15-859(B) Machine Learning Theory

Lecture 1: intro, basic models and issues

Avrim Blum 01/18/12

http://www.cs.cmu.edu/~avrim/ML12/

- Course web page. Textbook covers about 1/2 of course material.
- 6 hwk assignments. Exercises/problems.
- Small project: explore a theoretical question, try some experiments, or read a paper and explain the idea. Short writeup and possibly presentation. Small groups ok.
- Take-home exam (worth roughly 2 hwks).
- "volunteers" for hwk grading.

OK, let's get to it ...

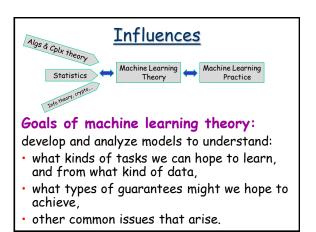
Machine learning can be used to ...

- recognize speech, faces,
- play games, steer cars,
- adapt programs to users,
- classify documents, protein sequences,...

Goals of machine learning theory:

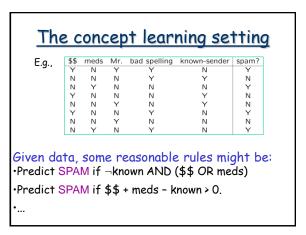
develop and analyze models to understand:

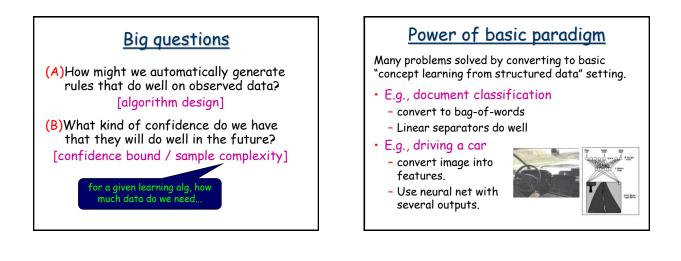
- what kinds of tasks we can hope to learn, and from what kind of data,
- what types of guarantees might we hope to achieve,
- other common issues that arise.

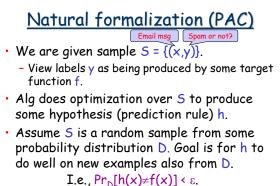


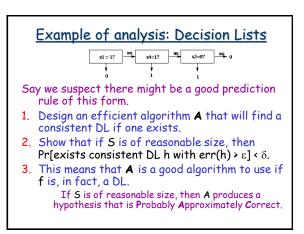
<u>A typical setting</u>

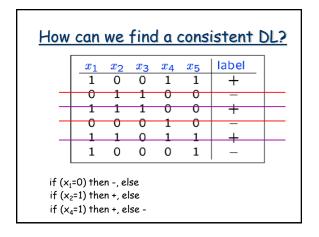
- Imagine you want a computer program to help you decide which email messages are spam and which are important.
- Might represent each message by n features. (e.g., return address, keywords, spelling, etc.)
- Take sample S of data, labeled according to whether they were/weren't spam.
- Goal of algorithm is to use data seen so far produce good prediction rule (a "hypothesis") h(x) for future data.

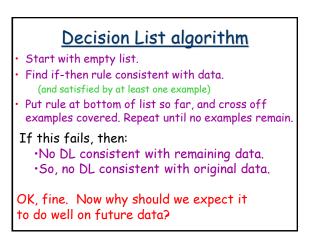






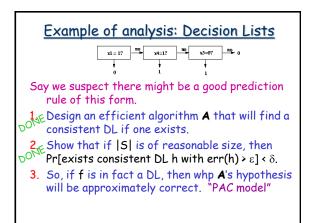






Confidence/sample-complexity

- Consider some DL h with err(h)>ε, that we're worried might fool us.
- Chance that h is consistent with S is at most (1-ε)^{|S|}.
- Let |H| = number of DLs over n Boolean features. $|H| < n!4^n$. (for each feature there are 4 possible rules, and no feature will appear more than once)
- So, $\Pr[\text{some DL h with err(h)} \in \text{ is consistent}] \leq |H|(1-\epsilon)^{|S|} \leq |H|e^{-\epsilon|S|}$.
- This is < δ for $|S| > (1/\epsilon)[\ln(|H|) + \ln(1/\delta)]$ or about $(1/\epsilon)[\ln \ln n + \ln(1/\delta)]$



PAC model more formally:

- We are given sample $S = \{(x,y)\}$.
 - Assume \times 's come from some fixed probability distribution ${\rm D}$ over instance space.
- View labels y as being produced by some target function f. Alg does optimization over S to produce some hypothesis (prediction rule) h. Goal is for h to do well on new examples also from D. I.e., $Pr_D[h(x)\neq f(x)] < \epsilon$.

Algorithm PAC-learns a class of functions C if:

- For any given ≥>0, ≥>0, any target f ∈ C, any dist. D, the algorithm produces h of err(h)< with prob. at least 1-8.
 Running time and sample sizes polynomial in relevant
- parameters: $1/\varepsilon$, $1/\delta$, n (size of examples), size(f).
- Require h to be poly-time evaluatable. Learning is called "proper" if h ∈ C. Can also talk about "learning C by H".
 We just gave an alg to PAC-learn decision lists.

Algorithm PAC-learns a class of functions C if: • For any given ε>0, δ>0, any target f ∈ C, any dist. D, the algorithm produces h of err(h)×ε with prob. at least 1-δ. • Running time and sample sizes polynomial in relevant parameters: 1/ε, 1/δ, n (size of examples), size(f). • Require h to be poly-time evaluatable. Learning is called "proper" if h ∈ C. Can also talk about "learning C by H".

PAC model more formally:

Algorithm PAC-learns a class of functions C if:

- For any given $\epsilon > 0, \, \delta > 0$, any target $f \in \mathcal{C}$, any dist. D, the algorithm produces h of $err(h) < \epsilon$ with prob. at least 1- δ .
- Running time and sample sizes polynomial in relevant parameters: $1/\epsilon$, $1/\delta$, n (size of examples), size(f).
- Require h to be poly-time evaluatable. Learning is called "proper" if $h \in C$. Can also talk about "learning C by H". Some notes:
- Can either view alg as requesting examples (button/oracle model) or just as function of S, with guarantee if S is suff. lg.
- "size(f)" term comes in when you are looking at classes where some fns could take > poly(n) bits to write down. (e.g., decision trees, DNF formulas)

Confidence/sample-complexity

- What's great is there was nothing special about DLs in our argument.
- All we said was: "if there are not *too* many rules to choose from, then it's unlikely one will have fooled us just by chance."
- And in particular, the number of examples needs to only be proportional to log(|C|).
 (notice big difference between |C| and log(|C|).)

Occam's razor

William of Occam (~1320 AD):

"entities should not be multiplied unnecessarily" (in Latin)

Which we interpret as: "in general, prefer simpler explanations".

Why? Is this a good policy? What if we have different notions of what's simpler?

Occam's razor (contd)

A computer-science-ish way of looking at it:

- Say "simple" = "short description".
- At most 2^s explanations can be < s bits long.
- So, if the number of examples satisfies:

Think of as $|S| > (1/\epsilon)[s \ln(2) + \ln(1/\delta)]$ 10x #bits to

Then it's unlikely a bad simple explanation will fool you just by chance.

Occam's razor (contd)²

Nice interpretation:

- Even if we have different notions of what's simpler (e.g., different representation languages), we can both use Occam's razor.
- Of course, there's no guarantee there will be a short explanation for the data. That depends on your representation.

Decision trees

 Decision trees over {0,1}ⁿ not known to be PAC-learnable.

- Given any data set S, it's easy to find a consistent DT if one exists. How?
- Where does the DL argument break down?
- Simple heuristics used in practice (ID3 etc.) don't work for all c∈C even for uniform D.
- Would suffice to find the (apx) smallest DT consistent with any dataset S, but that's NPhard.

More examples

Other classes we can PAC-learn: (how?)

- Monomials [conjunctions, AND-functions] - $x_1 \wedge x_4 \wedge x_6 \wedge x_9$
- 3-CNF formulas (3-SAT formulas)
- OR-functions, 3-DNF formulas
- k-Decision lists (each if-condition is a conjunction of size k), k is constant.
- Given a data set S, deciding if there is a consistent 2-term DNF formula is NPcomplete. Does that mean 2-term DNF is hard to learn?

More examples

- Hard to learn C by C, but easy to learn C by H, where H = {2-CNF}.
- Given a data set S, deciding if there is a consistent 2-term DNF formula is NPcomplete. Does that mean 2-term DNF is hard to learn?

<u>If computation-time is no object,</u> <u>then any class is PAC-learnable</u>

- Occam bounds ⇒ any class is learnable if computation time is no object:
 - Let s_1 =10, $\delta_1 = \delta/2$. For i=1,2,... do:
 - Request $(1/\epsilon)[s_i + ln(1/\delta_i)]$ examples S_i .
 - Check if there is a function of size at most s_i consistent with S_i . If so, output it and halt.
 - $s_{i+1} = 2s_i, \delta_{i+1} = \delta_i/2.$
 - At most δ_1 + δ_2 + ... $\leq \delta$ chance of failure.
 - Total data used: $O((1/\epsilon)[size(f)+ln(1/\delta)ln(size(f))])$.

More about the PAC model

- Algorithm PAC-learns a class of functions C if:
- For any given $\epsilon >0, \delta >0$, any target $f \in C$, any dist. D, the algorithm produces h of $err(h) < \epsilon$ with prob. at least $1-\delta.$
- Running time and sample sizes polynomial in relevant parameters: $1/\epsilon, \, 1/\delta, \, n, \, \text{size}(f).$
- Require h to be poly-time evaluatable. Learning is called "proper" if $h\in {\it C}.$ Can also talk about "learning C by H".
- What if your alg only worked for $\delta = \frac{1}{2}$, what would you do?
- What if it only worked for $\varepsilon = \frac{1}{4}$, or even $\varepsilon = \frac{1}{2}-1/n$? This is called weak-learning. Will get back to later.
- Agnostic learning model: Don't assume anything about f. Try to reach error opt(H) + ϵ .

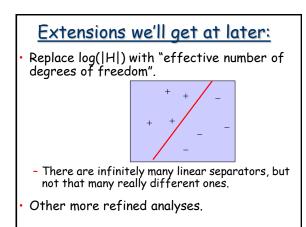
More about the PAC model

Algorithm PAC-learns a class of functions C if:

- For any given ≥>0, ≥>0, any target f ∈ C, any dist. D, the algorithm produces h of err(h)<e with prob. at least 1-8.
 Running time and sample sizes polynomial in relevant
- parameters: 1/ε, 1/δ, n, size(f). • Require h to be poly-time evaluatable. Learning is called "proper" if h ∈ C. Can also talk about "learning C by H".

Drawbacks of model:

- In the real world, labeled examples are much more expensive than running time. Poly(size(f)) not enough.
- "Prior knowledge/beliefs" might be not just over form of target but other relations to data.
- Doesn't address other kinds of info (cheap unlabeled data, pairwise similarity information).
- Only considers "one shot" learning.



Some open problems

Can one efficiently PAC-learn...

- an intersection of 2 halfspaces? (2-term DNF trick doesn't work)
- C={fns with only O(log n) relevant variables}? (or even O(loglog n) or ω(1) relevant variables)? This is a special case of DTs, DNFs.
- Monotone DNF over uniform D?
- Weak agnostic learning of monomials.