who moved.

- Guarantees that best-response dynamics will reach
Nash equilibrium

Potential functions and PoS
For cost-sharing, PoS = O(log n):
Givenstate S, let n, = # players on edge e. Cost(S) =
+ Define potential #(S) =

+ So, cost(S) < #(S) < log(n) x cost(S).
+ Now consider best-response dynamics starting
from OPT. & can only decrease.

So, if could tell
people to play OPT,
and everyone went

along, then BR
dynamics would
lead to good state.

Shared
transit

k<n

Congestion games more generally

Game defined by n players and m resources.
Each player i choses a set of resources (e.g., a path) from
collection S; of allowable sets of resources (e.g., paths
froms; to Ti).

+ Cost of aresource j is a function fi(n;) of the number n;
of players using it.

+ Cost incurred by player i is the sum, over all resources
being used, of the cost of the resource.

+ Generic potential function:

+ Best-response dynamics may take a long time to reach
equil, but if gap between & and cost is small, can get to
apx-equilib fast.




